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Abstract: Breast cancer is the leading cause of death for women globally. In clinical practice, pathol-
ogists visually scan over enormous amounts of gigapixel microscopic tissue slide images, which
is a tedious and challenging task. In breast cancer diagnosis, micro-metastases and especially iso-
lated tumor cells are extremely difficult to detect and are easily neglected because tiny metastatic
foci might be missed in visual examinations by medical doctors. However, the literature poorly
explores the detection of isolated tumor cells, which could be recognized as a viable marker to deter-
mine the prognosis for T1NoMo breast cancer patients. To address these issues, we present a deep
learning-based framework for efficient and robust lymph node metastasis segmentation in routinely
used histopathological hematoxylin–eosin-stained (H–E) whole-slide images (WSI) in minutes, and
a quantitative evaluation is conducted using 188 WSIs, containing 94 pairs of H–E-stained WSIs
and immunohistochemical CK(AE1/AE3)-stained WSIs, which are used to produce a reliable and
objective reference standard. The quantitative results demonstrate that the proposed method achieves
89.6% precision, 83.8% recall, 84.4% F1-score, and 74.9% mIoU, and that it performs significantly
better than eight deep learning approaches, including two recently published models (v3_DCNN
and Xception-65), and three variants of Deeplabv3+ with three different backbones, namely, U-Net,
SegNet, and FCN, in precision, recall, F1-score, and mIoU (p < 0.001). Importantly, the proposed
system is shown to be capable of identifying tiny metastatic foci in challenging cases, for which there
are high probabilities of misdiagnosis in visual inspection, while the baseline approaches tend to fail
in detecting tiny metastatic foci. For computational time comparison, the proposed method takes
2.4 min for processing a WSI utilizing four NVIDIA Geforce GTX 1080Ti GPU cards and 9.6 min using
a single NVIDIA Geforce GTX 1080Ti GPU card, and is notably faster than the baseline methods
(4-times faster than U-Net and SegNet, 5-times faster than FCN, 2-times faster than the 3 different
variants of Deeplabv3+, 1.4-times faster than v3_DCNN, and 41-times faster than Xception-65).

Keywords: breast cancer segmentation; hierarchical deep learning framework; histopathological
images; lymph node metastases; whole-slide image analysis

1. Introduction

Breast cancer is considered the leading cause of death for women globally [1], and ac-
cording to the report by the American Cancer Society, 42,690 people in the United States
of America are expected to die due to breast cancer in 2020 [2]. The prognosis of a breast
cancer patient is determined by the extent of metastases, or the spreading of cancer to
the other parts of the body from where it initially began [3]. Metastases usually happen
when cancer cells split from the main tumor and enter the blood circulation system or the
lymphatic system. The TNM staging criteria are commonly adopted to classify the extent
of cancer [4]. In the TNM criteria, T refers to the size of the primary tumor (T-stage); N
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describes whether the cancer has spread to regional lymph nodes (N-stage); M describes
whether the cancer has spread to different parts of the body (M-stage) [5]. Metastases can
be divided into one of these three categories, including macro-metastases (size greater than
2 mm), micro-metastases (metastatic size greater than 0.2 mm, but no greater than 2.0 mm),
and isolated tumor cells (ITCs, metastatic size no greater than 0.2 mm) [6].

The status of a tumor is commonly determined by examining routine histopathological
H–E slides, but in many cases, additional costly immunohistochemical (IHC) staining is
required to clarify unclear diagnoses of H–E slides [7]. However, the manual detection of
cancer in a glass slide under a microscope is a time-consuming and challenging task [8].
At present, we are able to examine pathological images using computer-based algorithms
by converting glass slides into whole-slide images (WSI). Dihge [9] predicted lymph node
metastases in breast cancer by gene expression data, mixed features, and clinicopathological
models to recognize patients with a low risk of metastases and thereby save them from
a sentinel lymph node biopsy (SLNB). Shinden [10] proposed using y-glutamyl hydrox-
ymethyl rhodamine green as a new fluorescent method to diagnose lymph node metastases
in breast cancer and achieved a sufficiently high specificity (79%), negative predictive
value (99%) and sensitivity (97%), proving it useful for cancer diagnosis. Dihge’s [9] and
Shinden’s [10] methods require some additional data, such as gene expression data, mixed
features, and expensive bio-markers, which make them impractical for clinical usage using
economical histopathological slides to detect lymph node metastases. In this work, we
propose a method that uses routine H–E slides for lymph node metastasis segmentations.

WSIs are extremely large: a glass slide scanned at 20× magnification produces images
that are several gigapixels in size; around 470 WSIs contain nearly the same number of
pixels as the whole ImageNet. When confronted with the huge amounts of information
contained in large slides, even experienced pathologists are prone to misdetect features and
make mistakes. As a result, qualified cancer diagnoses demand peer review and consensus,
which can be costly to satisfy in hospitals and small cancer centers with a shortage of
trained pathologists. To enhance performance and overcome these weaknesses, deep
learning has been presented in various studies [11,12]. Deep learning has the advantage of
creating high-level feature extraction and image recognition from raw images, and deep
learning algorithms are being used to diagnose, classify, and segment cancer. For example,
Yu et al. [13] used regularized machine learning methods to select the top features and to
distinguish shorter-term survivors from longer-term ones. Coudray et al. [14] classified
lung tissue slides into LUSC, LUAD, or normal lung tissue using Inception v3.

In breast cancer diagnosis, micro-metastases and ITCs are extremely difficult for medi-
cal experts to examine on H–E samples, and are highly likely to be neglected because of
their tiny size, with respect to the massive dimensions of WSIs. As shown in Figure 1a,
ITCs are vastly difficult for a human to find on the routinely used H–E whole-slide im-
age. Therefore, in addition to the H–E staining, an additional expensive data-preparation
and examination process, based on IHC staining for cytokeratin, is required to identify
ITCs in lymph nodes, as shown in Figure 1b, where ITCs are notably visible as brown
spots. The goal of this research is to develop an automated method for the fast, efficient,
and accurate segmentation of breast cancer in routinely used H–E WSIs. In evaluation,
the proposed method is demonstrated to be able to identify even tiny metastatic foci of
challenging samples with ITCs or micro-metastases. To avoid human bias, IHC-stained
slides are used to produce a reliable and zero-bias reference standard in this study, and we
have collected 188 WSIs, including 94 pairs of H–E and IHC slides. The H–E slides are split
into training and testing sets for training and evaluation. We compare the performance
of the proposed method with eight popular or recently published deep learning methods,
including SegNet [15], U-Net [16], FCN [17], and three variants of Deeplabv3+ [18] with
three different backbones, which are MobileNet [19], ResNet [20], and Xception [21], as well
as with two recently published models, i.e., v3_DCNN [22] and Xception-65 [23], for the
segmentation of breast cancer in routinely used H–E WSIs.
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Figure 1. Challenges in finding tiny metastatic foci in gigapixel H–E WSIs. The segmentation of tiny
micro metastases (denoted by red circles in (a) an H–E slide and (b) the associated IHC slide) is as
challenging as finding a needle in a haystack. (a) Even in the high-magnification H–E image, ITCs
are difficult to locate in humans. (b) In the high-magnification IHC image, metastases are visible as
brown spots.

The main contributions of this paper can be summarized as follows:

• We present an efficient and robust deep learning model for the segmentation of breast
cancer in H–E-stained WSIs. The experimental results show that the proposed method
significantly outperforms the baseline approaches for the segmentation of breast
cancer in H–E-stained WSIs (p < 0.001);

• Our framework is demonstrated to be capable of detecting tiny metastasis foci, such as
micro-metastases and ITCs, which are extremely difficult to find by visual inspection
on H–E-stained WSIs. In comparison, the baseline approaches tend to fail in detecting
tiny metastasis foci;

• By leveraging the efficiency of a tile-based data structure and a modified fully con-
volutional neural network model, the proposed method is notably faster in gigapixel
WSI analysis than the baseline approaches, taking 2.4 min to complete the whole slide
analysis utilizing four NVIDIA Geforce GTX 1080Ti GPU cards and 9.6 min using a
single NVIDIA Geforce GTX 1080Ti GPU card.

This paper is organized as follows. Section 2 presents the related works; Section 3
describes the details of the materials and methods used; Section 4 presents the results,
including a comparison with the baseline approaches; Section 5 provides discussions and
presents the significance of the work; Section 6 draws the conclusion and presents the
future research directions.

2. Related Works

In recent years, due to sensational advancements in computer power and image-
scanning techniques, more researchers evaluate their algorithms on WSI datasets. Be-
jnordi et al. [24] proposed a multiscale superpixel method to detect the ductal carcinoma
in situ (DCIS) in WSIs. Huang et al. [25] proposed a convolutional network with multi-
magnification input images to automatically detect hepatocellular carcinoma (HCC). Ce-
lik et al. [26] used pre-trained deep learning models, ResNet-50, and DenseNET-161 for
the automated detection of invasive ductal carcinoma detection. Gecer et al. [27] proposed
deep convolutional networks (DCNN) for the detection and classification of breast cancer in
WSIs. Firstly, they used a saliency detector that performs multi-scale localization of relevant
ROI in a WSI. After that, a convolutional network classifies image patches into five diag-
nostic categories (atypical ductal hyperplasia, ductal carcinoma in situ, non-proliferative or
proliferative changes, and invasive carcinoma). In the end, slide-level categorization and
pixel-wise labeling are performed by fusing classification and saliency maps. Lin et al. [28]
proposed a framework for the fast and dense scanning of metastatic breast cancer detection
in WSI. However, Lin’s [28] method does not deal with ITCs, which are extremely difficult
for medical experts to examine on H–E samples in breast cancer diagnosis, and are highly
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likely to be neglected because of their tiny size, with respect to the massive dimensions of
the WSIs.

In 2016 and 2017, the Camelyon16 [29] and Camelyon17 challenges [3,29,30] were
held, aiming to evaluate new and existing algorithms for the automated detection and
classification of metastases in H–E-stained WSIs of lymph node sections. In Camelyon16,
400 WSIs and the associated annotations were provided, where 270 slides were for training
and 130 slides for testing; in Camelyon17, 1399 WSIs and the associated annotations
were provided, where 899 slides were for training and 500 slides for testing. Wang [31]
implemented an ensemble of two GoogLeNets for patch-based metastasis detection and
won Camelyon16. Firstly, they divided WSIs into patches with 256× 256 pixels and then
trained an ensemble of two GoogLeNet classification models to detect cancer regions.

For the fast and precise pixel-based segmentation of breast cancer, Guo et al. [22]
introduced a v3_DCNN framework in 2019, which combines an Inception-v3 classification
model for the selection of tumor regions and a DCNN segmentation model for refined
segmentation. Guo [22] used three different patch sizes to train models, including 321× 321,
768× 768, and 1280× 1280. They named the three DCNN models after the varied sizes of
training patches: DCNN-321, DCNN-768, and DCNN-1280, respectively. Priego et al. [23]
proposed a patch-based deep convolutional neural network (DCNN), together with an
encoder-decoder with a separable atrous convolution architecture for the segmentation of
breast cancer in H–E-stained WSIs.

3. Materials and Methods

In this section, we describe the datasets and the proposed deep learning-based framework
with a modified fully convolutional network, which is trained using transfer learning, boosting
learning, boosted data augmentation, and focus sampling techniques to boost its performance
for the segmentation of breast cancer on H–E-stained WSIs. This section is divided into five
subsections: in Section 3.1, the datasets are described; in Section 3.2, the transfer learning,
boosting learning, boosted data augmentation, and focus sampling techniques of the proposed
method are described; in Section 3.3, the proposed deep learning-based framework is described;
in Section 3.4, the modified fully convolutional network is described; in Section 3.5, the imple-
mentation details of the modified fully convolutional network and the baseline approaches
are described.

3.1. The Dataset

The dataset is directly obtained from the National Taiwan University Hospital with
an ethical approval (NTUH-REC 201810082RINB) by the research ethics committee B of
the National Taiwan University Hospital on 8 March 2019, containing 188 H–E- and IHC
CK(AE1/AE3)-stained lymph slides. Out of 188 WSIs, 94 slides are H–E-stained and the
other 94 are IHC CK(AE1/AE3)-stained WSIs. The dimensions of the slides are, on average,
113,501 × 228,816 pixels, with a physical size of 25.11 × 50.63 mm2. All breast cancer
tissue slides with lymphatic metastases were scanned using a 3DHISTECH Pannoramic
(3DHISTECH Kft., Budapest, Hungary) scanner at ×20 objective magnification. All the
annotations were made by two expert pathologists with the guidance of IHC biomarkers.
The whole dataset was split into 2 separate subsets for training and testing, including
68 slides for the training set (≈72%), from which 54 are malignant slides and 14 are benign
slides, and 26 slides for the testing set (≈28%), from which 12 are malignant slides and 14
are benign slides (Figure 2a), which ensures the models are never trained and tested on the
same sample. For training the AI models, around 0.02% of the malignant tissue samples
and 0.01% of the benign tissue samples were used in the training set. Detailed information
about the distribution of the WSIs is shown in Figure 2b,c. For a quantitative evaluation,
the IHC slides were used to produce a reliable reference standard.
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Figure 2. The overview of the data and the proposed deep learning framework presented in this study.
(a) Distribution of data between malignant and benign samples and for training and testing data,
respectively. (b) The number of tiles delivered per WSI. (c) The width and height distributions of the
WSIs are shown in blue and orange, respectively. (d) The proposed deep learning framework for the
segmentation of breast cancer. Firstly, Otsu’s method is used to threshold the slide image to efficiently
discard all background noise. Secondly, each WSI is formatted into a tile-based data structure. Thirdly,
the tiles are then analyzed by a deep convolutional neural network to produce the breast cancer
metastasis segmentation results. (e) Illustration of the proposed modified FCN architecture.

3.2. Transfer Learning, Boosting Learning, Boosted Data Augmentation, and Focusing Sampling
3.2.1. Transfer Learning

Transfer learning is a machine learning technique in which a model trained on one task
is repurposed to the second related task by adding some modifications [32]. For instance,
one can visualize using an image segmentation model trained on ImageNet, which contains
thousands of classes of different objects, to begin task-specific learning for cancer detection.
Transfer learning is usually useful for tasks in which enough training samples are not
available to train a model from scratch, such as medical image segmentation for rare or
emerging diseases [32]. For models based on deep neural networks, this is, particularly,
the situation that requires a large number of parameters for training. By utilizing transfer
learning, the model parameters start with already-good initial weights that only need
some small alterations to be better curated towards the second task. The transfer learning
approach has been frequently used in pathology, for example, in mitochondria segmenta-
tion [33], organelle segmentation [34], and breast cancer classification [35]. In this study,
we use the pre-trained weights of the lung cancer segmentation model trained using five
randomly selected WSIs from an H–E-stained lung dataset provided by the Automatic
Cancer Detection and Classification (ACDC) in the Whole-Slide Lung Histopathology
challenge, held with the IEEE International Symposium in Biomedical Image (ISBI) in
2019 [36], as initial weights to train the proposed model for the segmentation of tumors
in an H–E-stained breast dataset, as shown in Figure 3. We assumed that this pre-trained
network could be able to recognize tumor tissue morphology. As a result, this pre-trained
model serves as the backbone architecture for transfering information in order to find breast
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tumor tissues. However, to train a model with such a small dataset, the following boosting
learning strategy is designed.

Figure 3. The H–E-stained breast cancer segmentation model is trained through transfer learning
based on a lung tumor AI model which learned from five H–E WSIs of the IEEE ACDC challenge
dataset. The pre-trained weights of the H–E lung tumor AI model are used as initial weights to
train the proposed EBUS-TBNA lung tumor AI model for the segmentation of the H–E-stained
breast dataset.

3.2.2. Boosting Learning

Given a training set T : {(ad, bd)}, where ad represents the instance data and bd ∈ B :
{0, 1} represents the label, a learner η, and the base deep learning model C, the proposed
boosting learning produces the final AI model θ∗(a) by the following steps. Firstly, create a
new set T1 : {(ue, l1

e )} with instance weight le, where ue : {ar}r=1,...,U×U represents a tile;
U = 512. Each instance weight l1

e is initialized with an IoU-based attention weighting
function ϑ for further training.

l1
e =

{
1 , ϑ ≥ γ
0 , otherwise

(1)

where ϑ =
∑ad∈bd

fi

card(ue)
; γ = 0.05.

Then, iteratively for h = 1, . . . , H, build a base model θh = η(Th). The sample weights
{lh+1

e } are continuously modified and formulated by increasing the attention weights of
false positives and false negatives of θh.

lh+1
e =

{
lh
e + χ ,

∑ar∈ue 1|θh(ar) 6= fr
U×U ≥ γ

lh
e , otherwise

(2)

3.2.3. Boosted Data Augmentation

Next, we devised a boosted data augmentation based on the sample attention weights
{lh+1

e } and produced new data Th+1. Data augmentation was applied to enlarge the training
set with additional synthetically modified data by manipulating the rotation per 5°, and 5
times with an increment of 90°, mirror-flipping it along the horizontal and vertical axes, and
adjusting the contrast (random contrast, range 0% ± 20%), the saturation (random saturation,
range 0% ± 20%), and the brightness (random brightness, range 0% ± 12.5%).

3.2.4. Focusing Sampling

When the training data is partially labeled, causing many unlabeled tissues of interest
to be wrongly defined as background or content of no interest, this severely confuses AI
learners during supervised learning and deteriorates the performance of the output AI
models. To deal with this issue, we have added an IoU-based focusing sampling mechanism



Diagnostics 2022, 12, 990 7 of 16

for computing the gradients effectively. A number of unlabeled cells will now not be used
as negative samples for training to confuse learning, but are arranged as ignored samples.
This will not only help the learning be more focused, but also speed up the learning time.
Moreover, we increase the learning efforts for false positive and false negative predictions,
and further, add variations of the FPs and FNs to assist the AI to learn better, deal with its
weakness, and produce improved AI models.

3.3. Whole-Slide Image Processing

Figure 2d shows the deep learning-based approach for the segmentation of metastatic
breast cancer from WSIs. Firstly, Otsu’s approach will be utilized to filter the WSI to exclude
all background noise, thereby substantially lowering the amount of processing per slide. Then,
each WSI is formulated as a tile-based data structure U =

{
ui,j
}

to deal with gigapixel data
efficiently, where u represents a tile unit; i and j represent the row and column number of a
tile, respectively.

Next, a deep learning model C is built using a modified fully convolutional neural
network for fast WSI analysis, which is described in detail in the next section. The tiles are
processed by the proposed deep convolutional neural network C to obtain the probabilities
for cancer cells, as shown in Equation (3). Then, the pixel-based segmentation result of
tumor cells O = {oi,j(x, y)} is produced based on the tumor cells’ probabilities pi,j(x, y).

pi,j(x, y) = C(ui,j(x, y)) (3)

oi,j(x, y) =
{

ui,j(x, y) , C(ui,j(x, y)) = α

φ , otherwise
(4)

The tile size and alpha are input parameters and are empirically set as 512 × 512 and
0.5, respectively.

3.4. The Proposed Modified Fully Convolutional Network

Fully convolutional networks (FCNs) are widely used in the field of pathology, includ-
ing for counting cells in different kinds of neuropathology [37] and microscopy images [38],
and for the segmentation of nuclei in histopathology images [39]. Our FCN architecture
is modified based on the original FCN framework of Shelhamer [17], with two improve-
ments. Firstly, we address the problem of insufficient GPU memory during training by
using the shallow network of five layers rather than seven layers in the conventional
FCN network [17]. Secondly, segmentation is required to produce a prediction for every
pixel and to perform upsampling to restore the original size. Therefore, we utilize single-
stream 32s upsampling to avoid excessively fragmented segmentation results, as shown
in Figure 4, and to reduce the computational time for training and inference. In this work,
we devise a modified FCN by utilizing the single-stream 32s upsampling as the base deep
learning model to decrease GPU memory consumption, improve segmentation results, and
decrease the computational time for training and inference. The modified FCN architecture
has a padding layer, five convolutional blocks, a rectified linear unit (ReLU) activation
function after every convolutional layer, five max-pooling layers, a deconvolutional layer,
a softmax layer, and two dropout layers. The modified FCN begins with a padding layer
that is used to increase the input size from 512 × 512 × 3 to 712 × 712 × 3. Following the
padding layer, there are five convolutional blocks that are applied in a sequential manner.
The first two convolutional blocks consist of two convolutional layers with a filter size of
3 × 3 and a stride size of 1, and the remaining three convolutional blocks consist of three
convolutional layers with a filter size of 3 × 3 and a stride size of 1. Each convolution
layer in the convolutional block is followed by the ReLU layer. Each convolutional block
is followed by a maxpooling layer with a filter size of 2 × 2 and stride size of 2. After
the convolutional blocks and maxpooling layer, a deconvolutional layer with a filter size of
64 × 64 and stride size of 32 is applied to obtain the upsampled feature maps. Cropping is
performed after the deconvolution layer to restore the feature maps to the same size as an
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input image. After cropping, softmax is used to obtain the class probabilities. At the end,
an argmax function is applied on the class probabilities to produce the pixel-based class
map. The detailed architecture of the modified FCN is shown in Figure 2e.

Figure 4. Three upsampling layers are compared. The findings of (a) FCN-8s and (b) FCN-16s are
excessively fragmented when evaluated against the results of the (c) FCN-32s, which are the closest
to the reference standard.

3.5. Implementation Details

To train the proposed technique, the model is initialized using the VGG16 model and
optimized with stochastic gradient descent (SGD) optimization, and the cross-entropy function is
used as a loss function. Furthermore, the proposed method is trained with the following settings:
a learning rate of 1× 10−10, dropout ratio of 0.5, and weight decay of 0.0005, respectively.
The baseline approaches, including U-Net [16], SegNet [15], and FCN [17], are implemented
using the Keras implementation of image segmentation models by Gupta et al. [40], initialized
using a pre-trained VGG16 model, and optimized with Adadelta optimization, with the cross
entropy function as a loss function. In addition, U-Net, SegNet, and FCN are trained with the
following settings: a learning rate of 0.0001, dropout ratio of 0.2, and weight decay of 0.0002,
respectively. For the baseline approaches, including DeepLabv3+ [18] with three different
backbones, which are MobileNet [19], ResNet [20], and Xception [21], the networks are optimized
using SGD optimization, with the cross-entropy function as a loss function. Furthermore,
DeepLabv3+ with three backbones is trained with the following settings: a learning rate of 0.007,
dropout ratio of 0.2, and weight decay of 0.00005, respectively.

4. Results

In this section, the evaluation metrics and the quantitative evaluation results with statistical
analysis are described. This section is divided into three subsections: in Section 4.1, we describe
the evaluation metrics; in Section 4.2, we present the quantitative evaluation results of the
proposed method and compare the performance with the baseline approaches; in Section 4.3,
we present the hardware specifications and run-time analysis of the proposed method, and
compare the performance with the baseline approaches.

4.1. Evaluation Metrics

Four criteria are adopted to produce the quantitative evaluation of the segmentation
performance, i.e., mean intersection over union (mIoU), F1-score, precision, and recall.
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mIoU refers to the mean of IoUs computed on normal and tumor slides. The IoU can
be formulated according to Equation (5):

IoU =
TP

TP + FN + FP
, (5)

where TP represents the true positive, TN is the true negative, FP denotes false positive,
and FN is the false negative.

mIoU is the mean value of IoU over all the classes in the dataset.

mIoU =
1

q + 1

q

∑
b=0

IoUb, (6)

where q + 1 is the total number of classes and IoUb is the intersection over union of class b.
Precision, recall, and F1-score are computed as follows:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1-score =
2TP

2TP + FP + FN
(9)

4.2. Quantitative Evaluation with Statistical Analysis

For quantitative assessment, we compared the effectiveness and efficacy of the sug-
gested approach to eight deep learning models, including two recently published models,
i.e., v3_DCNN [22] and Xception-65 [23], and U-Net [16], SegNet [15], FCN [17], and three
variants of Deeplabv3+ [18] with three different backbones, including MobileNet [19],
ResNet [20], and Xception [21], for breast cancer segmentation in routinely used histopatho-
logical H–E WSIs, as presented in Table 1. As can be observed, the proposed approach
surpasses the baseline techniques in the segmentation of breast cancer in histopathological
images with 83.8% recall, 89.6% precision, 84.4% F1-score, and 74.9% mIoU, respectively.
In addition, the box plots of the quantitative assessment results for breast cancer segmen-
tation are shown in Figure 5, demonstrating that the suggested technique consistently
outperforms the baseline approaches. To further demonstrate the efficacy and efficiency of
the proposed method, using SPSS software, we examined the quantitative scores that were
evaluated with Fisher’s least significant difference (LSD) procedure (Table 2). Based on the
LSD test, the suggested approach substantially exceeds the baseline approaches in terms of
precision, recall, F1-score, and mIoU (p < 0.001). Figure 6 presents the visual comparison
of the segmentation results of the proposed method and the baseline approaches for the
segmentation of breast cancer in H–E slides. Here, we can observe a consistency between
the typical segmentation results generated by the proposed method and the reference
standard produced by expert pathologists, while the baseline approaches are unable to pro-
duce thhe full segmentation results of metastatic lesions. Figure 7 compares the suggested
approach and the baseline approaches for the segmentation of tiny metastatic foci such as
micro-metastases and ITCs in challenging cases with isolated tumor cells, demonstrating
that the suggested approach is capable of effectively segmenting the tiny metastasis foci,
while the reference approaches tend to fail in detecting the tiny metastasis foci.
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Table 1. The quantitative evaluation of the proposed method and the baseline approaches in the
segmentation of metastases on H–E WSIs.

Method
Score 95% C.I. for Mean

Mean Std. Deviation Std. Error Lower Bound Upper Bound

Precision
Proposed method 0.892 0.163 0.047 0.787 0.995
U-Net [16] 0.486 0.116 0.033 0 .411 0.559
SegNet [15] 0.548 0.091 0.026 0.489 0.605
FCN [17] 0.552 0.062 0.018 0.512 0.590
Deeplabv3+ [18] with MobileNet [19] 0.643 0.262 0.075 0.476 0.809
Deeplabv3+ [18] with ResNet [20] 0.613 0.354 0.102 0.388 0.838
Deeplabv3+ [18] with Xception [21] 0.753 0.286 0.082 0.571 0.935

Recall
Proposed method 0.837 0.169 0.049 0.729 0.945
U-Net [16] 0.643 0.022 0.006 0.628 0.656
SegNet [15] 0.588 0.028 0.008 0.570 0.606
FCN [17] 0.500 0.082 0.023 0.448 0.551
Deeplabv3+ [18] with MobileNet [19] 0.682 0.277 0.080 0.506 0.858
Deeplabv3+ [18] with ResNet [20] 0.440 0.261 0.075 0.274 0.606
Deeplabv3+ [18] with Xception [21] 0.584 0.290 0.083 0.399 0.768

F1-score
Proposed method 0.844 0.127 0.036 0.763 0.925
U-Net [16] 0.564 0.095 0.027 0.503 0.624
SegNet [15] 0.562 0.124 0.036 0.383 0.581
FCN [17] 0.510 0.078 0.022 0.400 0.531
Deeplabv3+ [18] with MobileNet [19] 0.640 0.241 0.069 0.487 0.794
Deeplabv3+ [18] with ResNet [20] 0.480 0.262 0.075 0.313 0.646
Deeplabv3+ [18] with Xception [21] 0.621 0.259 0.047 0.456 0.786

mIoU
Proposed method 0.749 0.188 0.054 0.629 0.868
U-Net [16] 0.473 0.114 0.331 0.400 0.546
SegNet [15] 0.380 0.129 0.037 0.298 0.462
FCN [17] 0.363 0.086 0.025 0.308 0.418
Deeplabv3+ [18] with MobileNet [19] 0.504 0.229 0.066 0.358 0.650
Deeplabv3+ [18] with ResNet [20] 0.344 0.213 0.031 0.208 0.480
Deeplabv3+ [18] with Xception [21] 0.487 0.251 0.072 0.327 0.647
v3_DCNN-1280 * [22] 0.685 - - - -
Xception-65 * [23] 0.645 - - - -

* The reported numbers of Guo [22] and Priego [23] are referred in this table.

Table 2. Multiple comparisons for segmentation of metastases on H–E WSIs: LSD test.

LSD Multiple Comparisons

Dependent Variable (I) Method (J) Method Mean Difference (I–J) Std. Error Sig.
95% C.I.

Lower
Bound

Upper
Bound

Precision Proposed method
U-Net [16] 0.405 * 0.088 <0.001 0.311 0.499
SegNet [15] 0.344 * 0.088 <0.001 0.250 0.438
FCN [17] 0.339 * 0.088 <0.001 0.245 0.434
Deeplabv3+ [18] with MobileNet [19] 0.248 * 0.088 <0.001 0.163 0.516
Deeplabv3+ [18] with ResNet [20] 0.248 * 0.088 <0.001 0.072 0.424
Deeplabv3+ [18] with Xception [21] 0.278 * 0.088 <0.001 0.102 0.454

Recall Proposed method
U-Net [16] 0.195 * 0.079 <0.001 0.116 0.273
SegNet [15] 0.249 * 0.079 <0.001 0.170 0.328
FCN [17] 0.337 * 0.079 <0.001 0.258 0.416
Deeplabv3+ [18] with MobileNet [19] 0.155 * 0.079 <0.001 0.350 0.313
Deeplabv3+ [18] with ResNet [20] 0.397 * 0.079 <0.001 0.239 0.556
Deeplabv3+ [18] with Xception [21] 0.253 * 0.079 <0.001 0.0.94 0.411

F1-score Proposed method
U-Net [16] 0.280 * 0.075 <0.001 0.190 0.369
SegNet [15] 0.382 * 0.075 <0.001 0.292 0.471
FCN [17] 0.339 * 0.075 <0.001 0.304 0.482
Deeplabv3+ [18] with MobileNet [19] 0.203 * 0.075 <0.001 0.524 0.354
Deeplabv3+ [18] with ResNet [20] 0.364 * 0.075 <0.001 0.213 0.515
Deeplabv3+ [18] with Xception [21] 0.222 * 0.075 <0.001 0.234 0.235

mIoU Proposed method
U-Net [16] 0.275 * 0.055 <0.001 0.165 0.386
SegNet [15] 0.369 * 0.055 <0.001 0.258 0.480
FCN [17] 0.385 * 0.055 <0.001 0.275 0.496
Deeplabv3+ [18] with MobileNet [19] 0.245 * 0.074 <0.001 0.096 0.393
Deeplabv3+ [18] with ResNet [20] 0.405 * 0.074 <0.001 0.256 0.553
Deeplabv3+ [18] with Xception [21] 0.261 * 0.074 <0.001 0.113 0.410

* The proposed method is significantly better than the baseline approaches using the LSD test (p < 0.001).
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Figure 5. The box plot of the quantitative evaluation results in metastasis segmentation, where the
outliers > 1.5× the interquartile range are marked with a dot. The results of the LSD tests (p < 0.001)
show that the proposed method significantly outperforms the baseline approaches.

Figure 6. Qualitative evaluation of the metastasis segmentation results by the proposed method and
the baseline approaches for breast cancer segmentation in histopathological images.
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Figure 7. Comparison of the proposed method and the baseline approaches for the segmentation of
tiny metastatic foci in challenging cases with isolated tumor cells. The results show that the proposed
method is capable of effectively segmenting the tiny metastasis foci, while the baseline approaches
tend to fail in segmenting the tiny metastasis foci.

4.3. Run Time Analysis

The computation time of WSI is critical for actual clinical utilization due to the massive size
of WSIs. Therefore, we analyzed the overall AI inference time for processing a WSI (Table 3).
Table 3 compares the hardware and computing efficiency of the suggested approach with eight
deep learning approaches, including, U-Net, SegNet, FCN, and three variants of Deeplabv3+
with three different backbones, which are MobileNet, ResNet, and Xception, as well as two
recently published models (v3_DCNN, Xception-65), showing that the proposed method is
notably faster than the baseline approaches. For the run-time analysis of v3_DCNN and
Xception-65, we referred to the reported numbers of Guo [22] and Priego [23]. As shown in
Table 3, the proposed method takes 2.4 min for a WSI analysis, utilizing four NVIDIA Geforce
GTX 1080Ti GPU cards, and 9.6 min using a single NVIDIA Geforce GTX 1080Ti GPU card,
while the U-Net model takes 44 min, the SegNet model takes 43 min, the FCN model takes
48 min, the Deeplabv3+ with MobileNet model takes 17.2 min, the Deeplabv3+ with ResNet
model takes 18.2 min, and the Deeplabv3+ with Xception model takes 17.8 min; the patch-based
Xception-65 model requires 398.2 min, estimated by multiplying the time cost of 0.23 s for a
single 500× 500 patch by the total number of patches of a WSI, and the best model of v3_DCNN
takes 13.8 min, approximated by multiplying the time cost of 5.31× 10−10 s for a single pixel
by the total number of pixels. Having the same slide dimensions and hardware equipments,
the proposed method is 4-times faster than U-Net and SegNet, 5-times faster than FCN, 2-times
faster than three different varaints of DeepLabv3+, 1.4-times faster than v3_DCNN, and 41-times
faster than Xception-65, even with a less-expensive GPU. Altogether, the suggested technique
is proved to be able to reliably detect breast cancer in H–E data and swiftly process WSIs in
2.4 min for actual clinical usage.
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Table 3. Comparison of hardware and computing efficiency.

Method CPU RAM GPU Inference Time per WSI τ (min.)

Proposed Method (with 4 GPUs) Intel Xeon Gold 6134 CPU @ 3.20 GHz × 16 128 GB 4 × GeForce GTX 1080 Ti 2.4

Proposed Method (with 1 GPU) Intel Xeon CPU E5-2650 v2 @ 2.60 GHz × 16 32 GB 1 × GeForce GTX 1080 Ti 9.6

U-Net [16] Intel Xeon CPU E5-2650 v2 @ 2.60 GHz × 16 32 GB 1 × GeForce GTX 1080 Ti 44

SegNet [15] Intel Xeon CPU E5-2650 v2 @ 2.60 GHz × 16 32 GB 1 × GeForce GTX 1080 Ti 43

FCN [17] Intel Xeon CPU E5-2650 v2 @ 2.60 GHz × 16 32 GB 1 × GeForce GTX 1080 Ti 48

Deeplabv3+ [18] with MobileNet [19] Intel Xeon CPU E5-2650 v2 @ 2.60 GHz × 16 32 GB 1 × GeForce GTX 1080 Ti 17.2

Deeplabv3+ [18] with ResNet [20] Intel Xeon CPU E5-2650 v2 @ 2.60 GHz × 16 32 GB 1 × GeForce GTX 1080 Ti 18.2

Deeplabv3+ [18] with Xception [21] Intel Xeon CPU E5-2650 v2 @ 2.60 GHz × 16 32 GB 1 × GeForce GTX 1080 Ti 17.8

v3_DCNN-1280 [22] - - 1 × GeForce GTX 1080 Ti 13.8 ι

Xception-65 [23] Intel Xeon CPU E5-2698 v4 @ 2.2 GHz 256 GB 4 × Tesla V100 Tensor Core 398.2 *

τ The size of the WSI in this evaluation is 25,970,844,816 pixels (113,501 × 228,816 pixels). ι v3_DCNN [22] takes
11.5 min for a WSI with 97, 792× 221, 184 pixels; 13.8 min = (11.5× (113,501× 228,816))/(97,792× 221,184). * The

patch-based method [23] takes 0.23 s for a 500× 500 patch; 398.2 min = (0.23 s ×b113, 501
500

c × b228, 816
500

c)/60 s.

5. Discussion and Significance of the Work
5.1. Discussion

The histopathological H–E analysis of tissue biopsies plays a key role in the diagnosis
of cancer and in devising the treatment procedure [28]. Manual pathological diagnosis
is an extremely challenging, laborious, and time-consuming task. With the increasing
cancer morbidity, the population of pathologists cannot fulfill the increasing demand of
diagnosis. Pathologists must undertake a comprehensive evaluation of all information
on a significant number of biopsy slides every day in histopathological diagnosis. More
significantly, there is a considerable risk of misdiagnosis in difficult instances such as
ITCs and micro-metastases. There are strong grounds to assume that digital pathology,
in conjunction with artificial intelligence for CAD diagnosis, is a solution to this problem
since it helps create more accurate diagnoses, shortens examination times, and reduces
both pathologists’ efforts and examination costs.

Prior to Camelyon 16, there have been few studies applying deep learning to gigapixel
WSIs. The majority of the solutions used image analysis on pre-selected areas of 500 × 500
pixels that were hand-picked by experienced pathologists. The computational cost is the
key hurdle in employing computational approaches to diagnose gigapixel WSIs, which
is why many existing algorithms are not well-suited to clinical applications. A complete
and thorough automated inspection of WSIs with high accuracy may require additional
time and computer resources. In this paper, we describe a quick and efficient approach for
segmenting small metastases in WSIs that not only achieves state-of-the-art performance but
also overcomes the primary computational cost constraint of WSI analyses. The suggested
approach can finish the whole slide analysis of a big WSI with 113,501 × 228,816 pixels in
2.4 min using four NVIDIA Geforce GTX 1080Ti GPU cards, and in 9.6 min using a single
NVIDIA Geforce GTX 1080Ti GPU card. More crucially, the suggested technique has been
shown to be capable of recognizing ITCs (the smallest kind of metastasis), which have a
high chance of misinterpretation by professional pathologists due to their small size (see
Figure 7). The results of the experiments reveal that the suggested technique achieves 83.8%
recall, 89.6% precision, 84.4% F1-score, and 74.9% mIoU. Furthermore, based on the LSD
test, the proposed technique outperformed state-of-the-art segmentation models such as
U-Net, SegNet, FCN, and three distinct variations of Deeplabv3+, as well as two newly
released models, namely, v3 DCNN and Xception-65 (p < 0.001).

5.2. Significance of the Work

The quantitative and qualitative results show that the proposed method could be a
highly valuable tool for aiding pathologists in the segmentation of WSIs of breast tissues.
This information could be critical for delivering suitable and personalized targeted therapy
to breast cancer patients, broadening the scope and effectiveness of precision medicine,
which aspires to build a multiplex strategy with patient-specific therapy. More importantly,
the proposed method is shown to be capable of detecting ITCs (the smallest kind of
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metastasis), which could be recognized as a viable marker to determine the prognosis for
T1NoMo breast cancer patients. Furthermore, the run-time analysis results show that the
proposed method also overcomes the major speed bottleneck in employing computational
approaches to diagnose gigapixel WSIs.

6. Conclusions and Future Directions

In this paper, we present a deep learning-based system for automated breast cancer
segmentation in commonly used histopathological H–E WSIs. We evaluated our proposed
framework using 188 WSIs, containing 94 H–E- and 94 IHC CK(AE1/AE3)-stained WSIs,
which are used to create a reliable and objective reference standard. The quantitative results
demonstrate that the proposed method achieves 89.6% precision, 83.8% recall, 84.4% F1-
score, and 74.9% mIoU, and significantly outperforms eight baseline approaches, including
U-Net, SegNet, FCN, three variants of Deeplabv3+ with three different backbones, as well
as two recently published methods (v3_DCNN, and Xception-65) for the segmentation
of breast cancer in histopathological images (p < 0.001). Furthermore, the results show
that our proposed work is capable of identifying tiny metastatic foci that have a high
probability of misdiagnosis by visual inspection, while the baseline approaches tend to fail
in detecting the tiny metastatic foci for cases with micro metastases or ITCs. The run-time
analysis results show that the proposed deep learning framework can effectively segment
the lymph node metastases in a short processing time using a low-cost GPU. With high
segmentation accuracy and less computational time, our proposed architecture will help
pathologists to effectively diagnose and grade tumors by increasing the diagnosis accuracy,
reducing the workload of pathologists, and speeding up the diagnosis process. In the
future, we anticipate that the system will be used in clinical practice to assist pathologists
with portions of their assessments that are well-suited to automatic analysis, and that the
segmentation will be extended to other forms of cancer. Another aspect that could be
investigated in future works is the use of weakly supervised deep learning technologies for
WSI analysis, which can be optimized with a limited amount of labeled training data.
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