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Abstract: Relevant uncertainties of theoretical atomic data are vital to determining the accuracy of
plasma diagnostics in a number of areas, including, in particular, the astrophysical study. We present
a new calculation of the uncertainties on the present theoretical ion-impact charge exchange atomic
data and X-ray spectra, based on a set of comparisons with the existing laboratory data obtained
in historical merged-beam, cold-target recoil-ion momentum spectroscopy, and electron beam ion
traps experiments. The average systematic uncertainties are found to be 35–88% on the total cross
sections, and 57–75% on the characteristic line ratios. The model deviation increases as the collision
energy decreases. The errors on total cross sections further induce a significant uncertainty to the
calculation of ionization balance for low-temperature collisional plasmas. Substantial improvements
of the atomic database and dedicated laboratory measurements are needed to obtain the current
models, ready for the X-ray spectra from the next X-ray spectroscopic mission.

Keywords: charge exchange; X-ray astrophysics; atomic data; plasma diagnostics

1. Introduction

Charge exchange plasma can be found in a broad range of astrophysical environments,
including, in particular, the interfaces where the solar wind ions interact with neutrals in
comets and planetary atmospheres [1–4], but potentially also in supernova remnants [5,6],
star-forming galaxies [7,8], active galactic nuclei [9], and clusters of galaxies [10,11]. The
modeling of the X-ray spectrum of charge exchange has become possible recently thanks to
the efforts of Smith et al. [12] and Gu et al. [13]. These models are crucial to interpreting the
observations, as well as to understanding the physical sources that power the plasma.

There is an increasing demand from the astronomical community that the plasma
model should provide an estimate of the systematic uncertainties for the atomic data used.
This is triggered by the accumulating evidence that the uncertainties from the atomic
data, which are not accounted for at present, are as significant as the typical errors from
instrumental calibration (see [14] for a recent example). So far, there is no systematic
estimate of the uncertainties of the existing charge exchange models, making it difficult to
assess the accuracy of the scientific results obtained with these models.

Most of the charge exchange reaction rates in existing models are obtained in theoreti-
cal calculations, with only a few laboratory benchmarks performed by several groups with
various experimental methods (see, e.g., cross-beam/merged-beam neutral setups: [15–17];
tokamak and laser-produced plasmas: [18–20]; cold-target recoil-ion momentum spec-
troscopy (COLTRIM): [21–25]; electron beam ion trap (EBIT): [26–32]). A recent comparison
using the data from the EBIT measurements [33] showed that the model and the labora-
tory spectra differ significantly in both line energies and strengths, for the L-shell charge
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exchange between nickel ions and neutral particles. Another recent example is that the
COLTRIMS measurement by Xu et al. [34] showed that the model calculations might dif-
fer from the measurements by 20–50% for the state-selective cross sections of Ne8+ and
Ne9+ charge exchange. In this work, we compile a sample of existing laboratory mea-
surements on charge exchange total cross sections, and state-selective cross sections, as
well as characteristic X-ray line ratios, and put forward a systematic assessment of the
model accuracy.

This paper is arranged as follows. In Section 2, we describe the sample and the results
of the benchmark, and in Section 3, we discuss the potential improvement with future EBIT
and COLTRIMS measurements. The benchmark is directly applied to the charge exchange
model and atomic data [13] in the SPEX [35] software. Throughout the paper, the errors are
given at a 68% confidence level.

2. Methods and Results
2.1. Total Cross Sections

First, we compare the SPEX calculations with existing laboratory results for a number
of ions on their total cross sections for atomic hydrogen targets. The SPEX atomic data
do not constitute one uniform set of theoretical calculations, but a mixture of three dif-
ferent types of approaches: (1) the rates derived with the empirical scaling reported in
Gu et al. [13] (G16 hereafter), which was based on a numerical approximation to a collection
of historical theoretical and experimental rates; (2) the multi-channel Landau-Zener method
(hereafter MCLZ) reported in Mullen et al. [36]. The atomic data generated by MCLZ are
also publicly available in the Kronos database (https://www.physast.uga.edu/research/
stancil-group/atomic-molecular-databases/kronos, accessed on 1 December 2021); and
(3) the recommended values (hereafter RCMD), based on dedicated calculations, includ-
ing, in most cases, the quantum-mechanical and classical molecular-orbital close-coupling
methods, and the atomic-orbital close-coupling method. The G16 approach can calculate,
for any ions with a given atomic number and charge, the MCLZ data covering most of the
H- and He- like ions with atomic number up to 30, and the RCMD rates are available for a
small set of key ions, e.g., O VII [37], N VII [38], and C VI [39].

All the three datasets are tested when the corresponding theoretical cross sections
(σtheo) and experimental cross sections (σexp, see Table 1) are available. Examples are shown
in Figure 1 for the C VI and O VII data. For C VI, the three calculations converge at the
energy range from ∼100 eV/amu to 4 × 104 eV/amu, while the MCLZ data do not cover
higher energies, and the G16 and RCMD data miss the low energy part. For O VII, the
difference between the three calculations becomes more significant than in the case of C VI.
The cross section derivatives shown in Figure 1 indicate that the differences in the shapes
of the three theoretical calculations become, in general, larger at lower collision energies.

In Figure 2, we plot the distributions of the absolute errors σexp − σtheo of the the-
oretical models. The standard deviations of the absolute errors are 1.4 ×10−15 cm−2,
2.0 ×10−15 cm−2, and 1.3 ×10−15 cm−2, for the G16, MCLZ, and RCMD calculations, re-
spectively. As shown in Figure 2b, the absolute errors of G16 become more scattered, and
on average larger, at lower collision velocities. The standard deviations of the error distribu-
tions are 1.8 ×10−15 cm−2 for v < 600 km s−1, and 0.9 ×10−15 cm−2 for v ≥ 600 km s−1.

We also summarize the relative deviations (σexp − σtheo) / σtheo of the three calculations
in Figure 2. The average absolute values of the fractional deviations are 55%, 88%, and
35% for the G16, MCLZ, and RCMD datasets. Similar to G16, the MCLZ calculation also
has larger relative errors for low-velocity collisions, while the RCMD calculation shows
fairly constant deviations for the velocity range considered. For high-energy collisions of
v > 3000 km s−1, the three methods show reasonable agreement with the laboratory results
within uncertainties <50%.

https://www.physast.uga.edu/research/stancil-group/atomic-molecular-databases/kronos
https://www.physast.uga.edu/research/stancil-group/atomic-molecular-databases/kronos
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Figure 1. Total cross sections as a function of collision velocity and the cross section derivatives with
respect to the velocity for C6+ (a,b) and O7+ (c,d) ions interacting with hydrogen atoms, resulting in C
VI and O VIII ions. The data points are experimental results from Goffe et al. [40], Phaneuf et al. [41],
Panov et al. [42], and Meyer et al. [43]. Approximate errors of 15% [43] are shown, except for the low
energy (<500 km s−1) data of C VI, for which the actual errors were reported in the original paper.
The solid lines are the model values from the calculations with the G16 (black), MCLZ (red), and
RCMD (blue) methods. The abbreviations are explained in the text.
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Figure 2. Distributions of the absolute (upper) and relative (lower) deviations of the theoretical
cross sections from the experimental results obtained with the measurements summarized in Table 1.
(a) Diagrams of the absolute errors for the G16 (black), MCLZ (red), and RCMD (blue) theories.
(b) Diagrams of the absolute errors for G16 for low-collision velocities (black) and high velocities
(red). (c) The relative deviations for the G16 (black points), MCLZ (red crosses), and RCMD (blue
triangles) calculations. (d) The average deviations in absolute values for the three methods in each
velocity interval.
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Table 1. Experimental cross section data.

Reference Type a Ion Theory Data

Shah et al. [44] total Liq+ (q = 1–3) G16
Seim et al. [45] total Liq+ (q = 2–3), Nq+ (q = 2–5), Neq+ (q = 3–5) G16
Goffe et al. [40] total Bq+ (q = 1–5), Cq+ (q = 1–4) G16
Goffe et al. [40] total Cq+ (q = 5, 6), N7+ G16, MCLZ, RCMD
McCullough et al. [46] total B2+, C+, N+, Mg2+ G16
Crandall et al. [47] total Bq+ (q = 2–5), Cq+ (q = 3, 4), Nq+ (q = 3, 4), Oq+ (q = 5, 6) G16
Gardner et al. [48] total Bq+ (q = 2–4), Cq+ (q = 2–4), Nq+ (q = 2–5), Oq+ (q = 2–5) G16
Phaneuf et al. [49] total Cq+ (q = 1–4), Nq+ (q = 1–5), Oq+ (q = 1–5), Siq+ (q = 2–7) G16
Nutt et al. [50] total C2+ G16
Phaneuf et al. [41] total Cq+ (q = 3, 4), Oq+ (q = 2–6) G16
Phaneuf et al. [41] total Cq+ (q = 5, 6) G16, MCLZ, RCMD
Sant’Anna et al. [51] total C3+ G16
Ciric et al. [52] total,nl Cq+ (q = 3, 4), N5+, O6+ G16
McCullough et al. [53] total,nl C3+ G16
Panov et al. [42] total C4+, N5+, O6+, Ne8+ G16
Panov et al. [42] total Cq+ (q = 5, 6), Nq+ (q = 6, 7), Oq+ (q = 7, 8), Neq+ (q = 9, 10) G16, MCLZ, RCMD
Dijkkamp et al. [54] total,nl Cq+ (q = 3, 4), N5+, O6+ G16
Fritsch & Lin [55] total,nl C4+ G16
Hoekstra et al. [56] total,nl C4+ G16
Stebbings et al. [57] total N+, O+ G16
Fite et al. [58] total O+ G16
Meyer et al. [43] total Bq+ (q = 2–5), Cq+ (q = 3, 4), Nq+ (q = 3, 4) G16
Meyer et al. [43] total Oq+ (q = 3–6), Siq+ (q = 4–9), Feq+ (q = 4–15) G16
Meyer et al. [43] total Oq+ (q = 7, 8) G16, MCLZ, RCMD
Havener et al. [59] total O5+ G16
Huber [60] total Neq+ (q = 2–4), Arq+ (q = 2–4, 6) G16
Kim et al. [61] total Siq+ (q = 2–7) G16
Beijers et al. [62] nl O3+ G16
Rejoub et al. [63] total Ne3+ G16
Havener et al. [64] total Ne4+ G16
Bruhns et al. [65] total Si3+ G16
Havener et al. [66] total C3+ G16
Mroczkowski et al. [67] total Ne2+ G16
Pieksma & Havener [68] total B4+ G16
Folkerts et al. [69] total N4+ G16

a: total = total cross section, nl = nl-resolved cross section.

The laboratory results should have their own uncertainties; however, these values
are available for only a part of the measurements. Here, we provide a rough estimate of
the combined measurement uncertainty. The mean systematic uncertainties on the cross
sections measured in, e.g., Meyer et al. [43], Draganić et al. [70], Cabrera-Trujillo et al. [71],
are approximately 15% for the energy range considered. Assuming that this value can
be applied to the other laboratory results, the measurement uncertainties are about 1%
for the sample used in testing the G16 calculation, and ∼4% for the MCLZ and RCMD
results. These relatively minor uncertainties can be accepted as the errors of the theoretical
deviations obtained above (e.g., 55%, 88%, and 35% for the G16, MCLZ, and RCMD
approaches).

The total charge exchange cross section is needed not only for calculating the charge
exchange emission, but also to derive the ionization concentration for general cosmic
plasmas in collisional ionization or photoionization equilibrium. The uncertainties in
the theoretical calculation would introduce systematic uncertainties to the charge state
distribution for the low-temperature plasmas where ions and neutral atoms coexist. As
shown in Figure 3, we present two test cases on the concentration calculations of N and O
ions in collisional ionization equilibrium (CIE). Here, we assume uncertainties of 50% on
the charge exchange recombination rates. The induced errors on the charge distributions
of N I and O I would become 10% and 60% at an equilibrium temperature of 1.2 eV. The
difference between N I and O I errors reflects the different relative contribution of charge
exchange to the total recombination in the concentration calculation. This result suggests
that the charge exchange atomic data are vital to the modeling accuracy of lowly ionized
species for collisional plasmas. It is expected that similar uncertainties would also apply to
photoionization modeling, which includes the charge exchange component in the same way.
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Figure 3. Charge state distributions of N (left) and O (right) as a function of equilibrium temperature
for the CIE plasma, calculated with SPEX version 3.06.01. The dashed lines show the calculations
when the charge exchange recombination rates are changed by 50%, while the other ionization and
recombination data are kept intact.

2.2. Cross Sections for the Peak nl Shells

Next, we examine the state-resolved cross sections. The selective population of high-
n levels of the recombining ions is known to be a characteristic property of the charge
exchange reaction. The distribution functions on the quantum numbers n and l are key to
the calculation of the spectrum, though the present theory still cannot fully reproduce the
nl distributions measured in the laboratory [27,33,72].

As shown in Figure 4, we compare the laboratory measurements of four reactions with
theoretical calculations, using the G16 method. G16 is the only calculation available in SPEX
for the ions tested. It defines empirically n of the most populated levels as functions of the
collision velocity, charge, and ionization potential. For the four test cases, G16 successfully
predicts the peak n: n = 3 for C IV and O III, n = 4 for N V and O VI. The cross sections of
the peak n levels, however, show deviations from the G16 values at the low energies. For C
IV and O III, the measured values for v = 100 km s−1 are higher by a factor of ∼2.5 than
the theoretical ones. This is probably because the G16 method underestimates the total
cross sections at low energies, as already shown in Figure 2. For v > 500 km s−1, the G16
calculations become consistent, with the measurements within 40% for the peak n.

To assess the l-distribution function, in Figure 4, we also compare the cross sections of
the np subshells. The l-distribution defined in G16 is a smooth function that switches as a
function of velocity between the different empirical l distributions introduced in Janev &
Winter [73] (see also Equations (4)–(8) and Appendix B in [13]). The G16 cross sections on
the np shells are lower, by a factor of 2–5, than the experimental values for v < 500 km s−1.
The deviations again become much smaller at higher velocities. To summarize above,
the G16 method could reproduce the nl-resolved cross sections for the test cases with
an accuracy of ∼40% for v > 500 km s−1, while for the low-velocity collision, the G16
cross sections, as well as the line intensities calculated based on the atomic data, are much
less reliable.
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Figure 4. State-selective cross sections as a function of collision velocity for C IV, N V, O III, and O
VI. The data points are taken from merged-beam experiments (see Table 1 for detail), for the peak n
shells (black) and the np subshells (red). The approximate errors of 15% [43] are shown. The black
solid lines are the G16 calculations of the peak n shells, and the red lines are the G16 data for the np
subshells. The dash lines are the G16 calculations of the total cross sections.

2.3. Line Ratios

The large ratios between 1s − np (n > 2) and 1s − 2p lines are often used as char-
acteristic diagnostics of the highly charged charge exchange plasma [10,11]. It is known
that the line ratios would decrease with increasing collision velocity, because a high-speed
collision might yield captures on high angular momentum states, producing more 1s − 2p
transitions through cascade. So, the line ratios can often be utilized as a probe of collision
velocity [27,74]. The accuracy of the velocity measurement is therefore determined by the
quality of the atomic data.

In Figure 5, we plot the comparison of the line ratio calculations and experiments for
C VI and O VIII. The experimental data are taken from the beam-gas measurements by
Andrianarijaona et al. [75] for C VI and Seely et al. [76] for O VIII. A caveat of the comparison
is that these experiments used the Kr atom as a target, while the original theoretical
calculations are based on capture from H atom. As reported in Leung & Kirchner [77],
the line ratios from Kr and H collisions are somewhat different, in particular for the low-
energy regime, even though the ionization potentials of Kr and H atoms are nearly the
same. To compensate this discrepancy, we calculate the H-to-Kr scalings as a function
of velocities on both C VI and O VIII line ratios, using the theoretical results reported in
Leung & Kirchner [77] (in their Figures 3 and 6), and apply the scalings to the G16, MCLZ,
and RCMD line ratios. The scaled line ratios should represent a better approximation to
the collisions with the Kr target.
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Figure 5. Comparison of experimental and theoretical line ratios for the C6+ (left) and O8+ (right)
reactions. The experimental data from Andrianarijaona et al. [75] and Seely et al. [76] are plotted
as data points, and the predictions from G16, MCLZ, and RCMD are shown in black, red, and blue
curves. The dashed curves show the calculations of C6+ and O8+ collisions with H atoms, and the
solid lines show the collisions with Kr atoms obtained using the scaling of Leung & Kirchner [77].

As shown in Figure 5, the experiments and calculations yield the same peak n, n = 4
for C VI and n = 5 for O VIII, though the line ratios still differ at several velocities. One
of the main discrepancies occurs between the scaled G16/MCLZ and the lab data for the
C VI Lyβ/Lyα line ratio, where the two theoretical values exceed the measured one by
about 70% at v = 1000 km s−1. The RCMD calculation shows better agreement with the lab
values on this line ratio.

A more extensive comparison can be seen in Table 2. It is a compilation of several
laboratory efforts, including the recent electron beam ion trap devices with X-ray spectral
analysis carried out at both low and high resolutions. The EBIT devices simulate charge
exchange reactions only at low collision energies. The average relative discrepancies
(experiment-theory/theory) of the line ratios are 0.63, 0.77, and 0.54 for the G16, MCLZ,
and RCMD calculations, respectively. For the peak n shell, the average discrepancies are
0.61, 0.81, and 0.56 for the three models. These differences are significantly larger than
those on the modeling of collisional ionization equilibrium plasmas (∼10–40%, [14,78,79]),
suggesting that the state-of-the-art charge exchange spectral models, even with dedicated
theoretical calculations, are still less reliable than those for the CIE plasma.

Table 2. Experimental and theoretical Line ratios.

Ion v (km s−1) Ratio Experiment G16 MCLZ RCMD Reference a

N VII 794 Lyβ/Lyα 0.76 0.12 0.13 0.10 1
(Lyγ + Lyδ)/Lyα 0.62 0.18 0.20 0.29

O VII 724 Lyβ/Lyα 0.19 0.07 0.09 0.07
(Lyγ + Lyδ)/Lyα 0.24 0.11 0.47 0.07

O VIII 774 Lyβ/Lyα 0.13 0.11 0.10 0.11
(Lyγ + Lyδ)/Lyα 0.17 0.15 0.18 0.14

Ne IX 743 Lyβ/Lyα 0.04 0.04 0.12 −
(Lyγ + Lyδ)/Lyα 0.05 0.05 0.18 −

Ne X 783 Lyβ/Lyα 0.12 0.08 0.08 0.08
(Lyγ + Lyδ)/Lyα 0.11 0.06 0.08 0.04

O VIII 293 Lyβ/Lyα 0.169 ± 0.044 0.244 b 0.254 0.149 2
Lyγ/Lyα 0.032 ± 0.008 0.053 0.068 0.035
Lyδ/Lyα 0.071 ± 0.014 0.177 0.201 0.057
Lyε/Lyα 0.0065 ± 0.003 0.054 0.0061 0.027

O VIII 414 Lyβ/Lyα 0.165 ± 0.030 0.192 0.202 0.149
Lyγ/Lyα 0.039 ± 0.012 0.038 0.053 0.030
Lyδ/Lyα 0.103 ± 0.02 0.125 0.138 0.057
Lyε/Lyα 0.005 ± 0.0076 0.031 0.0024 0.019

O VIII 586 Lyβ/Lyα 0.154 ± 0.006 0.115 0.123 0.132
Lyγ/Lyα 0.035 ± 0.008 0.024 0.038 0.030
Lyδ/Lyα 0.104 ± 0.015 0.066 0.068 0.064
Lyε/Lyα 0.0048 ± 0.0061 0.015 0.00086 0.014
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Table 2. Cont.

Ion v (km s−1) Ratio Experiment G16 MCLZ RCMD Reference a

O VIII 1256 Lyβ/Lyα 0.121 ± 0.027 0.122 0.135 0.108
Lyγ/Lyα 0.022 ± 0.004 0.035 0.044 0.020
Lyδ/Lyα 0.037 ± 0.011 0.055 0.071 0.050
Lyε/Lyα 0.0048 ± 0.0028 0.023 0.00045 0.0090

C VI 477 Lyβ/Lyα 0.169 ± 0.023 0.208 b 0.226 0.177 3
Lyγ/Lyα 0.240 ± 0.012 0.198 0.199 0.152

Lyδ/Lyα 0.022 ± 0.020 0.0062 2.8
× 10−6 0.0061

C VI 924 Lyβ/Lyα 0.157 ± 0.012 0.214 0.213 0.173
Lyγ/Lyα 0.173 ± 0.023 0.115 0.132 0.142

Lyδ/Lyα 0.024 ± 0.009 0.014 2.7
× 10−6 0.0091

C VI 1262 Lyβ/Lyα 0.128 ± 0.009 0.222 0.231 0.157
Lyγ/Lyα 0.113 ± 0.012 0.112 0.144 0.114

Lyδ/Lyα 0.021 ± 0.008 0.035 2.2
× 10−6 0.015

C VI 2185 Lyβ/Lyα 0.109 ± 0.019 0.154 0.182 0.114
Lyγ/Lyα 0.043 ± 0.011 0.091 0.125 0.080

Lyδ/Lyα 0.011 ± 0.006 0.015 6.7
× 10−7 0.015

C VI 3466 Lyβ/Lyα 0.130 ± 0.021 0.141 0.178 0.108
Lyγ/Lyα 0.024 ± 0.018 0.061 0.080 0.048

Lyδ/Lyα 0.0076 ± 0.004 0.007 5.0
× 10−7 0.012

O VII low Hehigh/Heα 0.167 0.168 0.152 0.058 4
Ne IX low Hehigh/Heα 0.162 0.161 0.133 −

Ar
XVII low Hehigh/Heα 0.191 0.133 − −

Fe
XXV low Hehigh/Heα 0.267 0.156 0.079 −

O VIII low Lyhigh/Lyα 1.006 0.786 0.887 0.366
Ne X low Lyhigh/Lyα 1.207 0.690 0.865 0.210

Mg XII low Lyβ/Lyα 0.227 ± 0.040 0.179 0.205 − 5
Mg XII low Lyγ/Lyα 0.133 ± 0.022 0.070 0.083 −
Mg XII low Lyδ/Lyα 0.044 ± 0.015 0.038 0.046 −
Mg XII low Lyε/Lyα 0.095 ± 0.015 0.028 0.030 −
Mg XII low Lyζ/Lyα 0.030 ± 0.018 0.221 0.120 −
Mg XII low Lyη/Lyα 0.080 ± 0.014 0.091 0.287 −
S XVI low Lyβ/Lyα 0.203 ± 0.070 0.153 0.171 − 5
S XVI low Lyγ/Lyα 0.082 ± 0.016 0.055 0.064 −
S XVI low Lyδ/Lyα 0.053 ± 0.011 0.028 0.033 −
S XVI low Lyε/Lyα 0.053 ± 0.008 0.017 0.020 −
S XVI low Lyζ/Lyα 0.016 ± 0.005 0.012 0.014 −
S XVI low Lyη/Lyα 0.029 ± 0.008 0.024 0.014 −
S XVI low Lyθ/Lyα 0.111 ± 0.019 0.149 0.101 −
S XVI low Lyι/Lyα 0.165 ± 0.024 0.058 0.165 −

a: references 1 = Greenwood et al. [72]; 2 = Seely et al. [76]: 3 = Andrianarijaona et al. [75]; 4 = Wargelin et al. [80];
5 = Betancourt-Martinez [81]. b: H-to-Kr scaling has been applied to the theoretical line ratios for O VIII and C VI;
see text for details.

3. Discussion and Ending Remarks

Based on a large sample of laboratory measurements, we have systematically com-
pared the commonly used charge exchange atomic data to the experimental results. The
G16, MCLZ, and RCMD calculations utilized in the SPEX code do not fully reproduce the
measurements, with notable, and likely velocity-dependent discrepancies in both total
cross sections, state-resolved cross sections, and line ratios in the X-ray spectra. While the
ease of the use of the present CX model is beneficial for the X-ray astronomical commu-
nity, it should be used with caution, in particular for non-charge-exchange experts. The
unresolvable disagreements call for advanced theoretical calculations for especially the
low collision energy regime, in combination with more laboratory measurements with, in
particular, EBIT and COLTRIMS facilities.

The previous EBIT experiments have provided relevant benchmarks to the predicted
cross sections for electron capture into specific principal quantum number states n. How-
ever, a comparison with the angular-momentum l-resolved cross sections is challenging,
as they depend on the collision energy; and the EBIT measurements are limited to low
collision energies (<10 eV/u) [27]. Besides, the charge exchange process not only produces
X-ray lines, but also generates lines in the ultraviolet and optical band as the Rydberg levels
populated by charge exchange relax through radiative cascades to the ground state of the
ion. Thus, the simultaneous measurements of EUV and optical charge exchange cascade
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photons at the EBIT would be of interest, and they could provide additional information on
the population of nl-states for plasma modeling [29]. Furthermore, possible multi-electron
capture contributions from the molecular targets used in the EBIT measurements can also
be avoided by using an atomic hydrogen target, where only single-electron capture can
occur [82]. Atomic hydrogen is of particular interest as it is also the most abundant neutral
element in the universe, and it makes a comparison between laboratory measurements and
astrophysical observations more reliable.

Besides EBIT, the COLTRIMS and beam-gas experiments have been providing reliable
measurements on velocity-dependent total and state-resolved cross sections. The improve-
ment in the momentum measurement technique allows nl selectivity, and for a few cases, it
might even be able to resolve the spin state. The state-of-the-art measurement accuracy is
about 11% for both the total and nl-resolved cross sections [83].

A systematic measurement of the cosmic abundant ions with the COLTRIMS facilities,
in combination with simultaneous EBIT X-ray spectroscopy, is desirable for the astronomical
community. A consistent and continuous effort will be needed to ensure that the charge
exchange atomic data will be ready for the high-resolution X-ray spectra taken with next-
generation missions, XRISM (launch due in 2023, [84]) and Athena (early 2030s, [85]).

Assessing uncertainties carried out by the theoretical atomic data is also vital to
the success of the upcoming missions. The atomic physics and plasma code community
has already begun this work, with a persistent effort on the evaluation of the errors on
electron impact excitation and transition probability data [14,86–90], as well as errors
on photon impact data and modeling [91]. One implication from the aforementioned
works, including the present work on the charge exchange modeling, is that the classical
assumption of constant model uncertainty (e.g., 20% on line emissivity) is no longer valid,
since the uncertainties are proven to vary significantly with the underlying model and its
key parameters.
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