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SUMMARY16

Pneumonia and other lower respiratory tract infections are the leading contributors to global17

mortality of any communicable disease [1]. During normal pulmonary homeostasis, competing18

microbial immigration and elimination produce a transient microbiome with distinct microbial19

states [2–4]. Disruption of underlying ecological forces, like aspiration rate and immune tone,20

are hypothesized to drive microbiome dysbiosis and pneumonia progression [5–7]. However,21

the precise microbiome transitions that accompany clinical outcomes in severe pneumonia22

are unknown. Here, we leverage our unique systematic and serial bronchoscopic sampling23

to combine quantitative PCR and culture for bacterial biomass with 16S rRNA gene ampli-24

con, shotgun metagenomic, and transcriptomic sequencing in patients with suspected pneu-25

monia to distill microbial signatures of clinical outcome. These data support the presence of26

four distinct microbiota states—oral-like, skin-like, Staphylococcus-predominant, and mixed—27

each differentially associated with pneumonia subtype and responses to pneumonia therapy.28

Infection-specific dysbiosis, quantified relative to non-pneumonia patients, associates with bac-29

terial biomass and elevated oral-associated microbiota. Time series analysis suggests that30

microbiome shifts from baseline are greater with successful pneumonia therapy, following dis-31

tinct trajectories dependent on the pneumonia subtype. In summary, our results highlight the32

dynamic nature of the lung microbiome as it progresses through community assemblages that33

parallel patient prognosis. Application of a microbial ecology framework to study lower respi-34

ratory tract infections enables contextualization of the microbiome composition and gene con-35

tent within clinical phenotypes. Further unveiling the ecological dynamics of the lung microbial36

ecosystem provides critical insights for future work toward improving pneumonia therapy.37
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INTRODUCTION38

The classical conceptualization of pneumonia pathogenesis disregards the contribution of the39

normal lung microbiome. A paucity of data results in poor understanding of the microbial de-40

terminants driving pneumonia outcome [8]. Three general categories of pneumonia, ventilator-41

associated (VAP), hospital-acquired (HAP), and community-acquired (CAP), are each associ-42

ated with specific pathogens [9]. This differentiation indicates pneumonia may associate with43

discrete microbiota states (e.g. conserved combinations of microorganisms called pneumo-44

types) at the time of diagnosis. If true, it would suggest divergent community succession path-45

ways precede microbiota state development. Similarly, the application of antimicrobials is ex-46

pected to promote divergent community succession pathways, depending on initial microbiota47

state and successful treatment response.48

Microbial colonization from other niches and clinical practices at least partially drive distal49

lung microbiome composition [2, 10–12]. Early evidence suggests oral-associated microbiota50

states play a protective role in respiratory health, both in observational human cohort studies [4,51

7, 13] and in experimental mouse models [6, 12]. Pneumotypes enriched with oral-associated52

microbiota exhibit a subclinical Th17 inflammatory phenotype, suggesting commensal airway53

microbiota contribute to pulmonary immune function regulation [4]. An elevated oral-associated54

microbiota is linked with improved lung transplant success and a reduced risk of developing55

HAP [7, 13]. Detection of salivary amylase in bronchoalveolar lavage (BAL) is associated with56

a greater risk of bacterial pneumonia and positive respiratory culture, suggesting an association57

with oral-like microbiota state [14, 15]. The extent to which lung microbiota confer resilience58

or susceptibility to pneumonia, and how this function differs between CAP and HAP or VAP59

subtypes, remains uncertain.60

Host physiological components are hypothesized to be the major driving ecological force in61

microbial community assembly. However, physiology in ICU patients is often disturbed, likely62

playing a role in subsequent HAP acquisition. Using the data-rich clinical setting of the ICU63

combined with systems biology approach, we quantify the relationship between markers of64

physiological disruption and changes to the nascent microbial communities. To determine the65

microbial signatures implicated in pneumonia pathogenesis and clinical outcome, we implement66

a comprehensivemultiomics approach, involving systematic and serial bronchoscopic sampling67

of over 200 critically ill patients across various pneumonia subtypes (CAP, HAP, VAP) and non-68

pneumonia (NP) states. We show that lung microbiota are altered in a disease-specific manner69

and that state-dependent transitions in the lung microbiota landscape correlate with clinical70

outcome. We suggest that distinct pathways of lung microbial community succession mediate71

pneumonia pathogenesis.72

RESULTS73

Demographics of the cohort74

Bronchoalveolar lavage samples were collected as part of the Successful Clinical Response in75

Pneumonia Therapy (SCRIPT) Systems Biology Center, a prospective, observational study of76

mechanically ventilated patients with suspected pneumonia at Northwestern Memorial Hospi-77
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tal. Between June 2018 to June 2020, 251 participants were enrolled in SCRIPT for whom we78

report at least one omics profile. A standardized protocol for physician adjudication identified79

54 cases of CAP, 101 HAP, and 82 VAP episodes; 33 critically-ill patients with suspected pneu-80

monia were adjudicated to have alternative diagnoses (Table S1). Details of the adjudication81

process are published elsewhere [16]. Themost prevalent clinical microbiologic etiologies were82

bacterial pneumonia followed by viral and culture-negative pneumonia (Table S1). Of the 25183

total patients, 62 underwent serial BAL sampling, resulting in 345 total BAL samples. We ob-84

tained amplicon sequencing profiles from 232 samples, shotgun sequencing profiles from 21585

samples, and transriptomics profiles from 218 samples ((Figure 1a, see methods for detailed86

inclusion criteria). Transcriptomes are derived from alveolar macrophages and cell-associated87

microbiota isolated using fluorescence-activated cell sorting (FACS). An additional 30 metage-88

nomic BAL samples and 1 transcriptomic BAL sample failed library preparation. In addition,89

we quantified total bacterial load using qPCR in 157 samples. Samples with less than 5 µL90

remaining volume were omitted from quantification. The sampling overview is available as a91

summary (Figure 1a) and per-patient level (Figure S1).92

The distribution of select clinical indicators of disease severity and risk were visualized to93

broadly capture the patient health profiles (Figure 1b). Clinical indicators include ICU days,94

intubated days, admit acute physiology score (APS), admit sequential organ failure assessment95

score (SOFA), age, and bodymass index (BMI). These quantitative indicators are largely similar96

between patients independent of their binned, clinical outcome (Figure 1b). Note that binned97

outcome is based on discharge status and is distinct from pneumonia resolution (i.e., therapy98

success; see methods for detailed explanation).99

Covariation among data types100

To assess covariation between multiomic data types (Figure 1), we employed pairwise Man-101

tel tests on appropriate dissimilarity matrixes calculated from each omics type (Figure S2).102

Species-level profiles from shotgun metagenomic sequencing were compared to amplicon se-103

quencing variant (ASV)-level and genus-level taxonomic profiles from 16S rRNA gene ampli-104

con sequencing. Both ASV-level and genus-level taxonomic profiles from amplicon sequencing105

covaried with species level abundances from shotgun metagenomic data; ASV-level data ex-106

plained more variation in shotgun metagenomic taxonomic profiles than genus-level profiles107

as expected from the finer taxonomic resolution (Figure S2). These data support that whole108

genome shotgun metagenomic data reasonably capture taxonomic profiles of the lung micro-109

biota landscape compared to deep 16S rRNA gene amplicon sequencing as a pseudo-gold110

standard.111

Intra-omic comparison of ASV-level and genus-level 16S rRNA gene amplicons sequenc-112

ing profiles are similarly significant, with 47% variance explained (Figure S2). Functional pro-113

files from unstratified KEGG orthology (KO) term abundances were significantly correlated with114

species-level shotgun metagenomic profiles and genus-level amplicon profiles. RNA level fea-115

tures, including host transcriptomic profiles and metatranscriptomic profiles, were derived from116

alveolar macrophage-sorted bulk transcriptomics. These metatranscriptomic features there-117

fore represent transcriptionally active cell-associated microbiota (e.g., internal or surface ad-118

herent). We find that covariation is low between the two RNA-based profiles and between the119

RNA-based and DNA-based profiles (Figure S2).120
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Figure 1. Multiomics of the lung microbial ecosystem during pneumonia reveals diverse
associations with clinical features.
(A) UpSet plot of multiomics sampling at the same time-point. Colors distinguish sample as either a baseline or
follow-up BAL. (AMP = amplicon, MGX = metagenomic, MTX = metatranscriptomic [including host-transcriptomic
profiles]) (B) Demographics of the SCRIPT cohort. Selected metadata features to provide quantitative overview
of patient demographics. (- = negative binned clinical outcome [e.g., patient expires], + = positive binned clinical
outcome [e.g., patient discharged and sent home]) (C) Principle coordinate analysis of the weighted UniFrac dis-
tance metric derived from amplicon profiles (genus-level). Colors are indicative of pneumonia category. Gray dots
in the background are the shadow of all the points as if they were shown in a single plot rather than in small multi-
ples. Percentages on axes are the variance explained by the given principle coordinate. (HAP = hospital acquired
pneumonia, VAP = ventilator-associated pneumonia, CAP = community acquired pneumonia, NP = critically-ill non-
pneumonia control.) (D) Permutational multivariate analysis of variance analysis (PERMANOVA) quantifies the
amount of variance in distance space explained by a given metadata features (e.g., pneumonia category) and tests
for significance association. Percentages and color represent variance explained (R2). Columns are the different
multiomic profiles. Bracketed numbers on right of y-axis metadata labels represent degrees of freedom. Significant
association with high variance explained indicates metadata features as drivers of variation in the gene-expression
or microbiota landscape. Features were nominally grouped into 6 categories: cellular biomarkers (CB), patient hall-
marks (PH), clinical hallmarks (CH), disease (D), intrinsic biomarkers (IB), and an all (A) category for individuals.
(* = FDR P < 0.05, ** = FDR P < 0.01, *** = FDR P < 0.001; MDNP score = mean dissimilarity to non-pneumonia,
PEEP = positive-end expiratory pressure, FiO2 = fraction of inspired oxygen, Binned Outcome = positive or neg-
ative discharge status as in (b)). (E) Shannon diversity of different multiomics profiles. 16S rRNA gene amplicon
sequencing profiles include: Amplicon (genus-level) and Amplicon ASV (ASV-level); shotgun metagenomic pro-
files include: DNA [KO] (gene-content based on KEGG orthology terms), DNA [Taxonomy] (species-level), and
DNA [Viral] (putative bacteriophages); and transcriptomic profiles include: RNA [Host Transcriptomics] (alveolar
macrophage gene-transcript-expression), RNA [Taxonomy MPA] (species-level using MetaPhlAn4). (Boxplot con-
figuration: Center line = median, box limits = upper and lower quartiles, whiskers = 1.5x interquartile range, points
= outliers.)
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Drivers of gene expression and the microbiota landscape121

To identify clinical features associated with variation in the microbiota and gene expression122

landscapes, permutational analysis of variance (PERMANOVA) analysis was performed com-123

paring relevant distance space of omics features to clinical features and metadata suspected to124

be indicative of clinical outcome (Figure 1). Features were nominally grouped into 6 categories:125

cellular biomarkers (CB), patient hallmarks (PH), clinical hallmarks (CH), disease (D), intrinsic126

biomarkers (IB), and an all (A) category for individuals. Explained variance is the square of127

the sum of squares statistic from PERMANOVA analysis. Order of features was determined128

by the rowise mean of the variance explained within each group. Overall, most significantly129

associated features (false discovery rate (FDR) P < 0.05) explain relatively little variation in130

distance-space (1-3%). Inter-individual variation explains the greatest amount of the variance131

in the data (Figure 1d, row “A: Individuals”), suggesting that personal molecular signatures132

are critical in disentangling pneumonia pathogenesis (Figure 1). Intrinsic biomarkers show the133

second greatest explained variance in the data with the greatest associations being detected134

between pneumotype and amplicon profiles.135

DNA-based approaches quantifying microbial features, either at the whole microbiome or136

bacteriome level, tend to similarly associate with clinical metadata features (Figure 1), as ex-137

pected by the covariation indicated by Mantel tests (Figure S2). Metatranscriptomic and host138

transcriptomic features do not consistently share the same feature similarity trends of DNA-139

based landscapes. Pneumonia category, which includes NP, CAP, VAP, and HAP, associates140

with amplicon (FDR P < 0.01) and shotgun taxonomic profiles (FDR P < 0.001) as well as shot-141

gun functional profiles (FDR P < 0.01), indicating differences in microbial community structure142

and gene content landscape between patients with different pneumonia diagnoses (Figure 1).143

A principle coordinate analysis visualizing these differences in amplicon data are highlighted144

in (Figure 1c). Pneumonia states can be further subcategorized by pathogen etiology: bacte-145

rial pneumonia, viral pneumonia, bacterial-viral pneumonia (i.e., superinfection), pneumonia of146

unknown etiology, or non-pneumonia. Pneumonia etiology associates with every tested pro-147

file with the exception of the putative virome, indicating a strong relationship to be explored148

regarding host-microbiome dynamics and clinical outcomes (Figure 1).149

Shannon diversity index provide an overview of the evenness and richness of features be-150

tween profiles. Gene-based profiles including KEGG orthology profiles from metagenomic se-151

quencing and gene expression profiles from host transcriptomics are greater than organism-152

level profiles (Figure 1e). To assess the effect of processing pipeline in our analysis, we in-153

cluded amplicon profiles at the ASV-level and further glommed to the genus-level. Additionally154

we compared metatranscriptomic profiles derived from Bracken and MetaPhlAn4. Although we155

observe similar levels of shannon diversity between ASV-level and genus-level amplicon pro-156

files, there is more pronounced variation between the two assayed metatranscriptomic profiles.157

Quantifying microbiota landscape disruption during pneumonia158

Changes to the microbiota landscape can be understood in at least two complementary ways:159

quantitative changes from a set baseline or control population (Figure 1, Figure 2) and identifi-160

cation of different microbiota states (Figure 3).161
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Features distinguishing pneumonia from non-pneumonia162

Differential abundance analysis was performed comparing the different pneumonia categories163

to non-pneumonia microbiota (Figure 2a). We report 100 genes (DNA [KO]), 6 genera (ampli-164

con), and 2 species (DNA [Taxonomy]) as differentially abundant. Amplicon profiles indicate165

Acinetobacter is lower in all pneumonia categories (FDR P < 0.05 in HAP; FDR P < 0.01 in166

CAP, VAP). We observe lower levels of the oral-associated Rothia in VAP and HAP but not167

CAP relative to non-pneumonia (FDR P < 0.05); moreover Rothia mucilaginosa relative de-168

pletion associates with HAP and VAP microbiota profiles from shotgun metagenomics (FDR P169

< 0.001) but not in CAP profiles. Gemella haemolysans, another oral-associated microbe, is170

higher in CAP than in non-pneumonia (FDR P < 0.05). At the gene level, depletion of mtrB, a171

gene encoding a two component system response regulator protein involved in osmoprotec-172

tion and cell proliferation, is associated with each of the pneumonia categories (CAP: FDR P <173

0.05, HAP: FDR P < 0.01, VAP: FDR P < 0.001). The narK and narG genes involved in nitrogen174

metabolism are relatively depleted in HAP and VAP (range FDR P < 0.05 - 0.001); relative de-175

pletion of the diadenylate cyclase gene disA is similarly depleted in these two categories (FDR176

P < 0.001).177

Quantitative change from control population178

Quantitative assessment of the microbial landscape gives relative directionality to a complex179

system dominated by individual signatures. Using 16S rRNA gene sequencing, we imple-180

mented this approach using BAL samples from critically-ill mechanically-ventilated patients181

who were adjudicated to be without pneumonia as a critically-ill population control (Figure 2b).182

Briefly, the mean dissimilarity to non-pneumonia (MDNP) score was determined for each sam-183

ple by calculating the mean distance (i.e., weighted UniFrac) between a given sample and all184

NP samples. The 90th percentile of MDNP score within the control group was used as a thresh-185

old to identify microbial profiles atypical in patients without pneumonia (Figure 2b, shaded re-186

gion). For all pneumonia categories, 36-46% of samples were above the MDNP score 90th187

percentile threshold. Below, we show the specific microbial hallmarks associated with elevated188

MDNP score.189

Signatures of microbiome irregularity190

To better understand the specific microbial features associated with multiomic profiles (Fig-191

ure 1), we performed differential abundance testing as implemented in Maaslin2 (Figure 2).192

We report 929 genes (DNA [KO]), 41 genera (amplicon), and 6 species (DNA [Taxonomy])193

as differentially abundant. PERMANOVA analysis indicates that culture results and MDNP194

score strongly associate with 16S rRNA gene sequencing taxonomic and shotgun metage-195

nomic gene content profiles (FDR P < 0.001, FDR P < 0.01). Using the results from differential196

abundance testing, we visualized the top most significant features (FDR P < 0.05) (Figure 2).197

In bacterial profiles (Figure 2), we identified a trend in which microbiome profiles in the 90th198

percentile of MDNP score associate with a lower overall abundance of several genera such as199

Cutibacterium, Corynebacterium, Lawsonella, Acinetobacter, and Pseudomonas. From shot-200

gun metagenomic profiles, we observe elevated abundance of Streptococcus oralis, Staphylo-201

coccus epidermidis and, to a lesser degree, of Staphylococcus aureus. Depletion of Cutibac-202

6
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Figure 2. Pneumonia infection associates with an altered microbiota landscape indica-
tive of aspiration-mediated disruption.
(A) Abundance of the top differentially abundant (FDR P < 0.05) genes, species, and bacterial genera in each
pneumonia category (i.e., HAP, VAP, CAP) relative to NP. Bar plots are the proportion of samples with zero-count
therefore showcasing feature prevalence; bars are scaled such that touching the correspondingly colored line above
indicates the feature was undetected in all samples for that group. Kernel distributions were calculated based on the
subset of samples with detectable abundance after centering by the median and log2 transformation; heights are
scaled by the proportion of detectable samples. Genes are shown with their corresponding KEGG orthology term. (*
= FDR P < 0.05, ** = FDR P < 0.01, *** = FDR P < 0.001). (B) Distribution of the mean dissimilarity to non-pneumona
(MDNP) score quantifying microbiome disruption relative to non-pneumonia control group. Score is calculated using
the weighted UniFrac distance from amplicon profiles. The 90th percentile of MDNP score within NP was used as
a threshold to determine elevated levels of microbiota disruption in patients with pneumonia. (C) Abundance of the
top differentially abundant (FDR P < 0.05) genes, species, and bacterial genera in disturbed microbial communities
(>90th) relative to communities with structure typical of NP (<90th). Microbiome samples were binned into typical
and disturbed subsets based on the 90th percentile of MDNP score. Above this threshold, there is a 10% chance of
a patient without pneumonia to have that particular arrangement of microbiota. (D) Relationship between bacterial
load, amylase activity, and MDNP score. Shaded region represents 95% confidence interval. Statistics show
Spearman rank correlation test. (E) Top differentially abundant genera (amplicon); samples ordered by increasing
levels of amylase activity. (F) Distribution of bacterial load, amylase activity, and MDNP score binned by culture
results and antibiotic usage at time of BAL. Stars represent statistical significance as determined by Wilcoxon
test. (* = FDR P < 0.05, ** = FDR P < 0.01, *** = FDR P < 0.001; Boxplot configuration: Center line = median,
box limits = upper and lower quartiles, whiskers = 1.5x interquartile range, points = outliers.). Acronyms: HAP =
hospital acquired pneumonia, VAP = ventilator-associated pneumonia, CAP = community acquired pneumonia, NP
= critically-ill non-pneumonia control.
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terium acnes and the uncultured Lawsonellaceae member GGB2722 SGB3663 is associated203

with profiles above the 90th percentile of MDNP score. At the gene level, porphyrin biosynthe-204

sis genes hemY and cobN depletion are associated with microbiome disruption. Furthermore,205

lacD, encoding an inhibitor of Streptococcus spp. quorum sensing effectors regulating viru-206

lence and biofilm formation, and ygaC, encoding an uncharacterized gene regulated by Fur207

(iron), genes are elevated in microbiome disruption.208

Differential abundance analysis of features associated with increasing levels of amylase re-209

veals associations with 83 genes (DNA [KO]), 16 genera (amplicon), and 1 species (DNA [Tax-210

onomy]). Associated genera are highlighted in Figure 2e. The abundance of Slackia, Megas-211

phaera, Dialister, Mycoplasma, Olsenella, Parvimonas, Fusobacterium, Bifidobacterium are212

positively associated with amylase activity (range FDR P < 0.05 - 0.001). Furthermore, Cutibac-213

terium, Lawsonella, Acinetobacter, Escherichia-Shigella, Anoxybacillus, Anaerococcus, Micro-214

coccus, Neisseriaceae abundance negatively associates with amylase activity.215

MDNP score is linked to elevated bacterial load and clinical markers of aspiration216

Absolute bacterial load was measured using qPCR with a standard curve of known 16S rRNA217

gene sequence copy number. Amylase, an enzyme that constitutes up to 30% of salivary pro-218

tein content, is a knownmarker for oral aspiration when detected in BAL fluid and a risk factor for219

pneumonia [14]. To test the hypothesis that aspiration events contribute to pneumonia patho-220

genesis by transmission of oral microbiota, we performed association testing between MDNP221

score, amylase activity, and bacterial load. Using spearman rank order correlation, we identi-222

fied monotonic relationships between MDNP score and 16S rRNA gene copy per µL (ρ = 0.6, p223

< 0.001), MDNP score and amylase activity (ρ = 0.4, p < 0.001), and 16S rRNA gene copy per224

µL and amylase activity (ρ = 0.53, p < 0.001). Based on these results shown in Figure 2b-d, we225

propose that MDNP score is a multivariate composite of pneumonia diagnosis and associated226

clinical features. Further analysis indicates that each of these hallmarks are elevated when227

BAL respiratory culture results are positive (Wilcoxon rank-sum test, p < 0.001; Figure 2f). The228

use of antibiotics is associated with lower bacterial load but not with amylase activity or MDNP229

score, although this analysis is underpowered as most patients were receiving antibiotics Fig-230

ure 2f). These data are consistent with the hypothesis that microaspiration mediates changes in231

the lower respiratory tract microbiome. In addition, they suggest that pneumonia is associated232

with an increased overall bacterial load in the lungs.233

Lung microbiota of critically ill patients exist in distinct pneumotype states234

To test the hypothesis that conserved microbial communities comprise the lung microbiome235

during infection, we implemented an unsupervised machine learning approach. Clustering236

using partitioning around mediods incorporated phylogenetic similarity via the UniFrac dis-237

tance; the number of clusters was determined using a consensus clustering approach (see238

methods for details). This approach identified four clusters of microbial communities, which239

are visualized in Figure 3a. The mean consensus score is visualized in Figure 3b. In to-240

tal 261 samples were clustered into pneumotypes with varying microbial feature composition:241

Skin-like (pneumotypeSL, 108 samples), mixed (pneumotypeM, 70 samples), Staphylococcus-242

predominant (pneumotypeSP, 40 samples), and oral-like (pneumotypeOL, 43 samples).243
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Figure 3. A posteriori identification of pneumotypes suggests stabilizing selective
forces canalize community structure.
(A) Ordination of weighted UniFrac distance derived from genus-level amplicon profiles. Colors represent the differ-
ent microbiota states of the distal lung (i.e., pneumotypes) identified using cluster analysis. Percentages represent
variance explained by the given principle coordinate axis. (B) Summary heatmap visualizing the mean cluster con-
sensus score. Consensus clustering implementing the partition around medoids cluster algorithm was performed to
determine number of groups evident in the weighted UniFrac distance space. (C) Trade-offs in diversity (Wilcoxon
test) and (D) core phyla differentiate pneumotypes. (E) Most abundant taxa distinguish microbiota states. Taxa
with a mean normalized abundance greater than 0.05 were selected (n=12). Stars represent the adjusted p-value
of differential abundance analysis comparing pneumotypeM, pneumotypeSP, and pneumotypeOL to pneumotypeSL.
(F) Bacterial biomass, (G) amylase levels, (H) MDNP score, (I) and neutrophil abundance differ significantly be-
tween microbiota states. Pairwise comparisons show results of Wilcoxon test with Benjamini-Hochberg correction.
(J) Heatmaps visualizing pneumotype frequency across pneumonia category (limited to baseline BAL) and (K) clin-
ical outcome (includes baseline and follow-up BAL). Numbers in heatmaps are the count of BAL in each section;
color of tiles is the proportion for that column. Stars represent the adjusted p-value of two-sided pairwise exact
binomial tests used to determine deviations from expected distributions (i.e., evenly distributed across the column).
Pneumonia therapy outcome is categorized as successful (+), indeterminate (+/-), and unsuccessful (-) treatment.
(L) Frequency of transitions between pneumotypes. Nodes (circles) represent the different pneumotypes and the
circle size is scaled to the number of samples. Edges (arrows) represent transitions between pneumotypes. Edge
labels are the frequency of transitions between pneumotypes accounting for transition to outcome (i.e., final BAL are
counted as transitioning to clinical outcome rather than to any pneumotype). (* = FDR P < 0.05, ** = FDR P < 0.01,
*** = FDR P < 0.001; Pneumonia diagnosis: HAP = hospital acquired pneumonia, VAP = ventilator-associated
pneumonia, CAP = community acquired pneumonia, NP = critically-ill non-pneumonia control; Pneumotypes: SL
= skin-like, M = mixed, SP = Staphylococcus predominant, OL = oral-like; Pneumonia outcome: - = unsuccessful
treatment, + = successful treatment, +/- = indeterminate treatment; Boxplot configuration: Center line = median,
box limits = upper and lower quartiles, whiskers = 1.5x interquartile range, points = outliers.)
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Microbial characteristics of pneumotypes244

Alpha diversity quantified using the inverse Simpson index differs between the four pneumo-245

types Figure 3c. We report significant differences in diversity between pneumotypeSL, pneumotypeM,246

and pneumotypeOL to the singularly dominated pneumotypeSP using the Wilcoxon rank-sum247

test (FDR P < 0.001). Furthermore, pneumotypeSL displays somewhat greater diversity to248

pneumotypeOL (FDR P < 0.05).249

To assess the distinguishing taxa between different pneumotypes, we conducted a differen-250

tial abundance analysis at the genus and phylum level using Maaslin2 [17]. Differential abun-251

dance tests were performed relative to pneumotypeSL. Differential analysis reveals associa-252

tions with 1743 genes (DNA [KO]), 63 genera (amplicon), and 14 species (DNA [Taxonomy]),253

and 9 taxa (amplicon).254

Our results demonstrate significant tradeoffs in the relative abundance of phyla Actinobac-255

teriota and Proteobacteriota with phyla Firmicutes and Fusobacteriota (Figure 3). The phyla256

Actinobacteriota and Proteobacteria are significantly depleted in pneumotypeSP, pneumotypeM,257

pneumotypeOL while phylum Firmicutes is enriched (FDR P < 0.001). Additional tradeoffs in258

phyla abundance are also observed to a lesser degree. Bacteroidota is depleted in pneumotypeSP259

(FDR P < 0.001) and pneumotypeM (FDR P < 0.05). PneumotypeOL is significantly enriched in260

phylum Fusobacteriota (FDR P < 0.001).261

We identified two pneumotypes with a balanced yet distinguishable abundance of Firmi-262

cutes andActinobacteriota, resembling pneumotypes previously observed in healthy volunteers263

(Figure 3). One pneumotype exhibited enrichment of Streptococcus,Gemella, and other micro-264

biota typically associated with the upper respiratory tract and oral niches (Figure 3). This micro-265

bial profile corresponds to the “suppraglotic predominant” [4] or “balanced” [13] pneumotypes266

found in healthy lungs, which are associated with genera commonly involved in microaspiration267

events. We designate this pneumotype as pneumotypeOL. Furthermore, pneumotypeSL is con-268

sistent with reports of “microbe depleted” or “background environmental predominant” states in269

healthy patients, resembling skin microbiota and exhibiting greater abundance of key markers270

such asCorynebacteria,Cutibacteria, andStaphylococcus than the other pneumotypes. Based271

on previous notions of contributions from the indoor environment and the prevalence presence272

of skin-associated microbiota on indoor surfaces [18], we name this group pneumotypeSL.273

Pneumotypes dominated by a single phylum often associated with a single, predominant274

genus on a per-sample basis. PneumotypeSP is primarily composed of genus Staphylococcus275

Figure 3), with occasional contributions from other Firmicutes genera, such as Lactobacillus276

(FDR P < 0.001) and Enterococcus (FDR P < 0.05), in Staphylococcus-replete states (Fig-277

ure S6). PneumotypeSP likely overlaps with the previously identified pneumotypeSP [13], al-278

though, other genera contribute to the Firmicutes-dominated population structure. PneumotypeM279

is predominately composed of Staphylococcus, Corynebacteria, and Cutibacterium which are280

genera commonly associated with the nares and skin niches [19, 20]; additionally, this pneumo-281

type is moderately abundant with microbiota associated with the human oral microbiome includ-282

ingStreptococcus (Figure 3). AlthoughCutibacterium is a prevalent contributor to pneumotypeM283

(prevalence = 61 samples), the genus is depleted relative to pneumotypeSL (FDR P < 0.001).284

The depletion of Cutibacterium, Lawsonella (FDR P < 0.001) (FDR P < 0.001), and Acineto-285

bacter (FDR P < 0.001) along with the enrichment of Staphylococcus (FDR P < 0.001), Gran-286

ulicatella (FDR P < 0.001), and maintenance of other oral microbiota is the distinguishing factor287
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between between pneumotypeM and pneumotypeSL.288

Pneumotypes capture aspiration-mediated neutrophil activation289

Pneumotype association patterns indicate alternative mechanisms precede microbiome dis-290

ruption and innate immune activation (Figure 3f-i). PneumotypeOL, followed by pneumotypeSP,291

exhibits the highest bacterial load (Figure 3f), amylase activity (Figure 3g), and neutrophil lev-292

els (Figure 3i) among pneumtypes. MDNP score is overall greatest in pneumotypeSP while293

pneumotypeOL and pneumotypeM follow in descending order (Figure 3h). Therefore, pneumotypeSL294

displays low levels of bacterial load, amylase activity, microbiome disruption, and neutrophil295

activation. Furthermore, elevated neutrophil activation is present in pneumotypeM despite rel-296

atively low levels of microbiome disruption and putative aspiration. Thus, the pneumotypes297

capture varying levels of microbiome disruption associated alternating levels of aspiration and298

neutrophil activation.299

Pneumotypes are enriched in a disease- and outcome-specific manner300

To test the hypothesis that pneumotypes are distributed in a pneumonia category dependent301

manner at time of diagnosis, we implemented overrepresentation analysis using the pairwise302

binomial exact test compared to a null distribution. PneumotypeSL is enriched in HAP (FDR303

P < 0.01) and NP (FDR P < 0.001) populations. PneumotypeOL is depleted in HAP (FDR P <304

0.05) while pneumotypeSP is depleted in NP (FDR P < 0.05). VAP and CAP are not enriched or305

depleted for any particular pneumotype although CAP and NP appear to have a slightly higher,306

non-significant increase in pneumotypeOL compared to other pneumonia categories.307

Furthermore, we tested if the distribution of pneumonia therapy outcome (i.e., successful,308

unsuccessful, and indeterminate treatment response) is associated with a specific pneumotype309

throughout treatment. We report that although pneumotypeOL is rare in HAP (Figure 3j), it is310

associated with positive pneumonia therapy outcome (Figure 3h). PneumotypeOL is also asso-311

ciated with successful pneumonia therapy in CAP. Despite an even distribution of pneumotypes312

in VAP, pneumotypeSL is indicative of positive clinical outcome. PneumotypeSL is also depleted313

in cases of indeterminate outcome in CAP. Thus, pneumotype distribution at time of diagnosis314

is sometimes associated with pneumonia category and is indicative of therapy outcome in a315

context-specific manner.316

Multiomic integration reveals complexity in the lung microbial ecosystem317

Multi-omic network analysis provides insight into the lung microbial ecosystem (Figure 4). Inter-318

omic interactions were determined using Hierarchical All-against-All (HAllA) pattern discovery319

and subsequently visualized as a network (see methods for details). Hubs of highly connected320

nodes were identified based on the number of degrees; this led to the selection of eight nodes321

with a degree greater than 10. Hubs comprise the following amplicon features: Streptococcus,322

Lawsonella, Staphylococcus, Rothia, Mogibacterium, Atopobium, Cutibacterium; the follow-323

ing taxonomic shotgun features: Streptococcus parasanguinis, Streptococcus mitis, Staphylo-324

coccus epidermidis, Streptococcus salivarius, Staphylococcus aureus, Gemella haemolysans,325

Streptococcus oralis,Corynebacterium striatum, Streptococcus anginosus, Lancefieldella parvula,326
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Figure 4. The lung microbial ecosystem is complex and rich with interactions across
levels.
Network visualization of associated omics features identified from HALLA. Multiomics data integration includes
feature profiles from four data types: shotgun metagenomic (taxonomic, functional potential), 16S rRNA gene se-
quencing, and macrophage-sorted bulk RNA-sequencing (host transcriptomics, metatranscriptomic). Top signifi-
cant associations from each dataset comparison are visualized (FDR P < 0.05). Edges are associations colored by
Spearman rank correlation (red for positive and blue for negative) and nodes are data features. Prevalent positive
association are observed between Streptococcus species and other oral microbiota (Rothia spp., Gemella spp.).
Their major hubs include Staphylococcus and Cutibacterium. Nodes were colored by features that were differen-
tially over-abundant in pneumotypes; negative associations were considered to be “high” in pneumotypeSL as it was
the baseline comparison group. Features that were high in multiple groups were kept as gray.
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Granulicatella (SGB8255), Streptococcus gordonii, Parvimonas micra, Cutibacterium acnes;327

the following gene-level features: ciaR (K14983), prdA (K10793), comE (K12295), ATPVG,328

ahaH, atpH (K02107), comX1/2 (K12296); and no features from other omic types. The net-329

work clearly clusters into three main groups with peripheral limbs (e.g., Streptococcus/Rothia330

mucilaginosa hub with Atopobium limb) and three additional singleton groups.331

We observe co-abundance of oral microbiota, including many species of Streptococcus (S.332

mitis, S., anginosus, S. oralis, S. gordonii) in association with other oral microbiota (Rothia333

spp., Gemella spp.). These interaction hubs are particularly evident in the central taxonomic334

clusters in the network visualization (Figure 4). Cutibacterium, a member previously identi-335

fied in the environmental-like pneumotype of healthy individuals, is positively entangled with336

Corynebacterium, Lawsonella, and Acinetobacter. This group is typically negatively associ-337

ated with features (e.g., KOs) that are positively associated other oral microbiota such asRothia338

and Streptococcus species. Microbial markers of the skin-like microbiota state (e.g., Cutibac-339

terium) negatively associate with expression of genes involved in inflammatory response (e.g.,340

interleukin-1 beta), suggesting the skin-like state’s role as a baseline in the microbiota land-341

scape.342

Staphylococcus represents a third unique hub, typically negatively associating with the oral343

and Cutibacterium clusters described above (Figure 4). Amplicon analysis identifies positive344

correlation between Staphylococcus in amplicon and Staphylococcus aureus identified in shot-345

gun metagenomics. Staphylococcus epidermidis is also present, but no connections are ob-346

served between it and the amplicon Staphylococcus node in the subset of top connections.347

This disconnect suggests that species- or strain-level differences in microbiome composition348

may have important implications for disease state or outcome.349
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DISCUSSION350

Using integrative multiomics, we identify drivers of variation in the lung microbial ecosystem351

during pneumonia. Our analysis indicates the lung microbial ecosystem is complex environ-352

ment where patient physiology, gene-expression, and microbiota landscapes dynamically re-353

flect one-another. Although individual signatures constitute the greatest amount of variation,354

conserved microbial states called pneumotypes are robustly detected. Furthermore, classical355

clinical conceptualizations of pneumonia can be improved by integrating concepts of micro-356

biome dybiosis. Pneumonia categories (e.g., HAP vs VAP) display altered levels of microbial357

genes and taxa, but integrating with infection-specific dysbiosis suggests strong connections358

to other microbial niches.359

The relationship between lower respiratory tract microbiota and other human microbial360

niches remains an open field of investigation. Mechanistic connection between the oral micro-361

biome is of particular interest due to the observation of oral microbiota in the lower respiratory362

tract in health. Here we report a dynamic relationship between microbial landscape disruption363

(non-pneumonia score) and suspected aspiration (high BAL fluid amylase levels) during pneu-364

monia (Figure 2). These data support the hypothesis that oral aspiration events contribute to365

lower respiratory tract bacterial load and promote transitions to disturbed microbiota states in a366

function dependent on the number or volume of aspiration events. Therefore, frequent or large367

aspirations events yield altered microbiomes.368

Using a consensus clusteringmethodology implementing the phylogentically informedweighted369

UniFrac distance, we resolve conserved pneumotypes that associate with clinical hallmarks to370

further unveil pneumonia pathology. To test the hypothesis that pneumotype signatures are371

relevant to disease state, we examined the distribution of patient diagnoses across clusters. In-372

deed, the distribution of pneumotypes differ greatly depending on the pneumonia category. We373

observe that HAP and NP patients are enriched for pneumotypeSL (i.e., a pneumotype abun-374

dant with microbiota of the nares and skin), suggesting patient colonization by microbiota from375

the hospital environment or skin microenvironment. Acquisition of pathogens without micro-376

biota disruption may distinguish pneumotypeSL in HAP and NP. Oral-like microbiota states are377

associated with neutrophilic activation, elevated bacterial load, and amylase level, suggesting378

aspiration events mediate transitions to pneumotype pneumotypeOL. Although no pneumonia379

category enriched for pneumotypeOL, it is only depleted in patients with HAP. Pneumotypes are380

predictive of therapeutic success in a category-dependent manner. Although rare in patients381

with HAP, transition to or occupancy of pneumotypeOL is indicative of successful pneumonia382

therapy in patients with HAP and CAP.383

Detectable inter-individual conservation of microbial community structure implies stabilizing384

selective forces that drive community succession in the alveolar space toward favorable land-385

scapes. We explored this relationship by examining cluster stability throughout hospitalization386

in patients with serial longitudinal samples. We hypothesize that shifts in cluster member-387

ship are associated with clinical success and that failure to respond to therapy is associated388

with resistance to cluster change due to greater underlying stability of the pathologic microbial389

community or insufficient selective forces conferred from treatment to shift from the pathologic390

microbiome. Despite limited sample size, preliminary evidence shows pneumotype stability391

varies and that shifts in pneumotype during treatment may be indicative of clinical success. In392

particular, transition to pneumotypeOL in CAP and HAP is associated with resolution. Expand-393
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ing this analysis will be a critical step toward distilling the underlying mechanics of pneumonia394

resolution.395

Based on our longitudinal analysis findings, we hypothesize that the lower respiratory tract396

microbiome proceeds through distinct pathways during pneumonia progression and resolution.397

An important limitation is that longitudinal analysis of BAL specimens from patients in the ICU398

suffers from sampling bias, as typically the sickest patients expire and healthiest patients re-399

cover prior to repeat samples, excluding them from representation. Therefore, our longitudinal400

samples split by pneumonia resolution and failure to respond to therapy likely exclude the ex-401

tremes of response, resulting in potentially greater overlap.402

More research is required focusing on large-scale center-wide studies that include more403

patients and samples to further understand the temporal dynamics of the lung microbiome.404

This work will continue to help redefine our understanding of pneumonia, further allowing the405

classification of heterogeneous etiologies and disease substates. Eventually, information about406

the lung microbiome will enable finer diagnostics and mid-treatment evaluation of prognosis.407
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METHODS408

Sample acquisition and clinical adjudication409

Sampling of the lower respiratory tract via nonbronchoscopic and bronchoscopic bronchoalve-410

olar lavage (NBBAL and BAL) is routinely performed in mechanically ventilated patients in the411

intensive care unit (ICU) at our institution. Per our BAL protocol, clinicians use a disposable412

bronchoscope to inspect the airway and wedge the scope in the airway segment that corre-413

sponds to a radiographic infiltrate or where secretions suggestive of pneumonia are present.414

After the bronchoscope is wedged, 120 cc of saline is instilled through the scope in four aliquots.415

After discarding return on the first aliquot, subsequent return volume is sent for clinical studies416

including semi-quantitative bacterial culture, multiplex PCR, cell count and differential. Fre-417

quently, fungal studies and amylase levels are also obtained by the clinical team. Participants418

enrolled in the SCRIPT study had residual BAL fluid retrieved and multicolor flow cytometry419

performed within 24 hours of the procedure; various samples were then aliquoted and stored420

frozen at -80◦C in 1 mL aliquots for later processing. In addition, the hospital courses of all421

patients enrolled in SCRIPT are adjudicated by a panel of six pulmonary and critical care physi-422

cians to achieve consensus on the diagnosis of pneumonia, the clinical state of the patient at423

various time points during treatment of the pneumonia episode, and the overall outcome of424

the patient’s hospitalization. The adjudication protocol and results have been published [16].425

Relevant to this study, an overall outcome of ‘success’ is designated to patients who survived426

the duration of treatment and experienced improvement in ventilator requirements and mark-427

ers of infection. An overall outcome of ‘failure’ is given to patients who continued to require428

antibiotics, had evidence of persistent infection/inflammation, or did not survive the comple-429

tion of pneumonia treatment. Aliquots which were successfully processed for sequencing but430

for which patient metadata could not be mapped with certainty (n=32 BAL) or the patient(s)431

later withdrew from the study (n=2 BAL) were excluded from analysis and visualizations. In432

cases where the BAL were from lung transplant recipients (n=3 patients), metadata were often433

limited requiring exclusion in most analyses. At the end of the entire processing pipeline, we434

yielded clean data for 232 amplicon, 202 metagenomic [Taxonomy], 215 metagenomic [KEGG435

Orthology], 64 metagenomic [Viral], 218 metatranscriptomic [Taxonomy from Kraken/Bracken],436

119 metatranscriptomic [Taxonomy from MetaPhlAn], and 210 transcriptomic [Host Transcrip-437

tomics] profiles derived from 345 BAL samples.438

Metagenomic DNA extraction439

Frozen sample aliquots were thawed and processed using the MolYsis Complete 5 kit (Order440

No. D-321-050, D-321-100) for DNA purification and host depletion. Briefly, host cells are dis-441

rupted using chaotropic salts and extracellular DNA is digested using the MolB DNase enzyme,442

which is robust against inhibitors. DNase is inactivated and microbial cells are lysed for spin-443

column-based DNA purification. DNA concentration was assessed using a Qubit fluorometer444

(Invitrogen). Metagenomic DNA size was quality controlled using a TapeStation genomic DNA445

assay.446
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Shotgun metagenomic library construction and sequencing447

Shotgun metagenomic libraries were prepared using NEBNext® Ultra™ II FS DNA Library Prep448

Kit for Illumina (NEB Catalog E7805L) following manufacturers’ instructions. Library quality449

and quantity are measured respectively by Tapestation (HSD1000 Agilent Technologies) and450

Qubit fluorometer (Invitrogen). Libraries were pooled in an equimolar ratio for multiplexed se-451

quencing. Samples were omitted from pooling in cases where libraries were not detected.452

Pooled libraries were submitted for sequencing at the University of Illinois-Chicago Genome453

Research Division Sequencing Core. Sequencing was performed on a NovaSeq instrument454

usng 2x150bp paired-end chemistry.455

Shotgun metagenomic data processing456

Shotgun metagenomic sequencing data were adapter and quality trimmed using fastp (v.0.23)457

[21]. Low complexity sequences were filtered using bbduk (entropy threshold = 0.3) from the458

BBMap software suite (v.39.01) to filter reads likely originating from human genomic DNA459

missed during in silico removal (i.e. alignment) [22]. High quality, complexity-filtered reads460

were then aligned to the human reference genome (CHM13 Telomere-to-Telomere with Y chro-461

mosome from GRCh38) using bowtie2 (v.2.4.5) with ‘—very-sensitive’ parameters [23]. Using462

samtools (v.1.10.1), unmapped read pairs (-f 12 -F 256) were selected for downstream anal-463

ysis. Reads were processed using MetaPhlAn4 (v.4.1.0) [24] to assess taxonomic composi-464

tion (mpa_vJun23_CHOCOPhlAnSGB_202403 version database). Species-level MetaPhlAn4465

profiles were filtered to only include features observed in at least 2 samples (n=224). Pro-466

files were then normalized using total sum scaling followed by AST normalization. Functional467

metagenomic profiles were determined using HUMAnN3 (v.3.9) (–translated-subject-coverage-468

threshold 0.0 –nucleotide-subject-coverage-threshold 0.0 –bowtie-options=“–very-sensitive-local”)469

[24]. Reads were mapped to the ChocoPhlAn database (v.201901_v31) using nucleotide470

search; unmapped reads were then processed using the UniRef90 database with translated471

search. Gene family abundances, which are default in read-per-kilobase, were then normalized472

to counts-per-million. Normalized abundance profiles were then regrouped to KEGG orthology473

(KO) terms for downstream analysis. For KO profiles, unmapped and ungrouped categories474

were dropped prior to total sum scaling and AST normalization.475

Viral analysis pipeline476

Putative phage contigs were identified using geNomad (v.1.5.2) with default parameters [25].477

Viral contigs were checked for completeness using CheckV (v.1.0.1) [26]. Contigs identified as478

viral by geNomad were aligned to each other using megablast. Alignments were used to cluster479

viral contigs at 95% nucleotide identity and 85% alignment fraction to create representative vO-480

TUs. ANI calculation and clustering were done using anicalc.py and aniclust.py, respectively,481

from the CheckV GitHub repository. The longest sequence was selected from each cluster as482

the representative for each vOTU. The vOTUs that were designated as medium quality, high483

quality and complete by CheckV were kept for downstream analysis. To determine abundance484

of vOTUs across samples, cleaned reads from all samples were first aligned to representative485

vOTUs using BBMap (v.39.01) with the flag: -ambiguous=best [27]. Metapop (v.0.0.42) was486
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used to create an abundance table [28]. Raw abundance was calculated as the average se-487

quencing depth truncated to the central 80% (termed as TAD). Phage host predictions were488

made using iPHoP (v.1.3.2) [29]. The network created from iPhoP outputs mapped vOTUs to489

the most likely host based on multiple phage host pairing tools. Viral cluster network and phage490

host interaction network were visualized using Cytoscape (v.3.9.1) [30].491

16S rRNA gene amplicon library construction and sequencing492

To assess the composition of the lung microbiome, we conducted 16S rRNA gene amplicon se-493

quencing on 261 bronchoalveolar lavage fluid (BALF) samples. A total of 6 water controls and494

3 ZymoBIOMICS Microbial Community DNA Standards (cat no. D6305) were included. Library495

preparation was performed using a semi-automated adaptation of Illumina’s recommended ap-496

proach. Briefly, 18 µL per sample were aliquoted into a 96 well plate and vacuum centrifuged to497

a dry pellet. DNA pellets were resuspended with nuclease-free water to 1.25 ng/µL or to a maxi-498

mum volume of 10 uL using a dragonfly liquid handler. Primary amplification of the V3/V4 rRNA499

gene regions was performed using universal primers, 341F and 805R, with Illumina adapter re-500

gions on the 5’ end (F-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG,501

R-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC). Pri-502

mary amplification reactions were prepared using 10 µL of concentrated DNA or water for no503

template controls, 12.5 µL of 2x KAPA HiFi HotStart Ready Mix (cat no. KK2602), and 2.5 µL504

of primer mix (2 µM of forward and reverse primer). Secondary amplification to attach Illumina505

indexes was performed using IDT for Illumina DNA/RNA UD Indexes kit with the same KAPA506

HiFi HotStart polymerase. SPRI bead cleanups were performed between each amplification507

step. Expected library size was assessed using the TapeStation High Sensitivity D1000 capil-508

lary fluorescence assay. Libraries prepared from water (negative) controls were still included in509

the sequencing pool despite undetectable TapeStation traces to ensure sequencing of low level510

background contaminants. Library were pooled and sequenced twice on an Illumina NextSeq511

2000 instrument with the 2x300 bp P1 Reagents kit (cat no. 20075294).512

16S rRNA gene amplicon sequencing data processing513

ASV denoising and preliminary filtering514

Amplicon data were demultiplexed using BCL convert (v.4.0.3); all samples and six out of seven515

no template controls were able to be demultiplexed. Next, reads were adapter-trimmed using516

fastp (v.0.23) [21]. Custom scripts using the QIIME2 platform (v.2021.11) were used for pipeline517

analysis [31]. Amplicon sequence variants (ASVs) were denoised using the DADA2 algorithm.518

A phylogenetic tree was constructed using “align-to-tree-mafft-fasttree” in QIIME2. ASVs were519

then taxonomically classified using the plugin “feature-classifier classify-consensus-vsearch”520

with the Silva 138 SSURef NR99 full-length database as a reference [32, 33]. Downstream521

analysis was performed using R (v.4.2.3) and RStudio (v.2023.6.0.421). QIIME2 objects were522

loaded into R as a phyloseq object with the qiime2R package (v.0.99.6). ASVs with a kingdom-523

level assignment of Eukaryota or Unassigned were removed; ASVs with a genus-level assign-524

ment of Chloroplast or Mitochondria were also removed. This filtering yielded 11,344 ASVs525

from the original count of 22,275 ASV. This filtering represents approximately half of the de-526

noised ASVs but only a negligible amount of the total reads. Then 46 additional ASVs with no527
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counts were removed. Putative contaminating ASVs were identified from the six demultiplexed528

no-template controls using the Decontam package (v.1.18.0) [34]. The prevalence method with529

a probability threshold of 0.05 was used in Decontam. Of the 11,298 ASVs, 48 were identified530

as putative contaminants. Additional ASVs only found in control samples (i.e., water controls531

and Zymo standards) were then filtered out for downstream analysis of BAL samples (n=47).532

Final read count for cleaned sample data ranged from 39,922 to 664,319 reads.533

Data normalization534

ASV-level normalization and genus-level normalization were performed independently. For535

ASV-level normalization, ASVs were first filtered by a minimum read count of 2 in at least 5536

samples, leaving 957 ASVs. Abundance was then normalized using total sum scaling followed537

by arcsine square-root transformation (AST) for variance stabilization. At the genus level, taxa538

names were merged using the tax_glom function in phyloseq; taxa without an assigned name539

at the genus level were dropped (default parameter NArm=TRUE). After this step, 710 genera540

were present. Low-abundant genera were filtered using a minimum read count of 2 in at least541

2 samples, leading to a final count of 461 genera. Genus-level data were then normalized542

using total sum scaling and arcsine square-root transformation. A stricter prevalence filter was543

chosen for ASV-level filtering to balance data sparsity potentially derived from sequencing and544

pipeline noise, e.g., splitting of copy number variants from the same organism into multiple ASV545

groups.546

Quantitative PCR547

Quantitative PCR was performed with universal primers targeting the 16S rRNA gene to deter-548

mine absolute bacterial load in BALF samples [35]. Reactions contained 10 µL 2x PowerUp549

SYBR Green Master Mix (Applied Biosystems, Cat no. A25741), 9 µL of nuclease-free water550

(Invitrogen, Cat no. AM9932), and 1 µL of DNA template with a final primer concentration of551

400 µM forward and reverse primer. Thermocycling was performed using a QuantStudio3 un-552

der the following conditions: 50°C for 2 minutes, 95°C for 10 minutes, followed by 40 cycles of553

95°C for 15 seconds and 60°C for 1 minute. A previously constructed plasmid containing a 167554

bp target region was serially diluted to make a standard curve of known gene sequence copies555

(101 to 107) [36]. Up to nine no template controls were included per plate. Reaction plates and556

standard curves were prepared using an EpMotion5073M Liquid Handler (Eppendorf).557

Transcriptome sequencing558

Bulk RNA sequencing was performed on alveolar macrophages recovered from bronchoalve-559

olar lavage sequencing using fluorescence-activated cell sorting as previously described [37].560

Briefly, total RNA was extracted from samples followed by ribosomal RNA depletion. Se-561

quencing libraries were prepared using using a reverse-stranded protocol and sequenced on562

a NextSeq2000 to produce 75 bp single-ended reads.563
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Transcriptome sequencing data processing564

Gene expression tables were generated using a standard netflow workflow as previously de-565

scribed [37]. Fragments Per Kilobase of transcript per Million mapped reads (FPKM) were used566

for downstream analysis. The expression table was limited to protein coding genes; protein567

coding genes were first identified using the biomaRt package (v.2.54.1) and selecting genes568

for which the “gene_biotype” was encoded as “protein_coding”. Then, a prevalence filter was569

applied requiring gene RNA product expression detection in at least 20 samples. Expression570

tables were then re-normalized using total sum scaling followed by arcsine square-root trans-571

formation for variance stabilization. The Bray-Curtis distance was calculated using the vegdist572

function from the vegan package (v.2.6-4).573

Unmapped reads were processed for taxonomic profiles. Reads were processed using574

MetaPhlAn4 (v.4.0.6, mpa_vOct22_CHOCOPhlAnSGB_202212 database). Profiles were as-575

sessed at the genus level and features detected in greater than one sample were retained576

(n=34). Unclassified reads features was removed prior to total sum scaling and AST normal-577

ization. Complementary to marker-based analysis, taxonomic profiling was additionally per-578

formed using Kraken2 (v.2.1.2) using the standard database followed by relative abundance579

estimation using Bracken (v.2.7.0; -t 10 -l ‘S’ -r 75) [38–40]. Features which were not detected580

at a threshold of 0.001 abundance in at least 10 samples were excluded (remaining n = 302581

features) prior to AST normalization.582

Meta-omic data integration583

We implemented a pairwise network structure using HAllA (v.0.8.20) [41]. Data types were sub-584

set to their shared number of samples and low prevalence features were excluded (<10%) prior585

to being processed using HAllA. Significant features were selected for using an alpha thresh-586

old of 0.05; associations were quantified using the Spearman coefficient. For constructing the587

network, interaction pairs were thresholded by association (Spearman’s rho > 0.5) and signifi-588

cance (FDR P < 0.05). Features meeting these criteria and occuring in a HAllA-identified cluster589

were selected for visualization, leading to 820 nodes (features) with 1398 edges (interaction).590

Nodes with greater than or equal to 10 degrees were highlighted in the network visualization591

as hubs with slightly larger sizes. Network was visualized using Cytoscape (v.3.10.1) using the592

edge-weighted spring embedded layout with the association strength as the weight. Overlaps593

were removed and nodes shape was by datatype (e.g., amplicon profile). Nodes were colored594

by features that were differentially over-abundant in pneumotypes; negative associations were595

considered to be “high” in pneumotypeSL as it was the baseline comparison group. Features596

that were high in multiple groups were kept as gray.597

Statistical analysis598

PERMANOVA599

For eachmetadata field, samples without recordedmetadata were dropped. Samples that were600

present in the filtered metadata table and distance matrix were kept for PERMANOVA analysis.601

PERMANOVA analysis was performed using the adonis2 function in the R package vegan; a602
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total of 4,499 permutations were performed for each test. Multiplicity correction was performed603

using the Benjamini-Hochberg method for each dataset.604

Mantel test605

To test for covariation between multiomics profiles, pairwise comparisons using the Mantel test606

were performed between each data set. Distance matrices were subset by the intersection of607

samples in each multiomics distance matrix. For instance, amplicon and metagenomics dis-608

tance matrices were subset to include only the samples present in both matrices. The Mantel609

test was performed using the mantel.rtest function from the ade4 package. Multiplicity correc-610

tion was performed using the Benjamini-Hochberg method.611

Differential abundance testing612

Differential abundance was tested using Maaslin2 (v.1.12.0) [17]. Features with a prevalence613

of less than 10% were removed before significance testing. Abundance profiles were AST614

normalized before evaluation.615

MDNP analyses616

Mean dissimilarity to non-pneumonia (MDNP) scores were determined using genus-level am-617

plicon profiles. The mean Weighted UniFrac distance was calculated between each sample618

and the entire NP population. The 90th percentile of MDNP score within NP was used to de-619

termine highly irregular microbial communities. At the 90th percentile threshold, samples only620

have a 10% chance of having a similar arrangement of bacterial features to NP microbiome621

profiles.622

ZLR plot visualizations623

Zero log ridge plots were made to visualize differentially abundant microbial features. Bar plots624

on the left-hand side indicate detectable prevalence. Bar plots are scaled such that samples625

entirely undetected in a given category will reach the respective category baseline in the fea-626

ture above it. Kernel density estimation plots were implemented using the ggridges package627

(v.0.5.6). Distributions were calculated using the ‘density_ridges’ implementation on data cen-628

tered on (i.e., relative to) the median detectable abundance. Maximum height was scaled by629

the proportion of the total number of zero counts.630

Cluster identification631

To test the hypothesis that lung microbiota exhibit distinct pneumotype states, we developed an632

approach that incorporates phylogenetic relatedness and cluster stability. Integrating phyloge-633

netic relatedness into cluster identification increases the likelihood of linking distinct population634

structures to shifts in ecological states or microenvironmental conditions, as closely related635

taxa have a greater tendency to fulfill similar niches [42]. Prior to cluster analysis, samples636

were normalized at the genus level using total sum scaling with arcsine square transformation.637

We used weighted UniFrac distance, a comprehensive measure that combines phylogenetic638
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relatedness and relative abundance, to assess pairwise sample similarity [42]. Unsupervised639

learning was conducted through consensus clustering with iterative sample permutation, utiliz-640

ing the weighted UniFrac metric to identify stable clusters as implemented in ConsensusClus-641

terPlus (v.1.62.0) [43]. This methodology yielded four stable clusters representing putative642

pneumotypes.643

Frequency tests644

Unless otherwise indicated, violin plots with significance testing were visualized using the geom_pwc645

package from the ggpubr package (v.0.6.0). Pairwise Wilcoxon sign-rank test analyses were646

performed as implemented in the rstatix package (v.0.7.2) followed by Benjamini-Hochberg647

correction.648

Overrepresentation analysis649

Overrepresentation analysis was performed using a pairwise binomial distribution test against650

an expected probability. The test was performed as implemented in the rstatix package using651

the ‘pairwise_chisq_test_against_p’ function. The expected probability comparisons of the mi-652

crobiome state distribution among pneumonia subtype was compared to the null distribution.653

As pneumonia therapy is hypothesized to affect microbiome composition, samples were limited654

to initial BAL samples, i.e., baseline BAL taken at the time of suspected pneumonia. For the655

hypothesis that specific microbiome states are indicative of clinical outcome, the null proba-656

bility of a state in a pneumonia subtype being successfully, unsuccessfully, or indeterminately657

treated was used, i.e., a 1/3 chance of a given outcome per pneumonia state in a given disease658

context.659

Data and Code Availability660

Sequencing data are available on NCBI SRA (pending submission). Processing and analysis661

scripts are available on the github repository NUSCRIPT/sumner_pneumonia_multiomics_2024.662
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Supplemental Text843

SOFA score relationship with MDNP in NP patients844

Regression analysis and Spearman rank correlation was performed between MDNP and SOFA845

scores to further investigate this connection (Fig. Figure S8). We observe weak, non-signficant846

associations betweenMDNP score and SOFA in patients with pneumonia independent of pneumonia-847

resolution.848

Traversal through the microbiota landscape differs by clinical outcome and pneumonia849

subtype850

To assess the temporal dynamics of the lung microbiome during pneumonia challenge, longitu-851

dinal samples of the lower respiratory tract of patients with severe pneumonia was examined.852

Multiple distinct microbiota states exist in the lung during infection (Figure 3) that are not evenly853

distributed across the studied population (Figure 3). Therefore, focusing on themedian distance854

would confound this analysis, as it would represent the distance from a single microbiota state.855

To adjust for this, the pairwise weighted UniFrac distance from the non-pneumonia population856

to a given sample was evaluated over time (Figure 2). Overall, failure to respond to pneumo-857

nia therapy exhibits more stable, unchanging microbiome over time, especially in nosocomial858

infections. Dynamic shifts in the lung microbiome of patients with HAP and VAP move away859

from or towards the non-pneumonia populations, respectively. Finally, patients with CAP ap-860

pear to retain similar microbiomes as the baseline while failures to respond are slightly more861

dynamic. A sliding window approach, which shows the microbiomes shifts from the previous862

BAL sample, was used to complement the pairwise distance analysis. The rate of change in863

the lower respiratory tract microbiome of patients with nosocomial infections is slightly greater864

in patients who respond to pneumonia therapy than those who do not.865

Bacteriophage variation associated with pneumotype classification866

We identified a total of 6722 putative viral contigs across 173 of the 253 samples. Of these,867

10 were identified as Complete (100%), 144 as high quality (>90%), 141 as medium quality868

(>50%), 5089 as low quality and 1338 could not be determined. After filtering out contigs smaller869

than 2.5kb and dereplication, 294 vOTUs of medium, high and complete quality were kept for870

downstream analysis. After removing viruses with less than 70% genome coverage and less871

than 10x depth, Metapop identified 79 samples containing putative viruses. Potential bacterial872

hosts were predicted for 158 viruses across 46 genera of host. The hosts with the highest873

number of predicted connections to vOTUs were Streptoccocus with 36, and Staphylococcus874

with 18. Fourteen viruses are predicted to infect more than one host, though several are still875

within the same genus. PERMANOVA of bacteriophage were not found to have a significant876

association with any features.877

Using bioinformatics tools for viral analysis of metagenomic assemblies, we identified puta-878

tive viral contigs. Putative viral contigs co-cluster with known bacteriophage, indicating that the879

lung microbiome contains previously characterized bacteriophage. We observe dense clusters880

of putative bacteriophage genomes with phages of known bacterial taxa that were observed at881

high abundance in our samples, suggesting potential ecological interactions between bacterial882
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and viral microbiota. Prominent bacteriophage clusters are observed between putative bacte-883

riophages with streptococcal and staphylococcal bacteriophage, suggesting abundance and/or884

easily detectable phage populations associated with these genera.885
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Figure S1. Overview of sampling per patient. Filled circles are BAL, colored by the intersection of
multiomics data acquired at that time point. Grey diamonds are hospital length of stay. Note the x-axis is the square
root for days.
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Figure S3. Principle coordinate analysis of multiomics data. Multiomics data include (a) taxo-
nomic profiles from 16S rRNA gene amplicon sequencing, (b) taxonomic, (c) KEGG ortholog, and (d) bacteriophage
profiles from shotgun metagenomics, (e) taxonomic profiles from metatranscriptomic, and (f) host transcriptomic
profile. Weighted UniFrac used for 16S rRNA gene amplicon sequencing, and the Jaccard distance was used for
bacteriophage profiles. All other multiomics dissimilarities were calculated using Bray-Curtis.
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Figure S5. Principle coordinate analysis of multiomics data. Points colored and faceted
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Figure S7. Network visualization of associated omics features identified from HALLA
(see Fig. 4) but with complete labelling. Multiomics data integration includes feature profiles from four
data types: shotgun metagenomic (taxonomic, functional potential), 16S rRNA gene sequencing, and macrophage-
sorted bulk RNA-sequencing (host transcriptomics, metatranscriptomic). Top significant associations from each
dataset comparison are visualized (FDR P < 0.05). Edges are associations colored by Spearman rank correlation
(red for positive and blue for negative) and nodes are data features. Nodes were colored by features that were
differentially over-abundant in pneumotypes; negative associations were considered to be “high” in pneumotypeSL
as it was the baseline comparison group. Features that were high in multiple groups were kept as gray.
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Figure S8. SOFA scores sometimes associate withMDNP score. Analysis of MDNP score (mean
dissimilarity to non-pneumonia) association with SOFA score. Monotonic relationship evaluated using Spearman’s
rank order correlation test.
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Figure S9. Viral operational taxonomic units (vOTUs) found in the lung. Predicted hosts
(green) of vOTUs identified in BAL samples (orange) and from standards (blue). The most commonly predicted
host genera are Streptococcus and Staphylococcus, both of which are found in high abundance in separate pneu-
motypes. Fourteen viruses identified in BAL samples are predicted to infect multiple hosts.
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Figure S10. Differentiallymeta-omic features between respiratory culture results. Bar plots
are the proportion of samples with zero-count therefore showcasing feature prevalence; bars are scaled such that
touching the correspondingly colored line above indicates the feature was undetected in all samples for that group.
Kernel distributions were calculated based on the subset of samples with detectable abundance after centering by
the median and log2 transformation; heights are scaled by the proportion of detectable samples. Genes are shown
with their corresponding KEGG orthology term. (* = FDR P < 0.05, ** = FDR P < 0.01, *** = FDR P < 0.001).
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Supplemental Tables887

Category Subcategory n IQR (mean)

Pneumonia Diagnosis HAP 97
VAP 76
CAP 54
Non-pneumonia 33

Pathogen Etiology Bacterial 83
Bacterial/viral 35
Viral/Etiology defined 54
Culture-negative 63
Non-pneumonia 32

Respiratory Culture (Bacterial) Positive BAL 118
Negative or No Result BAL 227

Longitudinal Statistics No. Patients 62
No. BAL 156

Quantitative Metadata Bacterial Biomass (qPCR, Log 16S gene copies/µL) 142 1.51-2.93 (2.37)
Amylase Levels (Log) 230 1.20-2.53 (1.91)
Hospital LOS 345 15-40 (29.2)
SOFA 341 8-13 (10.6)

Table S1. Summary of case demographics. Note that pathogen etiology excludes patients who re-
ceived lung transplantations.
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