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Abstract: The recent release of the nuclear, chloroplast and mitochondrial genome assemblies of
Siberian larch (Larix sibirica Ledeb.), one of the most cold-resistant tree species in the only deciduous
genus of Pinaceae, with seasonal senescence and a rot-resistant valuable timber widely used in
construction, greatly contributed to the development of genomic resources for the larch genus. Here,
we present an extensive repeatome analysis and the first annotation of the draft nuclear Siberian larch
genome assembly. About 66% of the larch genome consists of highly repetitive elements (REs), with
the likely wave of retrotransposons insertions into the larch genome estimated to occur 4–5 MYA.
In total, 39,370 gene models were predicted, with 87% of them having homology to the Arabidopsis-
annotated proteins and 78% having at least one GO term assignment. The current state of the genome
annotations allows for the exploration of the gymnosperm and angiosperm species for relative gene
abundance in different functional categories. Comparative analysis of functional gene categories
across different angiosperm and gymnosperm species finds that the Siberian larch genome has an
overabundance of genes associated with programmed cell death (PCD), autophagy, stress hormone
biosynthesis and regulatory pathways; genes that may play important roles in seasonal senescence
and stress response to extreme cold in larch. Despite being incomplete, the draft assemblies and
annotations of the conifer genomes are at a point of development where they now represent a valuable
source for further genomic, genetic and population studies.

Keywords: angiosperms; annotation; conifer; deciduous; genome; gymnosperms; microsatellites;
RNA-seq; repeats; seasonal senescence; Siberian larch; transcriptome; transposons

1. Introduction

Gymnosperms originated approximately 360 million years ago (MYA), when they
comprised a prevailing part of the terrestrial vegetation on the earth [1–3]. Today’s living
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gymnosperms comprise about 1000 species [1], with conifers being the most diverse and
abundant group. Being one of the most ancient groups of seed plants, they are considered
as a link between angiosperms and pteridosperms. The conifer genomes have a number
of features that distinguish them from other plants, the most notable is their enormous
genome size, which is not a result of recent polyploidization. It varies among the sequenced
species from 4 Gbp in Gnetum montanum [4] to 31 Gbp in sugar pine, Pinus lambertiana
Dougl. [5], much larger than compared to the typical diploid angiosperms, such as 135 Mbp
in dicot Arabidopsis thaliana [6] or 3.1 Gbp in dicot sunflower Helianthus annuus [7], but
comparable with some polyploid angiosperms, such as 14.5 Gbp in allohexaploid common
wheat Triticum aestivum [8] or even smaller, if compared with 150 Gbp in octoploid monocot
Paris japonica [9]. The gene number also seems to vary in the sequenced conifers, as the
number of predicted gene models ranges from 39,370 in Siberian larch, Larix sibirica Ledeb.
(this study) and 50,172 in loblolly pine, Pinus taeda L. [10,11], to 102,915 in white spruce,
Picea glauca (Moench) Voss [12].

The difference in the conifer genome size has not been shown to be associated with
recent polyploidization or a whole genome duplication event [13], however there is a
higher gene copy number in gymnosperms than in most angiosperm species, which may
be associated with transposed and dispersed duplication events [14]. Another character-
istic of conifer genomes is a large proportion of repetitive DNA, estimated as much as
70–82% [10,15–17] of the genome size. It is assumed that insertion and extensive prolifera-
tion of transposable elements (TE) were mainly responsible for such enlarged genomes [18].
These factors, the giant genome size and its high complexity due to the prevalence of
repeat content, make studies of conifer genomes more challenging than in many other
plant species.

Owing to the rapidly developing high-throughput sequencing technologies, eleven
conifer species in the Pinaceae family have been sequenced, and their draft genomes have
been made available to the community, including those for Norway spruce, Picea abies
(L.) Karst [19]; white spruce, P. glauca [12]; loblolly pine, Pinus taeda [10,11]; sugar pine,
P. lambertiana [5]; Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco [16]; European silver fir,
Abies alba [20]; Siberian larch, Larix sibirica Ledeb [21]; Japanese larch, L. kaempferi (Lamb.)
Carr. [22]; Chinese pine, P. tabuliformis Carr. [23]; Engelmann spruce, P. engelmannii Parry
ex Engelm. (NCBI BioProject PRJNA504036); and Sitka spruce, P. sitchensis (Bong.) Carr.
(NCBI BioProject PRJNA304257).

The Siberian larch is a cold-resistant deciduous conifer tree native to the east and
northeast of European Russia, the Urals, and Western and Eastern Siberia [24]. It forms
extensive conifer forests, often growing together with Scots pine, Siberian spruce, and
Siberian stone pine, occupying almost 263 million hectares, or about 40%, of Russia’s
forested areas. The Siberian larch is known for its frost-hardiness, relatively fast growth,
and its rot-resistant timber, which makes it especially valuable in construction. Its ecological
and economical importance has stimulated exploration of its population structure [25–27]
and the development of early genetic markers [28,29]. The whole-genome sequencing made
possible the development of additional highly informative species-specific SSR markers in
L. sibirica [30,31], which can be used in different practical applications, including tracking
the timber origin to fight illegal logging [32]. The release of the first nuclear [21], chloro-
plast [33] and mitochondrial [34] genome assemblies for Siberian larch, and recently for
Japanese larch [22], has contributed to the development of the genomic resource for the larch
genus. Here, we present an initial annotation for the draft Siberian larch genome assembly.

2. Results
2.1. Transcriptome Assembly

To provide RNA-seq support for gene prediction, five tissues (buds, needles, cambium,
seedling, and the first-year shoot) were sampled from a reference Siberian larch tree and
used to construct a reference transcriptome. The total RNA was sequenced, using the
Illumina MiSeq platform (Illumina, San Diego, CA, USA). All of the clean reads, trimmed
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with Trimmomatic (9-bp headcrop, minimum read quality of Q = 23, and minimum read
length of 35 bp; [35]), were used for the transcriptome assembly. A total of 46,618; 626,542;
59,317; 174,805; and 590,240 transcripts were obtained for the buds, cambium, needles,
seedling, and the first-year shoot tissues, respectively, using the TrinityRnaSeq package [36].
The N50 length and average read length of the assembled sequences were 357–790 bp. The
reads for all of the tissues are deposited at NCBI SRA under accession numbers SRX9464971,
SRX14986114, SRX14997110, SRX14997111 and SRX14997112, respectively. The transcrip-
tome assemblies are available under accession numbers GIXH00000000, GJYD00000000,
GJYL00000000, GJYN00000000, and GJYW00000000.

2.2. Repeat Content

The species-specific de novo repeat library, generated using RepeatModeler [37], contained
1721 mobile elements that were found in the current assembly of the Siberian larch. Assembling
the consensus sequences of ~21 million clusters (cluster size threshold of 200 reads per cluster)
with Inchworm from TrinityRnaSeq package [36] resulted in ~31,000 consensus sequences that
likely represent the repeated regions of the Siberian larch genome. To validate these sequences,
we compared them to the RepeatModeler-derived library and to a PIER repeat library. Homologs
were found for ~12,000 consensus sequences among the RepeatModeler-derived library, and
for ~7000 sequences among the PIER database. Reciprocal BLAST showed that 1045 out of
the 1721 RepeatModeler-derived sequences had a close homology to the clustering-derived
consensus sequences. The separate species-specific RepeatModeler-derived library, as well
as the combined custom repeat library used for TE identification, are deposited in figshare
with DOI 10.6084/m9.figshare.19785913 or can be also found at https://hpccloud.sfu-kras.ru/
owncloud/index.php/s/GMBabOGEgqOD4JX (accessed on 12 July 2022).

The proportion of the classified families observed in the Siberian larch genome was
similar to those previously described for other conifers. The total number of repetitive
elements (REs) in the genome assembly, identified using the RepeatMasker [38] with
combined repeat library, was 20.9 million with the total size of 4.8 Gbp, which comprises
about 40% of the 12 Gbp genome (Table S1, Supplementary Materials). The fraction covered
by repeats in the portion of the Oxford Nanopore long reads was 65.98%, as estimated by
RepeatMasker. The rough estimation of the repeat coverage, without considering overlaps,
and the nested structure of some repeats was 83.8% (Table S2, Supplementary Materials).

The use of the TEclass allowed for a better reconstruction of the TE groups and families
composing a large portion of the genome. Among the classified mobile elements, Class I
retrotransposons LINE, I, Gypsy, and Copia superfamilies were the most abundant, with
LINE elements also having the longest average size and taking the largest part of the
genome (Figure 1A; Table S1, Supplementary Materials).

Class I Long terminal retrotransposons (LTR), presented mostly by the Gypsy and
Copia elements, comprised the largest fraction of all of the mobile elements. Substantial
portions of the LTRs were homologues to a loblolly pine bacterial artificial chromosome
(BAC) library and fosmid sequences [39,40]. PtTalladega (3646 copies in the Siberian larch
genome), PtOuachita (1025), IFG (990), PtAppalachian (773), PtConagree (731), and eight
more repeat families were identified (Table S3, Supplementary Materials). However, most of
the LTR-retrotransposons have not been classified into specific families (“Unclassified LTR”
in Table S1, Supplementary Materials). Among the non-LTR retrotransposons LINE/L1,
I, Penelope, and SINE together comprise about 97.84% of all of the non-LTRs, which
cover 11.98% of the Siberian larch assembly length. The majority of the repeats among
the different repeat families was relatively small in length, less than 1 Kbp. A small part
of the longest repeats reached almost 15 Kbp; they belonged to the LINE elements and
uncharacterized LTR. The most frequent TEs for each family were shorter than 1 Kbp. Some
of the repeat groups have a bimodal length distribution (Gypsy, DIR, LINE/I, Helitron,
Penelope), but both of the peaks in the distributions were less than 1 Kbp (Figures S1–S5,
Supplementary Materials).

https://hpccloud.sfu-kras.ru/owncloud/index.php/s/GMBabOGEgqOD4JX
https://hpccloud.sfu-kras.ru/owncloud/index.php/s/GMBabOGEgqOD4JX
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per 1 Mbp) for several conifer and angiosperm species found using the GMATo program (Larch—
Larix sibirica; Pab—Picea abies; PG—Picea glauca; Pita—Pinus taeda; Popul—Populus trichocarpa; 
TAIR—Arabidopsis thaliana; Zea—Zea mays; (C)—box plots for number of all microsatellite loci found 
in all species listed in B using the GMATo and TRF programs. 
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Figure 1. (A)—relative size of the repetitive sequence content of the Siberian larch genome annotated
using RepeatMasker and combined library, comprising the RepeatModeler-derived library classified
with TEclass, RepBase, MIPS, CPRD and PIER v1.0 libraries; (B)—microsatellite (SSR) density (number
of microsatellite loci with di-, tri-, tetra-, penta-, hexa-, hepta- and octanuclotide motifs per 1 Mbp)
for several conifer and angiosperm species found using the GMATo program (Larch—Larix sibirica;
Pab—Picea abies; PG—Picea glauca; Pita—Pinus taeda; Popul—Populus trichocarpa; TAIR—Arabidopsis
thaliana; Zea—Zea mays; (C)—box plots for number of all microsatellite loci found in all species listed
in B using the GMATo and TRF programs.

Class II DNA transposons cover 4.76% of the assembly size, and 4.49% of them were
not classified by TEclass (“Unclassified” in Table S1, Supplementary Materials). Among
classified transposons the most numerous were terminal, inverted repeats (TIR, 0.16% of
DNA transposons), Helitron (0.06%), EnSpm (0.02%), hAT (<0.01%).

In total, 1,129,244 microsatellite loci with motif size 2–8 bp were detected by the
GMATo program [41] in the Siberian larch genome, with an average density of 268.7 loci
per megabase. Compared to other species, the larch genome assembly also had a relatively
high SSR density, similar to the Norway spruce and black cottonwood genomes (Figure 1B).
Wegrzyn et al. (2014) and Neale et al. (2014) reported a SSR density of 10–20 loci/Mbp
for Pinus taeda, Picea abies, and Picea glauca, discovered by the TRF program [42]. We also
scanned the larch genome with TRF, which yielded 17,145 loci with the same motif size
and with overall density of 4.1 loci per megabase. On average, GMATo discovered ninefold
more SSR loci than TRF, based on seven plant species (Figure 1C; mean 197 and 21 loci/Mbp
for GMATo and TRF, respectively), and has proved to be more efficient for the processing
of the large genome sequences.
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2.3. LTR-RT Insertion Time Estimate

The LTRharvest [43] with LTR_retriever [44] identified 347 LTR elements and 36 in-
tact LTRs in the Siberian larch draft assembly. These 36 intact LTRs were combined with
367 identified by Zhou et al. (2021). A possible overlap was checked, using blastn against
Larix LTRs from Zhou et al. (2021). The probable insertion wave of retrotransposons into
the larch genome likely occurred 4–5 MYA, as estimated based on 403 LTRs (Figure 2C).
Although the Copia (PR-INT-RT) and Gypsy (PR-RT-INT) superfamilies had slightly dif-
ferent profiles, their mean and median values were very close (mean = 3.16 MYA and
median = 3.03 MYA for Copia; mean = 3.11 MYA and median = 2.96 MYA for Gypsy)
(Figure 2D). The LTRs with different flanking motifs, typical 5′-TG . . . CA-3′ and other
fewer common variants were also compared in terms of their time insertion. Similarly, the
LTRs with TG . . . CA flanking motifs had a slight peak with a median at 2.56 MYA and
LTRs with other flanking motifs had a median at 2.60 MYA (Figure 2E). When compared to
the profiles of the other gymnosperms, the larch exhibited the most ancient burst of LTRs
insertion, even compared to Gnetum and Gingko (Figure 2B).
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Figure 2. (A)—structure of Copia-like and Gypsy-like LTR retrotransposons; (B)—estimation of the
insertion time of the LTR-RT elements in genomes of nine gymnosperm species; estimation of the
insertion time of LTR-RT (C); Copia and Gypsy superfamilies (D); and TGCA/non-TGCA LTRs (E) in
the genome of Siberian larch. X-axis is in million years (MYA).

2.4. Identification of LRR Genes

In all of the tissues of the Siberian larch, 4482 transcripts containing the LRR domain
were detected, using the hidden Markov Model method (HMM) HMMER3 [45] to correctly
assign the homologous sequences to one or more Pfam families of LRR. The largest number
of LRR domains were contained in the shoot transcriptome (1846), slightly less were in
the cambium transcriptome (1599), but their proportions in the total number of transcripts
for each tissue (presented in Table S4, Supplementary Materials) were approximately the
same for all of the tissues and no more than 2%. The LRR-1, LRR-4, LRR-8, and LRR-6
families encompassed the largest portion of the putative LRR domains identified in the larch
transcriptomes (Figure S6A–E, Supplementary Materials). As can be seen in Figure S6A–E
(Supplementary Materials), the largest number of transcripts contained the LRR-4 family in
all of the tissues of Siberian larch.
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The NBS-LRR proteins play an important role in plant defense responses against various
classes of pathogens, including bacterial, fungal, viral, nematodes, and insects. Their length
usually ranges from ~860 to ~1900 amino acids, but most of the transcripts containing the LRR
domain were shorter than 300–400 amino acids (Figure S6F, Supplementary Materials). We fil-
tered out the sequences shorter than 850 and searched for the NBS domain. In total, 56 putative
NBS-LRR proteins were found in the transcriptome of the shoot, 18 in the cambium, 5 in the
seedling, and 2 in the autumn bud (Table S4, Supplementary Materials). The OmicsBox [46,47]
functional annotations confirmed the presence of the domains NB-ARC and LRRs in the iden-
tified transcript sequences. The functional annotation by InterProScan [48] did not reveal the
presence of other functional domains in these sequences. The NB-ARC- and LRRs-containing
sequences in Siberian larch are likely to be resistance genes, because they include P-loop
NTPase and LRRs families. The sequences containing identified LRR and NB-ARC domains
are deposited in figshare with DOI 10.6084/m9.figshare.19785913 or can be found at repository
https://hpccloud.sfu-kras.ru/owncloud/index.php/s/GMBabOGEgqOD4JX (accessed on
12 July 2022).

2.5. Structural Annotation Using MAKER2

The benchmarking with the BUSCO package [49] found 317 complete and 307 frag-
mented genes out of 1614 single-copy orthologs. This makes it possible to estimate the
number of complete (not fragmented) genes in this annotation at the level of 32,000 genes,
with gene space completeness estimated at 38.6% (Tables S5 and S6, Supplementary Materi-
als). The high fragmentation of the scaffolds could explain the relatively high proportion
of the fragmented genes in the Siberian larch genome (19% fragmented vs. 38.6% total)
identified in the BUSCO assessment with respect to other conifer genomes (7.5% vs. 80.9%
for Pinus lambertiana; 11.5% vs. 32.6% for Picea glauca).

Using the transcripts from several tissue types, transcriptome shotgun assemblies (TSAs)
from other conifer species, and proteins’ references from Uniprot as a starting point for the
MAKER2 annotation pipeline [50] allowed us to obtain 39,370 gene models in 37,206 scaffolds,
composed of 134,271 exons, and 94,901 introns (Table 1; Table S7, Supplementary Materials).
Among them, 24,551 gene models were full-length, and 14,819 were partial (6476 truncated
from the beginning, 7545 truncated from the end, and 798 truncated from both sides). The mean
length of the genes was about 1841 bp containing 3.41 exons on average, with two being the
most common number of exons, which is in a good agreement with prediction of ~four exons
per gene for Pinus taeda [51]. The maximum CDS length was 7216 bp, which is less than the
length of the longest intron of 10,153 bp (Table 1).

Table 1. Summary of genome assembly and gene annotation statistics for Siberian larch genome.

Parameter Larix sibirica

Number of chromosomes 12

Estimated genome size (1C), Gbp 12.03 (12.30 pg) 1

Assembly length, Gbp 5.59 2/12.34 3

Assembly N50, bp 3098 2/6443 3

GC content, % 35.41

Repeat content, % 65.98

Number of predicted gene models 39,370

Number of full-length gene models 24,551

Average CDS length, bp 244.29

Average intron length, bp 360.93

Longest intron length, bp 10,153
1 https://cvalues.science.kew.org/search/gymnosperm (accessed on 25 July 2022); 2 based on contigs without
gaps; 3 based on scaffolds with gaps.

https://hpccloud.sfu-kras.ru/owncloud/index.php/s/GMBabOGEgqOD4JX
https://cvalues.science.kew.org/search/gymnosperm
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The mapping of the transcriptome reads to the genome resulted in 77.9% to 88.8%
overall alignment rate per tissue (Table S5, Supplementary Materials). This suggests that the
portion of the complete and partial transcriptome-derived genes identified in the genome
can be estimated from 21% in needle tissue to 80.4% in shoot tissue.

MAKER2 uses annotation edit distance (AED), a quality control metric initially intro-
duced in the Sequence Ontology project [52,53], where it was originally used to compare
and score different releases of the same annotation. Here, instead of assessing the distance
between annotations, it measures the congruency between a gene model and its corre-
sponding evidence [50]. For the Siberian larch annotation, the AED computed by MAKER2
was below 0.5 for 95% of the gene models, which is comparable to the mouse genome
release GRCm37 and maize chromosome 4 [50]. However, considering the scarce amount
of species-specific supporting data that could be used as evidence in the gene prediction
and for quality control, this score could be overestimated to some extent.

For the regions identified by RepeatMasker as repeats, intersections with the CDS
from the predicted gene models were also found. In total, 6884 genes had at least 20%
overlap with a repeat (Figure S7A, Supplementary Materials). Those gene models were
consequently marked as ‘repeat associated’; 2247 (33%) of them were overlapping with
the Non-LTR I family, 241 (3%) with LINE, 571 (8%) with LTR Gypsy, 523 (8%) with Copia,
and 312 (5%) with Simple repeats. The most frequent functional annotations for the repeat-
overlapping genes were receptor-like protein kinases, leucine-rich repeat (LRR) proteins,
transcription factors, ATP-binding cassette transporters (ABC transporters), synthase,
reductase, esterase and peroxidase enzymes, Cytochrome C and Cytochrome P450 proteins,
and others (Figure S7B, Supplementary Materials).

Similar to larger genome sizes, the average intron lengths were also longer in conifers
than in angiosperms [54]. In the MAKER2-derived annotation, 94,901 introns were identi-
fied in the 36,183 genes in total, with an average length of 361 bp and the longest intron of
10,153 bp, which is less than in other conifer species; 289 introns were longer than five Kbp.
When comparing the top 10% of the longest introns, the larch introns were comparable in
length with those of A. thaliana and P. taeda, although, the longest larch introns were far
shorter than those in other spruce species, such as P. abies and P. glauca, or in the repeat-rich
genomes of Populus thichocarpa, Vitis vinifera, and Zea mays (Figure 3B). In total, the introns
made up to 47% (34,25 Mbp) of the gene space (Figure 3A), and 0.29% of the 12.3 Gbp
genome assembly. The repeat content of the introns was lower than in the genome in
general; for instance, only 4.59 Mbp (12.9% of the intron sequence space) are covered by
TEs compared to 4800 Mbp in the genome (65.98% of genome sequence space excluding
introns). In the larch introns, the most abundant were Class I retrotransposons LINE and
I (6135 and 2195 elements, respectively), followed by LTR Gypsy and Copia (1879 and
1214 elements, respectively). Among the Class II DNA transposons, the most frequent were
the TIRs and EnSpm elements (362 and 245 elements, respectively).

2.6. Functional Annotation

Based on the sequence similarity to the Arabidopsis thaliana protein set, 87% of the pre-
dicted larch gene models (34,358 out of 39,370) had an alignment with at least 10−5 e-value,
20% query coverage, and 20% identity (Figure 4A). The proportion of the mapped proteins
in Siberian larch was among the highest compared to other gymnosperms (second only to
P. tabuliformis), while being lower than in some model angiosperm plants, such as black
cottonwood, grape, and common oak (Figure 4B).
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The GO category assignment was based on InterProScan domains identification and
BLAST homology search, which yielded 30,512 annotated gene models (78%), with at
least one assigned GO term. To analyze the annotated gene pool in more detail, it was
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divided into 20 functional categories. The functions were classified according to the most
recent GO dictionary: five categories in Biological process, six in Molecular function, five
in Cellular component (Figure 5A). All of the proteins from the respective category were
mapped to the Arabidopsis protein database with BLASTP and e-value ≤ 10−5, pident > 50
and qcovhsp > 50. From 50% (in Transcription activity) to 85% (in Transporter activity,
Mitochondrion, and Chloroplast) of the Siberian larch annotated proteins were found to be
homologs to Arabidopsis proteins (Figure 5B).
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2.7. Comparing GO Annotations between Conifer and Angiosperm Species

Among the 6937 GO terms shared by 11 species compared in this study, 2080 (29.9%)
had significant differences in the number of genes annotated with the corresponding GO
term (q-value < 0.005 and adj. p-value < 0.01). It was reported recently that the deciduous
and evergreen trees differ in the number of genes associated with dormancy and stress
response leucine-rich repeats receptor-like kinases (LRR-RLK) [55].

In 12 terms associated with metabolism and the organization of the cell wall and its
components, the number of annotated genes was higher in all of the gymnosperms than
in the angiosperms (Table S8, Supplementary Materials). For four terms associated with
apoptosis and autophagy, the relative gene number in angiosperms and Siberian larch
was higher than in the rest of the gymnosperms. Among the 15 terms related to ABA, JA,
and ETH metabolism, regulation and response were identified in all 11 species; Siberian
larch had the highest number of annotated genes in four of them, compared to both the
gymnosperms and angiosperms: jasmonic acid (JA) biosynthetic process (GO:0009695);
abscisic acid (ABA)-activated signaling pathway (GO:0009738); ABA binding (GO:0010427);
and response to hormone (GO:0009725), respectively. Several of the genes related to the
response to JA were generally higher in the gymnosperms than in the angiosperms. In water
channel activity (GO:0015250), water transport (GO:0006833), nucleosome (GO:0000786),
and nucleosome assembly (GO:0006334), the Siberian larch had a larger number of mapped
genes. Among the conifers, the Siberian larch had the highest number of genes in response
to light stimulus (GO:0009416) and light harvesting in the photosystem I (GO:0009768)
GO categories.

3. Discussion

Work with such large genomes as those found in conifers is often hindered by the limit
of computational resources, such as the computation time and memory space needed to
process the genomic data. The structural annotation of the draft whole-genome assembly
of the Siberian larch with MAKER2 pipeline on a 448 core cluster took 22 days to generate
a complete set of predicted gene models, and running RepeatMasker separately on the
genome assembly of 40 cores took 20 days. This, and the complex genome structure
enriched with numerous repeated regions, still makes genomic studies a challenge for plant
species with exceptionally large genomes.

3.1. Repeat Content and LTR Insertion Time Estimate

There are two main factors responsible for a large genome size in higher plants: poly-
ploidy and amplification of TEs. The latter not only contributes to a genome-size expansion,
but also presents a source of genetic variation, increasing the mutation rate and affecting the
gene expression by altering coding parts and regulatory regions. A characteristic feature of
the conifer genomes is a large number of Res, including TEs. The irreversibility of the repeat
accumulation process in the genomes of angiosperms and conifers, also called genome
obesity, is discussed in the literature [18,19]. The underlying causes for this are under
debate. Some researchers consider this to be a result of bursts in the activity of transposable
elements [56–60], while others suggest that the large genomes containing many diverse
repeats may have acquired them over time by a steady accumulation process, which may
also imply that a repeat elimination process could be slower or less efficient, leading to
slow genome contraction [18,61,62].

The types of identified repeats and their distribution in the Siberian larch genome
are consistent with those found in other conifers. However, the proportion of the genome
represented by simple repeats and mobile elements is one of the smallest among all of the
gymnosperms; only 40% of the 12 Gbp genome size can be explained by repeat expansion.
This estimate is lower than in all of the other gymnosperms. However, the fraction of
the genome covered by repeats in the portion of nanopore long reads was 65.98% bp, as
estimated by RepeatMasker, which suggests that the part of the Siberian larch repeatome
was too fragmented to be included in the final scaffolded assembly.
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LTR comprised the largest fraction of all of the mobile elements with prevailing num-
ber of the Gypsy TEs, a characteristic also widely observed in the other conifers [15–17,19]
and angiosperm species [63]. While the LINEs and SINEs are common for plant genomes,
Penelope-like elements (PLEs) were long considered to be a feature of animal and fungi
genomes [64,65] until multiple Penelope (EN(+)PLE type or Dryad) elements were found
in the loblolly pine [66], and AdLINE3 RTEs were found in a number of flowering plant
species [67]. A phylogenetic analysis of Dryad and AdLINE3 suggested a horizontal
transfer of TEs, possibly between arthropods and a conifers’ ancestor approximately
340 Mya [66,67].

Class I retrotransposons proliferate by integrating their RNA intermediate into the host
genome via retrotranscription to cDNA, using the host transcription machinery and their
own enzymes. The coding part of the repeat, placed between two long terminal repeats,
contains gag and pol genes [68,69]. The latter includes protease, reverse transcriptase,
ribonuclease-H, and integrase that are responsible for the cleaving of the Pol protein and
RNA (protease and ribonuclease H), copying the retrotransposons RNA into cDNA (reverse
transcriptase) and integrating the cDNA into the host genome (integrase), respectively
(Figure 2A) [70].

In higher plants, the repeats containing direct LTRs prevail [71,72]. When a retroele-
ment has just been inserted, the two flanking LTRs on its 5′ and 3′ ends are identical [73],
but, with time, they accumulate mutations, and notably their mutation rate is most likely
higher since the repeats, unlike the genes, are not under selection. The number of sequence
dissimilarities between the two flanking LTRs can be used as a proxy to estimate the time
when the element was inserted into the genome. The estimation of the insertion time of the
LTR-RT elements can shed light on the evolutionary aspects of the genome organization,
and potentially the date expansion events.

The residual DNA of the LTRs was much higher than the intact LTR-RTs, which
suggests that, after a massive proliferation of the retrotransposons, a DNA loss might
have occurred in the Siberian larch genome. The typical insertion time estimates in the
plant genomes range from 1 to 2.5 MYA for the angiosperms [74–79]. In the gymnosperms,
10–15 MYA insertion times have been reported [80]. Based on the LTRs identification
by Zhou et al. [81], the approximate time of LTR expansion in the gymnosperms can be
estimated to be 2–4 MYA. In the larch, the time estimate can be influenced either by the
efficient repeat elimination mechanism combined with the true ancient repeat insertion, or
by the fragmented nature of the draft assembly, and consequently, the low number of found
LTRs. However, the draft genomes of the Norway spruce and silver fir have comparable
assembly contiguity (N50 = 6443, 5206 and 14,051 bp for the Siberian larch, Norway spruce,
and silver fir, respectively), and their estimated insertion times are also similar, despite the
noticeably different number of identified LTRs (403 in larch, 31,016 in Norway spruce, and
34,952 in silver fir).

Leucine-rich repeats (LRRs) have been found in many functionally diverse proteins.
They form horseshoe structures and might be involved in protein–protein interactions. The
most representative class of plant-pathogen resistance proteins or R proteins in plants are
the NBS-LRR proteins. As their name implies, the NBS-LRR proteins include a nucleotide-
binding site (NBS), also called a central nucleotide-binding domain NB-ARC, and a do-
main containing LRR. The LRR regions demonstrate a high variation in the type and
number of the LRR units between and within species, which provides the specificity of
pathogen molecules’ recognition. The LRR-containing sequences are associated with im-
mune response of plants to biotic stress [82–85]. Their further study will also help us better
understand the genetic mechanisms of disease resistance in the larch and other plants.

3.2. Structural Annotation Using AUGUSTUS and MAKER2 Pipeline

The number of predicted gene models in Siberian larch (39,370) is similar to that
in the loblolly pine (50,172) and the Douglas fir (54,830), but much lower than in the
silver fir (94,205), sugar pine (71,117), white spruce (102,915), Norway spruce (70,968),
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and Chinese pine (80,495). Among them, 77% were supported either by RNA-seq data
from several tissues, or by homology to the genes from the plant subset of the NCBI nr
database. The BUSCO analysis suggests that only 39% of the genes had been recovered
(Table 1; Table S6, Supplementary Materials). This relatively low percentage can indicate
that not all of the genes were fully sequenced and included in the genome assembly. The
genome assembly based only on the contigs without gaps covered 5.59 Gbp, about half
of the entire genome, while the genome assembly based on scaffolds with gaps covered
12.34 Gbp, which corresponds well to the entire genome. Therefore, we believe that the
gaps are not due to the insufficient sequencing coverage, but represent highly repetitive
regions that are excluded during assembling procedure, due to their high complexity, while
the coding parts of the genome are mostly sequenced and easily assembled, due to their
uniqueness. Moreover, comparison to Arabidopsis gene set (Figure 5B) shows that a large
proportion of the genes have been identified and characterized. Thus, the annotation can
still be used as a good resource and a primary reference for further genomic studies.

The average intron length in the larch genome was 1.8 to 3.2 times shorter than in the
other conifers. In comparison to the top 10% of longest introns, the larch introns were far
shorter than those in other conifer species, such as P. abies, P. glauca, and P. taeda (Figure 3B).
The discrepancy could be explained by (1) underestimation of the intron size in the MAKER
pipeline [12] that uses the threshold values for resolving the exon–intron structure, or
(2) the naturally occurring differences within the conifer clade. The assembly contiguities
for L. sibirica and P. abies are close, as evidenced by their N50 (Table S7, Supplementary
Materials; Figure 3B), while their average and maximum intron length differ by 2.8 and
6.7 fold, respectively. Likewise, the average intron size in L. sibirica and P. glauca were close,
differing by 1.8 fold (Table S7, Supplementary Materials), while their N50s differ by 7.2 fold.
Nevertheless, it is still possible that the variation in intron sizes in the conifer genome can
be explained by a difference in the assembly contiguity.

3.3. Functional Annotation

The conifers differ from flowering woody plants in a number of ways, including the
absence of vessels in xylem and sieve tubes and companion cells in phloem, different
wood structure, haploid megagametophyte (unlike triploid endosperm in angiosperms),
megasporophylls, and reproductive structures presented by cones rather than flowers. The
conifers, unlike angiosperms, are mostly evergreen plants with very few of them having a
seasonal needle abscission (seasonal senescence), particularly in Glyptostrobus, Metasequoia,
Taxodium, Pseudolarix, and Larix genera. The larches are the dominant species in the boreal
forests in Western Siberia and Canada, occupying much colder habitats then the other
boreal woody plants.

3.3.1. Cell Wall and Phenylalanine Metabolism

The conifers and flowering woody plants differ in their cell wall structure, which
influences their woody properties. In woody plants, the common components of a cell
wall are hemicellulose, pectin (in the primary cell wall), and lignin (in the secondary cell
wall) [86]. In the woody angiosperms, lignin in the secondary cell walls is made up of
guaiacyl (G) and syringyl (S) units, while in the gymnosperms, the lignins are homogeneous,
consisting primarily of p-hydroxyphenyl (H) and guaiacyl units [87]. It was proposed that
the syringyl units have better ability to strengthen cell walls than the guaiacyl units and
are advantageous for anti-fungal defenses [88,89]. The primer building blocks for lignin in
conifers are p-coumaryl alcohol and coniferyl alcohol [90].

The differences between the conifers and angiosperm woody species can be clearly
seen in the number of genes in GO terms related to cell wall organization and lignin
catabolism (Figure 6). The cell-wall enzymes involved in the biosynthesis of lignin
from p-coumaryl alcohol and coniferyl alcohol were identified in all six of the analyzed
conifer species.
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One of the major precursors for lignin biosynthesis and production of secondary
metabolites, such as phenylpropanoids, flavonoids and anthocyanins, is phenylalanine.
Conifers utilize large amounts (30–40%) of carbon fixed during the photosynthesis for
lignin biosynthesis and wood formation, and their secondary metabolism is remarkably
complex [91]. Apart from their building function, phenylpropanoid, in the form of pheno-
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lics, terpenoids, and alkaloids, plays an important role in the defense mechanisms against
insect and microbial pathogens, functioning as antifeedants and toxins [91–93].

The biosynthesis of phenylalanine and phenylpropanoids also demonstrates the dif-
ference between the conifers and angiosperms (Figure 6). In plants, the main enzymes
participating in the biosynthesis of phenylalanine are prephenate-aminotransferase (PAT),
that converts prephenate to arogenate, and arogenate dehydratase (ADT) that transforms
arogenate to phenylalanine, that is lastly converted by phenylalanine ammonia-lyase (PAL)
into cinnamic acid in cytosol, the first component of the phenylpropanoid pathway [91,94].
It was shown previously that the conifers have more diverse families of ADT and PAT
genes, compared to angiosperms [95,96].

3.3.2. Programmed Cell Death and Autophagy

Programmed cell death (PCD, or apoptosis in animals) is an organized and geneti-
cally regulated process of cellular suicide that can be induced by external environmental
stresses or occurs during the organism’s development. Unlike animals, plant cells have
a rigid cell wall that prevents the formation of apoptotic bodies [97], and lack the clas-
sical caspases that act as the main inducers of PCD, and phagocytosis or macrophages
that could eliminate the remains of a dead cell. Instead, plant cells use caspase-like
proteases (metacaspases) to induce PCD [98], and utilize vacuoles and vacuolar-lytic en-
zymes to digest their cell contents [99,100]. The correct classification of the plant PCD
types has been debated [97,101–103]. In general, it can be divided into two major types:
(1) vacuolar/autolytic/apoptosis-like PCD, characterized by the engulfment of the cyto-
plasm by lytic vacuoles and the later release of vacuolar hydrolases into the cytosol due to
the rupture of the tonoplast; (2) a hypersensitive response PCD that often does not involve
swelling of the vacuoles and is characterized by cell shrinkage and increased autophagic ac-
tivity [102]. The former commonly occurs during the differentiation of the xylem elements,
leaf senescence, and megasporogenesis, while the latter is activated in response to pathogen
invasion to prevent the further spread of the infection [101]. PCD and autophagy have been
shown to be closely related to senescence, since it relies on the degradation and recycling
of accumulated nutrients for later use in other parts of organs. Important features of PCD,
such as DNA fragmentation and protoplast retraction, were observed during senescence in
cucumber [104,105].

In the GO:0012501 category associated with PCD, the Siberian larch has gene numbers
more similar to those in deciduous angiosperm trees, rather than in evergreen conifers. The
number of genes associated with autophagy is also higher in the deciduous angiosperms
and larch than in other conifers (Figure 7). However, the GO:0012502 (induction of PCD)
genes were annotated only for the conifer species (20 in Douglas-fir, 6 in Loblolly pine, 2 in
Sugar pine, 42 in White spruce, 22 in Norway spruce, and 12 in Siberian larch).

PCD features, including the altered nuclear morphology and DNA fragmentation,
were also observed in tomato leaves and flowers, where treatment with ethylene (ETH)
triggered PCD in abscission zone cells, and the application of ROS scavengers delayed
abscission [106]. It was proposed that PCD is regulated through the ETH signaling pathway,
as ETH-biosynthesis defective mutants exhibit increased leaf longevity [107]. Activation
of autophagy during PCD and senescence were demonstrated on autophagy-deficient
Arabidopsis mutants that demonstrated accelerated senescence and PCD [108,109].
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ergreen gymnosperms—by transparent columns, Siberian larch—by yellow column. Boxplots
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3.3.3. Hormones

ABA, JA, and ETH are phytohormones that play an important role in response to
abiotic and biotic stress and leaf senescence. ABA is a phytohormone that participates in
a number of processes critical for plant development and growth, such as the control of
bud dormancy and seed germination, fruit development, resilience to abiotic stress and
pathogens’ infection, and leaf senescence. ABA induces stomata closure, thus reducing
water loss via transpiration in response to water deficiency or heat stress. ABA-deficient
mutants of Arabidopsis, tobacco, tomato, and maize suffer even from relatively moderate
dehydration or temperature deviations [110]. ABA is also required for cold-stress toler-
ance [111], as ABA-deficient mutants of Arabidopsis were shown to have reduced freezing
tolerance in cold-acclimated plants [112–114]. Exposure to low temperatures was shown to
increase the levels of endogenous ABA in Arabidopsis and wheat. In many plants, ABA is
shown to be involved in leaf senescence [115], and together with ETH and reactive oxygen
species plays a major role in leaf abscission [116]. In rice and Arabidopsis treatment with
exogenous ABA was demonstrated to accelerate leaf yellowing and senescence [117,118],
and levels of endogenous ABA were reported to be increasing during leaf senescence in
maize and Arabidopsis [119,120].

JA and its derivatives, referred to as jasmonates (JAs), are fatty acids belonging to the
oxylipins family that function as signaling molecules, regulating the expression of genes
in response to various abiotic stresses. The biosynthesis of JAs takes place consecutively
in plastid, peroxisome, and cytosol, where it is converted from its precursor, α-linolenic
acid, through oxo-phytodienoic acid to JA [121]. The process is triggered by abiotic stress
that causes an accumulation of JAs in the cytoplasm of stressed leaves [122,123], and
activates the JA-signaling pathways. The higher levels of JAs activate the binding of
various transcription factors (TFs) to specific jasmonate-responsive genes that otherwise
are silenced by the transcriptional repression complex. This complex includes jasmonate
ZIM-domain (JAZ) proteins, transcriptional corepressor TOPLESS (TPL), and the novel
interactor of JAZ protein (NINJA) [122]. JAs alleviate the effects of water deficiency and
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soil salinity [124–126], low temperature [127,128], excessive UV exposure [129–131], and
participate in the pathogen-defense mechanisms in gymnosperms [132,133].

The Siberian larch had the highest number of annotated genes related to response to
hormones, JA biosynthetic process, ABA-activated signaling pathway, and ABA binding
(Figure 8). On the contrary, a number of genes in ETH binding, ETH receptor activity, and
response to ETH were relatively lower in all of the conifers, including Siberian larch, than
in most of the angiosperm trees. This is probably not surprising, considering that the last
components of the canonical ETH signaling pathway emerged after the separation of the
angiosperms from the gymnosperms [134,135].
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Figure 8. Percentage of genes annotated with GO terms related to hormone signaling and
response. Deciduous angiosperm species are represented by black solid columns, evergreen
gymnosperms—by transparent columns, Siberian larch—by yellow column. Boxplots demonstrate
the difference in gene number between two groups, evergreen (transparent) and deciduous (gray).
Angiosperms: BP—Betula pendula; FS—Fagus sylvatica; PR—Populus trichocarpa; QR—Quercus robur;
VV—Vitis vinifera). Gymnosperms: PM—Pseudotsuga menziesii; PT—Pinus taeda; PL—Pinus lamber-
tiana; PG—Picea glauca; PA—Picea abies; LS—Larix sibirica.

4. Materials and Methods
4.1. Genome Data

We used a Siberian larch genome assembly v1.0 (NCBI GenBank accession num-
ber GCA_004151065.1) with a total length of 12.34 Gb (Table 2), described in detail in
Kuzmin et al. (2019) for annotation.
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Table 2. The summary statistics of the Siberian larch assembly with a minimum contig length of
200 bp.

Assembly Number, mln N50, bp Maximum Length, bp Total Length, Gbp

Contigs 12.40 1074 128,642 7.99

Scaffolds 11.33 6443 354,326 12.34

4.2. Transcriptome Sequencing and Assembly

The RNA from the Siberian larch buds, needles, cambium, seedlings, and first-year
shoots was isolated, using the Qiagen RNeasy Plant Mini Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s protocols. The Illumina paired-end (PE) libraries, consist-
ing of 250–400 bp long DNA fragments, were prepared for the larch buds using the TruSeq
RNA Sample Preparation v2, and for the needles, cambium, shoots, and seedlings using
the TruSeq Stranded RNA Kit with Ribo-Zero Plant kits (Illumina Inc., San Diego, CA,
USA). The sequencing was completed at the Laboratory of Forest Genomics, Institute of
Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
on an Illumina MiSeq platform with 250 cycles in both directions (250 × 2) using the MiSeq
v2 Reagent Kit 500 Cycles PE (Illumina Inc., San Diego, CA, USA).

The FastQC software v. 0.11.9 was used to evaluate the quality of the sequencing data
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc, accessed on 16 January 2020).
The raw sequencing data were processed using the Trimmomatic program v. 0.39 (9-bp
headcrop, minimum read quality of Q = 23, and minimum read length of 35 bp; [35]). The
SortMeRNA version 4.0.0 was used for the ribosomal RNA removal. In addition, Rcorrector
was used for the sequencing error correction [136]. The transcripts were assembled using the
TrinityRnaSeq package v2.2.0 [36]. For additional filtering, the transcripts were scanned for the
presence of open reading frames (ORFs), using TransDecoder v3.0.1 [137], and conservative
protein domains using Pfam [137–139]. The transcripts that did not possess coding regions
were excluded from the subsequent analysis. For annotation via MAKER2, the pipeline
transcriptomes containing rRNA were used.

4.3. Repetitive Elements (REs) Analysis and Masking

To search for REs, RepeatModeler v.1.0.11 [37], based on de novo RE detection pro-
grams RepeatScout and RECON [140,141], was used. Since RepeatScout does not use all of
the scaffolds or contigs for the analysis, but only a random sample, it was decided to only
analyze scaffolds longer than 100 Kbp (2869 scaffolds with summary length of 360 Mbp).
RepeatMasker open-4.0.6 [38] was used to mask the low complexity regions and REs. The
RepeatMasker edition of RepBase 2017.01.27 [142] was extended by larch-specific repeat
library, constructed using RepeatModeler open-1.0.8 which was run with default settings.
This combined database was used in MAKER2 pipeline to mask the repeats.

To assess the relative abundance of previously characterized repeat families, Repeat-
Masker was used on the whole genome assembly (12.34 Gbp). The RepeatModeler-derived
de novo library was augmented by the clustering of frequently occurring reads from
whole-genome sequencing data. The clusters of reads were assembled with Inchworm
from TrinityRnaSeq v2.2.0, which resulted in consensus sequences that should represent
the highly repeated regions of the larch genome. The unrecognized elements from the de
novo repeat library generated by RepeatModeler and the clusters of frequently occurring
reads were classified by TEclass v2.1.3, that classifies transposons using the Support Vector
Machines (SVM) and LVQ neural network [143]. The combined library, comprising the
RepeatModeler derived library classified with TEclass, RepBase library (edition 2017.01.27),
MIPS Repeat Element Database library [144], CPRD Custom Plant Repeat Database [39],
and Pine Interspersed Repeats Resource library PIER v1.0 [10,39] was used for sequence
similarity search. The portion of long reads from the Oxford Nanopore sequencing avail-
able for Siberian larch was used to estimate the repeat abundance. In total, 3,060,509 reads
with total length = 7.24 Gbp, minimum length = 25 bp, maximum = 77,840 bp, mean

https://www.bioinformatics.babraham.ac.uk/projects/fastqc
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length = 2365, min quality = 7, were used to search for known repeat families using Re-
peatMasker and combined repeat database comprising classified RepeatModeler-derived
library, RepBase 2017 edition, MIPS, CPRD, and PIER. The classification of TEs was adopted
from the RepBase update [145]. The GMATo [41] and TRF [42] programs were used to
search for tandem repeats.

4.4. Identification of LRR Genes

The LRRs were searched in ORFs of the Siberian larch transcripts (NCBI SRA acces-
sion numbers SRX9464971, SRX14986114, SRX14997110, SRX14997111, and SRX14997112).
The ORFs were identified using Transdecoder v.5.5.0 (https://github.com/TransDecoder,
accessed on 3 August 2020). The ORFs of the transcript sequences were scanned by HM-
MER 3.2.1 [45] against the Pfam models LRR-1 (ID PF00560), LRR-2 (ID PF07723), LRR-3
(ID PF07725), LRR-4 (ID PF12799), LRR-5 (ID PF13306), LRR-6 (ID PF13516), LRR-8 (ID
PF13855), and LRR-9 (ID PF14580). All of the LRR models were obtained from the Pfam 32.0
database and belong to the LRR clan (ID CL0022). The LRR clan also contains other families,
but they were excluded because they represent bacteria, animals, and myxomycetes [139].
A search for NBS R-genes (NB-ARC; obtained from the Pfam 32.0 database: PF00931) was
additionally performed, to check if some of the sequences with LRRs belong to R-genes.

The OmicsBox Base Platform [46,47] was used for the BLAST search, GO mapping,
annotation, and statistical analysis. Gene ontology (GO) terms associated with the obtained
BLAST results were extracted, and evaluated GO annotation was obtained. Enzyme codes
were inferred by mapping with equivalent GOs, while the InterPro motifs were directly
queried at the InterProScan web service on EMBL-EBI.

4.5. AUGUSTUS Training

We used MAKER2 [50] for an automated gene annotation of the Siberian larch genome
assembly. The MAKER2 pipeline supports several ab initio gene predictors, including
SNAP, GeneMark, and AUGUSTUS [146]. All of them require prior training to obtain
species-specific parameters describing patterns of exon–intron structure. We used AUGUS-
TUS v3.2.1 to generate the preliminary gene models for the large sized genome of Siberian
larch. This gene finder is based on a Generalized Hidden Markov Model (GHMM) and
demonstrates good performance in ab initio prediction for non-model organisms [147,148],
provided it has been trained appropriately, which can be tricky.

The AUGUSTUS training was carried out iteratively in several steps. First, AUGUS-
TUS was run with pre-calculated parameters for Arabidopsis thaliana, which resulted in
916K preliminary gene models and relatively low prediction accuracy. In order to build
an initial training gene set, we used RNA-seq data. Transcriptome reads were mapped to
the genome using TopHat [149], and the resulting alignments were used with Cufflinks to
annotate coding regions [150]. This resulted in 16K transcriptome-derived gene models.
Then, two gene sets from AUGUSTUS and Cufflinks, respectively, were merged together
to filter the initial prediction set, and the genes with more than one exon were selected.
This process of running AUGUSTUS with the transcriptome-derived gene set, filtering the
resulting predictions and obtaining improved training parameters was repeated, till the
prediction accuracy had become comparable to the average accuracy for AUGUSTUS, and
the final training parameters were used with MAKER2 pipeline (Figure 9).

https://github.com/TransDecoder
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4.6. MAKER Annotation

MAKER2 release 2.31.8 was used for producing the final annotation of the larch genome
(parameters for MAKER configuration are presented in Text S1, Supplementary Materials).
For BLAST, the ncbi-blast-2.2.29+ version was used. The Siberian larch transcriptome data
and public transcript assemblies from the related conifer species (Gnetum gnemon, Picea abies,
Pinus lambertiana, Podocarpus macrophyllus, Pseudotsuga menziesii, and Pinus taeda), deposited in
the PlantGenIE project website (https://plantgenie.org, accessed on 1 August 2018), were used
as supporting evidence. Uniprot was used as the protein reference database.

The genome annotation, using MAKER2, was performed on a supercomputer segment
with 56 IBM BladeCenter HS21 servers (16 GB of RAM per server) at the Department of
High-Performance Computing, Institute of Space and Information Technologies, Siberian
Federal University, Krasnoyarsk, Russia and took 22 days (excluding the AUGUSTUS setup
and the redo database setup). The whole process involved 448 cores at 2.3 GHz/core and
896 GB of RAM with the average processor load of about 61%.

4.7. Assembly Evaluation and Functional Annotation

The assessment of gene completeness was completed using the BUSCO v4.0.5 bench-
marking tool [49] with embryophyta reference database and protein sequences derived
from the MAKER2 annotation for Siberian larch genome. The protein sets for the other
gymnosperm species were taken from the treegenes database (https://treegenesdb.org,
accessed on 20 June 2021).

https://plantgenie.org
https://treegenesdb.org
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It was shown that the distant homologs are usually more likely to be identified when
using a smaller database [151] Thus, the NCBI GenBank nr database used to map the gene
models and infer a high confidence gene set was filtered by taxonomy ID at embryophyta
level. The search for the protein domains was completed using InterProScan on EMBL-
EBI webserver. The GO mapping was performed using Blast2GO software integrated
within OmixBox Base Platform. All of the predicted genes were mapped to NCBI GenBank
nr database using blastp, and matches to bacteria, fungi, and archea were discarded
(evalue < 1 × 10−5, pident > 20, qcovhsp > 20) to eliminate the genes that could potentially
represent proteins other than plant genome-derived.

To compare the larch with other gymnosperm and angiosperm species, genome
annotations of five other conifers, Picea glauca, Picea abies, Pinus lambertiana, Pinus taeda,
and Pseudotsuga menziesii, and five angiosperms, Betula pendula, Fagus sylvatica, Populus
trichocarpa, Quercus robur, and Vitis vinifera, were used to perform the blast2go GO mapping.
To identify the GO terms in which the number of mapped genes differed significantly,
a test of proportions was used. Two methods, based on the false discovery rate (FDR)
estimation, were used for multiple comparison to correct p-values, according to Benjamini
and Hochberg [152] and Storey [153], respectively (Figure S8, Supplementary Materials).

4.8. LTR-RT Insertion Time Estimation

There are two common methods for estimating the insertion time of LTR-RTs by
(1) measuring the sequence divergence between two flanking LTRs and inferring their
divergence time using the species-specific mutation rate, and (2) analyzing the pairwise
genetic distances between the RT-encoding sequences that belong to the paralogous ele-
ments of the same monophyletic RT group. Whilst they may give different time estimates
for some of the LTR lineages, the time distribution profiles produced by both methods are
similar [71].

For additional de novo identification of the LTR-RT elements, LTRharvest [43] was
used with options “-tis -suf -lcp -des -ssp -sds -dna”. To filter the potential false-positive
hits and retrieve a stricter set of LTR-RTs, LTR_retriever [44] was used on the results of
LTRharvest with the following settings “-u 1.57e-8 -missrate 0.4 -noanno”.

Zhou et al. [81] have carried out a thorough search for LTR-RTs and generated an
LTRs resource for 301 plant genomes, including publicly available draft genomes of
10 gymnosperms. For the L. sibirica draft genome, they identified 367 LTR-RT elements.
This LTR-RT library was checked against the resulted LTR-RTs found by LTRharvest and
LTR_retriever using blastn, and the sequences without matches were added to the final
LTR-RT database for L. sibirica. The final combined library for Larix and LTR-RT libraries
for other gymnosperm species from Zhou et al. (2021) were used for the insertion time
estimation. The sequence divergence was calculated, using the Jukes–Cantor model [44]:

T =
d

2µ
, d = −3

4
ln (1− p

4
3
), (1)

where d is the Jukes–Cantor genetic distance (proxy of divergence rate); µ—the mutation
rate; and p—the proportion of sequence differences (p = 1—identity, where identity is
approximated using blastn). Insertion times converted into million years assuming a
synonymous substitution rate µ = 1.57 × 10−8 per site per year [154].

5. Conclusions

Despite being fragmented and incomplete, draft assemblies and annotations of conifer
genomes still represent a valuable resource for further genomic and genetic studies. The
current state of the genome annotations allows the differences between the gymnosperm
and angiosperm species to be compared on a genomic level, evidenced by differences
in gene abundance in different functional categories, such as cell wall organization and
metabolism, PCD, and autophagy, which are related to frost resistance, seasonal senescence,
stress hormone biosynthesis, and regulatory pathways.
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