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Simple Summary: Habitat fragmentation is an important factor leading to the decline in the leopard
cat population in Beijing. Habitat loss may further result in population shrinkage, which increases the
risk of inbreeding and genetic decline. To reveal the segregation effects of highway construction and
infrastructure expansion on population genetic variation, this study analyzed the genetic structure of
leopard cats in five nature reserves in the mountain surroundings of Beijing. The results showed that
a mild disparity trend exists in Baihuashan and Songshan subpopulations, due to habitat segregation
and dispersal difficulties. We suggest that the genetic structures of the leopard cat population be
monitored every 5 years to detect any changes. If needed, individuals can be artificially exchanged
among different subpopulations to maintain the viability of this wild cat in Beijing.

Abstract: In the face of habitat shrinkage and segregation, the survival of wild cats looks bleak.
Interpreting their population genetic structure during habitat fragmentation is critical in planning
effective management strategies. To reveal the segregation effects of road construction and human
settlements on the population genetic structure, we analyzed non-invasive fecal DNA samples from
leopard cats (Prionailurus bengalensis) from five nature reserves in mountainous areas around Beijing.
We focused on microsatellite markers. A total of 112 individual leopard cats were identified among
601 samples of scat, and moderate population genetic diversity was detected. Microsatellite-marker-
based genetic differentiation (Fst) and gene flow (Nm) showed a weak trend toward discrepancies
in the Baihuashan and Songshan subpopulations, which indicated habitat fragmentation effects
on individual dispersal. Because the segregated subpopulations may suffer a high risk of genetic
diversity loss, we suggest that their genetic structure be monitored with more molecular markers to
detect any changes, and that female individuals be artificially introduced as needed to maintain the
viability of the leopard cat subpopulations in Beijing.

Keywords: leopard cat; microsatellite DNA; genetic diversity; genetic structure differentiation

1. Introduction

Variation in population genetic structure can influence the interactions between a
species and its environment, and populations with higher genetic diversity are more
adaptable to risks brought by changing environments [1]. Moreover, genetic diversity
may reflect species’ evolutionary potential, and it can supply important information about
their current status and conservation strategies to be implemented [2]. When habitat
fragmentation occurs, wild animals are threatened by population isolation and genetic loss
that may increase the risk of extinction among segregated populations [3]. Thus, analyses
of genetic structure are becoming an important part of effective conservation [4]. Studies on
genetic variation may identify subpopulations’ differentiations, which would help create
different management units to maintain the long-term survival of local populations [5,6].
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Although small in number, wild feline species are important predators with various
body types, diverse dietary habits, and great adaptability to the surrounding environment.
These species play key roles in the natural ecosystem [7,8]. As a result of severe disturbance
due to human activity, suitable habitats for wild cats are gradually being lost, and their
prey are also decreasing, which further threatens their survival [9]. Most feline species are
secretive and highly vigilant, which makes them very difficult targets for field research and
conservation [10,11]. With the rapid development of non-invasive sampling among wild
animals, fecal samples are becoming informative objects in research on wild cats [12,13]. Sex
ratio determination, individual identification, and relatedness analysis enable the accurate
evaluation of population genetic diversity and contribute much to the conservation of wild
cats [14,15].

The leopard cat (Prionailurus bengalensis) is a small wild cat native to and widely
distributed in East Asia, South Asia, and Southeast Asia [16]. This small cat appears almost
everywhere in China, except at high altitudes in the Tibetan plateau and in the severe
dry lands of the northwest [17]. Although it is assessed as Least Concern for China in the
International Union for Conservation of Nature (IUCN) Red List of Threatened Species [18],
the leopard cat population is decreasing as a result of habitat loss and illegal hunting [19].
It is listed in the second category of the CITES Appendices to strengthen protection [20].
Moreover, subspecies of the leopard cat are classified differently in the IUCN Red List;
for example, P. b. rabori is considered Vulnerable [21] and P. b. iriomotensis as Critically
Endangered [22]. The leopard cat in China is classified as Vulnerable [23].

Most genetic studies of the leopard cat are from East Asia. The populations living
on the islands of Japan have been classified into two subspecies: P. b. euptilurus and P. b.
iriomotensis [24,25]. A study on their population genetic structure revealed low levels of
DRB allelic variation in MHC class II genes among subpopulations from the islands of
Tsushima and Iriomote in Japan [26], which are in line with findings of decreased genetic
diversity, based on the DNA of the mitochondrial control region [27].

Studies of leopard cats from Korea using microsatellite markers showed that this
species had lower genetic diversity than 12 other feline species in the world [28] and other
mammalian species in Korea [29]. However, there has been little research of this kind on
species in China. One study found five management units for leopard cat populations,
based on genetic diversity and phylogenetic analysis using RAPD and variation in mito-
chondrial DNA [30]. Another study using the mitochondrial DNA of Cyt B and the control
region sequence analyzed genetic diversity among populations from five geographic areas
and detected independent trends in evolution between northern and southern branches in
China [31].

It was estimated that there were 1500 leopard cats in the Beijing region in the first na-
tional wildlife survey from 1995 to 2000 (Report on resources survey on the terrestrial wild
animals in Beijing, unpublished data, 2012). However, few studies focused on leopard cats,
except studies on food components by scat residue identification [32,33], camera trapping
monitoring, and activity pattern analysis in nature reserves [34–37]. The only genetic study
on mammals in Beijing was on the Chinese goral (Naemorhedus griseus), from the Songshan
national nature reserve, which detected moderate population genetic diversity [38]. There
is a lack of research on the baseline genetic information for the conservation of mammalian
species in Beijing. Thus, we aimed to (1) clarify the genetic background of the leopard
cat in Beijing through non-invasive fecal sampling and (2) detect genetic differentiation
among the subpopulations due to the segregation effects of infrastructure development
and the expansion of human settlements. Given the high dispersal ability of the leopard
cat and the fact that the influences of infrastructure development have only been at play
for several decades, we assumed that there would be no genetic discrepancy among the
subpopulations sampled.
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2. Materials and Methods
2.1. Sampling Procedure and DNA Extraction

We used the non-invasive analytical method and did not violate animal ethics issues.
From September 2017 to October 2018, we collected 601 fecal samples of suspected leopard
cat origin by surveying transect lines from the Songshan (n = 315), Yunmengshan (n = 43),
Yunfengshan (n = 45), Xiaolongmen (n = 75), and Baihuashan (n = 123) nature reserves in
Beijing (hereafter, SS, YMS, YFS, XLM, and BHS, respectively; Figure 1). Fecal samples were
put into sealed plastic bags, fixed with ethanol, and maintained at −20 ◦C in the laboratory.
We extracted the total DNA from the fecal samples using the Stool DNA Kit (D4015-01;
Omega, Dorivalle, GA, USA), according to the manufacturer’s protocol. The multiple-tube
approach was used to obtain the host DNA by sampling three to five surface parts of one
scat, and after the DNA had been extracted separately, they were mixed into one tube
to obtain enough DNA for testing the quality using an ultra-micro spectrophotometer
(NanoDrop One; Thermo Scientific, Waltham, MA, USA), which was then used in the
following analysis.

1 
 

 
Figure 1. Fecal sampling areas for analyses of the genetic structure of leopard cats in Beijing.

BHS represents the Baihuashan reserve, XLM represents the Xiaolongmen reserve, SS
represents the Songshan reserve, YMS represents the Yunmengshan reserve, and YFS repre-
sents the Yunfengshan reserve. They are the same designations in the following figures.

2.2. Species and Sex Identification

The universal primer of the carnivore species ATP6 hypervariable region of mito-
chondrial DNA was used in species identification [39]. PCR amplification was set to the
following conditions: an initial denaturation at 94 ◦C for 5 min; thirty-five cycles at 94 ◦C
for 30 s, at 60 ◦C for 30 s, and at 72 ◦C for 45 s; and final extension at 72 ◦C for 8 min. Each
30 µL PCR reaction volume contained 15 µL of Premix Ex Taq enzyme (Takara Biomedical
Technology, Beijing, China), 0.2 µL of bovine serum albumin (BSA), 1 µL of forward or
reverse primer, and 2 µL (~50 ng) of genomic DNA. The PCR products were purified before
Sanger sequencing, and afterward, one sequence was obtained (TsingKe Biotech, Beijing,
China). The species was identified from a BLAST search of the NCBI database according
to the degree of sequence matching. Each experiment included a positive and negative
control (DNase/RNase-free deionized water template, rather than DNA).

The zinc-finger regions of the X and Y chromosomes were used to identify the sex
of the leopard cat from the fecal samples (Table 1) [40]. The PCR products of the female
samples were 165 bp, and the products of the male samples were 162 and 165 bp. The
20 µL PCR reaction volume included 10 µL of Premix Ex Taq enzyme (Takara Biomedical
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Technology), 0.2 µL of BSA, 0.8 µL of forward or reverse primer, and 2 µL (~50 ng) of
genomic DNA. The PCR conditions were an initial denaturation at 95 ◦C for 10 min; forty
cycles at 95 ◦C for 30 s, at 58 ◦C for 40 s, and at 72 ◦C for 30 s; and final extension at 72 ◦C
for 8 min. Genotyping of the samples was performed with an ABI 3730xl DNA analyzer
(Applied Biosystems, Foster City, CA, USA) supplied by TsingKe Biotech. Each sample was
analyzed using capillary electrophoresis at least three times until the exact genotype was
obtained; samples without amplification products were excluded from the analysis.

Table 1. Primer pairs for amplifying the sex chromosomes and microsatellites of the leopard cat.

Locus Primer Sequence (5′-3′) Ta (◦C) Size (bp)

Zn-finger F: AAGTTTACACAACCACCTGG
56 X162/Y165R: CACAGAATTTACACTTGTGCA

Pbe03
F: M13FCTGCCTTTGACTGCTCCAC

58 131–163R: TGCTTACCATGTGACCTCC

Pbe05
F: M13FTCACCTCTGGGCTCTTG

60 181–193R: AGGGACACGGAAAGGCATC

Pbe13
F: M13FTGCGGATGTTGGGAAAGAAC

60 210–218R: AGGCCGAGACCAGTTAAGG

Pbe28
F: M13FGGGAGACCTTGCCTCATTTC

56 233–241R: TGCTTCCCTAACAGGCATC

Pbe32
F: M13FAGCACTAGGCCAGAACACC

64 174–178R: CCAGACCCTCTTTGCCTTG

Pbe33
F:M13FAGAGGCACTTGGAGTTAGGG

58 248–252R: GAG TCGGCA AACCTGGAAC
The sequence of M13F is 5′- CACGACGTTGTAAAACGAC -3′ added to the 5′ end of the forward primer labeling
with 5-HEX for Pbe03, 05, and 13; 5-FAM for Pbe28, 32, and 33.

2.3. Microsatellite Loci Selection and Amplification

We repeatedly tried several reaction conditions and annealing temperatures with the
fecal DNA samples, based on 20 pairs of microsatellite loci for leopard cats that were used
in different studies [28,29]. Only six of them (Pbe03, Pbe05, Pbe13, Pbe28, Pbe32, and Pbe33)
worked properly for our fecal samples (Table 1). The conditions for the PCR reaction were
retrieved from Ko et al. 2018 [29]. We genotyped the samples using the ABI 3730xl DNA
analyzer supplied by TsingKe Biotech (the forward primer was labeled with FAM dye at the
5′ end). Each sample was analyzed at least three times to reduce error. If no effective DNA
was detected from the heavy degradation, the scat was discarded to ensure the reliability
of the three genotyping repeats. Samples amplified with all six loci were considered to be
successful and were used in the following analysis.

2.4. Data Analysis

The microsatellite data were organized in Microsoft Excel, and the MS tools plugin in
Excel was used to find matching genotypes in the database. The reliability of the typing
results was tested with the implementation criteria [41]. Samples were considered to
originate from the same individual if the genotypes of all loci were identical or there was a
difference in only one locus [42].

We tested the Hardy–Weinberg equilibrium and linkage disequilibrium of each target
microsatellite locus using Arlequin v3.5 [43] and Genepop v4.3 [44] with the Bonferroni
correction. The number of alleles (Na), effective number of alleles (Ne), observed and
expected heterozygosity (Ho and He, respectively), polymorphism information content
(PIC), probability of identity (PID), and probability of identity between siblings (PID-sibs)
were calculated with GenAlEx v6.5 (Peakall R and Smouse P E, Canberra, Australia) [45].
STRUCTURE v2.3.4 (Pritchard Lab., Palo Alto, CA, USA) was used to verify and analyze
the genetic differentiation among leopard cat subpopulations with Bayesian clustering. The
Evanno ad hoc ∆K statistic was used to determine the most probable clustering number
of subgroups [46]. We set the number of clusters (K) from 1 to 5 (10 times for each K) for
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accurate assignments of accessions. For each run, a burn-in period of 50,000 iterations and a
run length of 500,000 MCMC replications were implemented, and the data were processed
with the Harvester online software (http://tayloro.biology.ucla.edu/structureHarvester/)
(accessed on 12 September 2019).

The non-Bayesian method, DAPC (Discriminant Analysis of Principal Components),
was used to compare to the results from STRUCTURE analysis. This method adopted the
R software platform to perform a linear discrimination analysis by running the Adegent
data-analysis module and the parameter as the main number of factors was set to N ≤ N/3
(n is the total number of individuals) [47].

3. Results
3.1. Species and Individual Identification

There were 601 carnivore fecal samples collected in the five sampling nature reserves.
After a BLAST search of the NCBI database, 550 of the samples were identified as those of
leopard cats, with a matching rate of ≥ 98%. Of those 550 samples, 508 were discriminated
by sex, with 383 from females and 125 from males. The 508 samples successfully identified
by sex were amplified using the microsatellite loci; 96 samples that could not be amplified
at the six sites were removed. Micro-Checker detected no null alleles at any of the six
loci. After microsatellite-genotype-sharing analysis and sex identification, we identified
53 individuals (33 females and 20 males) in SS, 17 individuals (10 females and 7 males)
in YMS, 17 individuals (14 females and 3 males) in YFS, 13 individuals (10 females and 3
males) in XLM, and 12 individuals (9 females and 3 males) in BHS.

3.2. Microsatellite Analysis of Genetic Diversity

None of the six microsatellite loci used for the analysis of genetic diversity deviated
from the Hardy–Weinberg equilibrium (p > 0.05), and no linkage disequilibrium was
detected. There were 31 alleles detected for the six microsatellite loci and the allele frequency
was unevenly distributed; some of them were null in the five subpopulations (Table 2).

Table 2. Allele frequencies of six microsatellites in leopard cat subpopulations in the five sampling
areas.

Microsatellites Loci Allele
Allele Frequency

SS YMS YFS XLM BHS

Pbe03

131 0.142 0.059 0.088 0.115 0.042
135 0.094 0.147 0.000 0.038 0.167
139 0.057 0.000 0.059 0.000 0.292
143 0.330 0.559 0.353 0.500 0.417
147 0.019 0.000 0.059 0.000 0.000
151 0.113 0.000 0.059 0.000 0.000
155 0.038 0.000 0.059 0.000 0.000
159 0.179 0.235 0.324 0.346 0.083
163 0.028 0.000 0.000 0.000 0.000
131 0.142 0.000 0.000 0.000 0.000

Pbe05

177 0.000 0.000 0.000 0.154 0.000
181 0.274 0.500 0.118 0.192 0.250
185 0.698 0.500 0.882 0.654 0.708
189 0.000 0.000 0.000 0.000 0.042
193 0.028 0.000 0.000 0.000 0.000

http://tayloro.biology.ucla.edu/structureHarvester/
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Table 2. Cont.

Microsatellites Loci Allele
Allele Frequency

SS YMS YFS XLM BHS

Pbe13

202 0.000 0.000 0.000 0.115 0.083
206 0.038 0.000 0.029 0.000 0.000
210 0.368 0.000 0.176 0.154 0.083
214 0.377 0.588 0.471 0.500 0.625
218 0.208 0.412 0.324 0.077 0.125
222 0.009 0.000 0.000 0.154 0.083

Pbe28
233 0.028 0.235 0.088 0.231 0.542
237 0.623 0.441 0.500 0.538 0.208
241 0.349 0.324 0.412 0.231 0.250

Pbe32

170 0.019 0.029 0.000 0.000 0.000
174 0.292 0.176 0.324 0.269 0.250
178 0.679 0.794 0.676 0.731 0.750
182 0.009 0.000 0.000 0.000 0.000

Pbe33
240 0.000 0.000 0.059 0.000 0.000
248 0.217 0.294 0.294 0.269 0.125
252 0.783 0.706 0.647 0.731 0.875

SS represents Songshan reserve, YMS represents Yunmengshan reserve, YFS represents Yunfengshan reserve,
XLM represents Xiaolongmen reserve, and BHS represents Baihuashan reserve. They are the same designations in
the following tables.

The average Na of the six microsatellite loci was 3.400; the average Ne was 2.288; the
average Ho was 0.392; the average He was 0.514; and the average PIC was 0.449. The
combined population probability of identity for PID was 1.2 × 10−3 in YMS, while it was
over 2.5 × 10−4 in other areas, and the PID-sibs was in the 10−2 level, which indicated that
the six microsatellite loci were reliable for individual leopard cat identification in this study
(Table 3).

Table 3. Genetic diversity and probability of identity of six microsatellite loci detected in leopard cat
subpopulations in the five sampling areas.

Microsatellite
Loci

Microsatellite
Index

SS
(N = 53)

YMS
(N = 17)

YFS
(N = 17)

XLM
(N = 13)

BHS
(N = 12)

Pbe03

Na 9.000 4.000 7.000 4.000 5.000
Ne 5.300 2.546 3.986 2.600 3.388
Ho 0.698 0.588 0.588 0.462 0.583
He 0.811 0.607 0.749 0.615 0.705
PIC 0.819 0.554 0.713 0.544 0.655
PID 0.0576 0.2074 0.0993 0.2188 0.1360

PID-sibs 0.3587 0.4982 0.4003 0.4970 0.4316

Pbe05

Na 3.000 2.000 2.000 3.000 3.000
Ne 1.776 2.000 1.262 2.048 1.767
Ho 0.415 0.294 0.235 0.385 0.583
He 0.437 0.500 0.208 0.512 0.434
PIC 0.441 0.375 0.186 0.458 0.369
PID 0.03908 0.3750 0.6794 0.2919 0.3850

PID-sibs 0.6292 0.5938 0.8086 0.5671 0.6292
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Table 3. Cont.

Microsatellite
Loci

Microsatellite
Index

SS
(N = 53)

YMS
(N = 17)

YFS
(N = 17)

XLM
(N = 13)

BHS
(N = 12)

Pbe13

Na 5.000 2.000 4.000 5.000 5.000
Ne 3.102 1.940 2.792 3.159 2.341
Ho 0.642 0.353 0.529 0.462 0.250
He 0.678 0.484 0.642 0.683 0.573
PIC 0.684 0.367 0.575 0.647 0.544
PID 0.1674 0.3831 0.1955 0.1366 0.2118

PID-sibs 0.4530 0.6036 0.4780 0.4424 0.5165

Pbe28

Na 3.000 3.000 3.000 3.000 3.000
Ne 1.960 2.820 2.340 2.522 2.504
Ho 0.566 0.471 0.412 0.154 0.667
He 0.490 0.645 0.573 0.604 0.601
PIC 0.494 0.571 0.481 0.536 0.533
PID 0.3557 0.1997 0.2739 0.2246 0.2270

PID-sibs 0.5941 0.4773 0.5321 0.5044 0.5064

Pbe32

Na 4.000 3.000 2.000 2.000 2.000
Ne 1.827 1.509 1.778 1.649 1.600
Ho 0.547 0.176 0.294 0.231 0.167
He 0.453 0.337 0.438 0.393 0.375
PIC 0.457 0.297 0.342 0.316 0.305
PID 0.3790 0.4795 0.4120 0.4453 0.4609

PID-sibs 0.6184 0.7012 0.6341 0.6646 0.6777

Pbe33

Na 2.000 2.000 3.000 2.000 2.000
Ne 1.515 1.710 1.966 1.649 1.280
Ho 0.321 0.235 0.294 0.077 0.083
He 0.340 0.415 0.491 0.393 0.219
PIC 0.343 0.329 0.415 0.316 0.195
PID 0.4936 0.4282 0.3347 0.4453 0.6343

PID-sibs 0.7035 0.6494 0.5880 0.6646 0.7992

Average

Na 4.333 2.667 3.500 3.167 3.333
Ne 2.580 2.087 2.354 2.271 2.147
Ho 0.531 0.353 0.392 0.295 0.389
He 0.535 0.498 0.517 0.534 0.484
PIC 0.470 0.418 0.452 0.470 0.434

combined PID 2.5 ×
10−4

1.2 ×
10−3

4.7 ×
10−4

3.9 ×
10−4

7.3 ×
10−4

combined
PID-sibs

2.6 ×
10−2

3.8 ×
10−2

3.0 ×
10−2

2.7 ×
10−2

3.8 ×
10−2

The Fst values of the leopard cat subpopulations in the five sampling areas ranged
from 0.011 to 0.082; those Fst values larger than 0.05 were the BHS and SS, BHS and YFS,
YMS and SS, and BHS and YMS pairs, showing a mild genetic differentiation among these
subpopulations (Table 4). Meanwhile, the Nm was in a large range from 2.799 to 22.478,
among which the pairs of BHS and SS, BHS and YFS, YMS and SS, and BHS and YMS were
relatively small, displaying normal gene flow for these subpopulations.

Table 4. Fst and Nm based on analyses of the diversity of microsatellite loci in leopard cat subpopula-
tions in the five sampling areas.

Sampling Area SS YMS YFS XLM BHS

SS 4.136 18.981 11.655 2.799
YMS 0.057 4.852 9.366 4.467
YFS 0.013 0.049 22.478 3.222
XLM 0.021 0.026 0.011 6.695
BHS 0.082 0.053 0.072 0.036

Fst appears below the diagonal, and Nm appears above the diagonal.
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The results of the STRUCTURE analyses showed that when k = 5, the average value of ln-
likelihood was higher (when k = 1, ln-likelihood =−1371.9; when k = 2, ln-likelihood =−1291.3;
when k = 3, ln-likelihood = −1255.9; when k = 4, ln-likelihood = −1241.7; when k = 5,
ln-likelihood = −1233.5). There was no significant genetic differentiation among the sub-
populations in the five sampling areas. This indicates that the leopard cats in Beijing share
more common genetic background and less genetic differentiation in nuclear DNA diversity
(Figure 2).
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Yunfengshan in blue.

The results of the DAPC analysis showed that there was no significant genetic differ-
entiation among the five subpopulations (Figure 3). However, if individual 9 was excluded
(dot 9 in the upper left of the plot), most of the individuals in the BHS group were clustered
in the lower right, which may indicate that this subpopulation intended to separate from
other groups.
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Figure 3. Genetic similarity based on DAPC analysis of microsatellite genotypes in leopard cat
subpopulations in the five sampling areas.

BHS represents Baihuashan in red, SS represents Songshan in blue, XLM represents
Xiaolongmen in green, YFS represents Yunfengshan in gray, and YMS represents Yunmeng-
shan in orange.



Biology 2022, 11, 1478 9 of 12

4. Discussion

Accurate evaluation of the population abundance and sex structure is critical to
assessing the current status and future development of local populations [48]. From large
samples of scat, we identified 112 leopard cats from five nature reserves in mountainous
habitats around Beijing. Most individuals were from the SS reserve. The 53 leopard cats
in the 45 km2 SS reserve [49] may approximate the real state of the population, whereas
the abundance in other reserves may be underestimated, due to the lack of successfully
DNA-extracted scat samples.

The sex ratio is an important indicator of the population structure and development
trends for the effective management of endangered species [50]. There was a general trend
toward a female-biased sex ratio in the five sampling areas (the female-to-male ratio was
1.65:1 at SS, 1.43:1 at YMS, 4.67:1 at YFS, 3.33:1 at XLM, and 3:1 at BHS). This is in line
with the female-biased sex structures of other feline species, such as the jungle cat (Felis
chaus) in India at 1.59:1 [51]. This phenomenon is more obvious among large cats such as
the snow leopard (Panthera uncia) and the African lion (Panthera leo) [52,53] because males
die at higher rates than females from injuries during hunting, dispersal, and individual
competition [52,54]. However, this female-biased sex ratio may help the population recover
quickly from low numbers [55]. Our study provides valuable reference information for the
future monitoring of the leopard cat sex ratio in the Beijing region.

4.1. Genetic Structure Based on Microsatellite Diversity

Analyzing the genetic structure of local populations through molecular approaches
may reveal clues to their genetic diversity and adaptability to the environment [56]. Mi-
crosatellites are frequently selected as nuclear markers for their high polymorphism, low
requirements for DNA in PCR amplification, and accuracy in assessing population genetic
diversity [28]. The combined population probabilities of identity, PID and PID-sibs, were
in the levels of 10−4 and 10−2, respectively. Considering there were less than 100 wild cats
in each sampling area [57], the six microsatellite loci were reliable in identifying leopard
cat individuals in our study [58]. The average PIC at all six microsatellite loci was above
0.4 (Table 3), which indicated the moderate diversification of the alleles according to the
standards of Botstein [59]. In this study, the average effective number of alleles (Ne = 2.288)
was lower than the index for leopard cats in Korea (Na = 3.8) [29] but higher than that of the
Iriomote leopard cat population in Japan (Na = 1.33) [26]. Moreover, the average observed
heterozygosity was lower than for leopard cats in Korea (Ho = He = 0.41) [29], but the aver-
age expected heterozygosity was higher (Table 3), and, compared to the Tsushima leopard
cat population in Japan (Ho = 0.77, He = 0.66) [26], our parameters were much lower. Thus,
total genetic diversity was moderate for the leopard cats in this study, in concordance with
their wide distribution and small population size in the Beijing region [57].

4.2. Population Genetic Differentiation

Habitat loss and fragmentation increase the chance for inbreeding and pose an ex-
tinction risk for the local populations, which are becoming major threats to biodiversity
conservation [53]. In general, wild animals must have a high rate of dispersal to reduce
this risk and maintain a diversified population genetic structure [14]. Based on the analysis
of the diversity using microsatellite loci, we found the genetic differentiation index of Fst
values was larger than 0.05 for BHS and SS (0.082), BHS and YFS (0.072), YMS and SS
(0.057), and BHS and YMS (0.053), indicating a moderate genetic differentiation among
these subpopulations. However, the values of Nm indicate a normal gene flow among the
subpopulations, although the value pairs of BHS and SS (2.799), BHS and YFS (3.222), YMS
and SS (4.136), and BHS and YMS (4.467) were relatively small (Table 4). Meanwhile, the
STRUCTURE diagram and DAPC analysis revealed the five sampling groups shared most
of the ancestral gene, indicating no obvious genetic discrepancy (Figures 2 and 3). Our re-
sults implied that more work is needed to clarify the genetic discrepancy for these separated
subpopulations, such as by using mitochondrial markers. However, cautions regarding
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the effects of female philopatry should be taken into consideration, as the variations in
the mitochondrial DNA were mainly dominated by the maternal lineages. For example,
female philopatry detected in the Scandinavian brown bear (Ursus arctos) demostrated
low number of mtDNA haplotypes and high microsatellite diversity among four analyzed
subpopulations. It is suggested that this is a result of gene flow mediated by male dispersal
and geographical distance [60]. Similar outcomes were detected in an Australian bird (the
eastern yellow robin Eopsaltria australis) [61]. Thus, if the mitochondrial markers be applied
in leopard cat in Beijing, enough samples in different sex should be included to clarify the
influence of sex biased dispersal.

5. Conclusions

From the point of view of conservation genetics, the Beijing region is in a relatively
narrow geographic range with no marked differences in weather or altitude. In addition,
the leopard cat has a strong dispersal ability. We postulated at the beginning of our study
that there would be no genetic differentiation among subpopulations. However, the mild
discrepancy trend in the BHS and SS subpopulations was different from our expectation.
We assume that this is due to female-dominated philopatry traits of the leopard cat, as
well as segregation effects from natural rivers, major roads, and the expansion of human
residential sites. Thus, we suggest that greater attention should be paid to the BHS and
SS subpopulations in future monitoring programs, and they should each be taken as an
independent conservation unit for the planning of further conservation strategies. If needed,
female individuals from other areas could be introduced to maintain the integrity of genetic
diversity. We also suggest further field sampling and more molecular markers be utilized
to obtain a clearer genetic variation of the leopard cat population in the Beijing region.
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