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Abstract
Background In the last decade, genomic studies have identified and replicated thousands of genetic associations with 
measures of health and disease and contributed to the understanding of the etiology of a variety of health conditions. Pro-
teins are key biomarkers in clinical medicine and often drug-therapy targets. Like genomics, proteomics can advance our 
understanding of biology.
Methods and Results In the setting of the Cardiovascular Health Study (CHS), a cohort study of older adults, an aptamer-
based method that has high sensitivity for low-abundance proteins was used to assay 4979 proteins in frozen, stored plasma 
from 3188 participants (61% women, mean age 74 years). CHS provides active support, including central analysis, for seven 
phenotype-specific working groups (WGs). Each CHS WG is led by one or two senior investigators and includes 10 to 20 
early or mid-career scientists. In this setting of mentored access, the proteomic data and analytic methods are widely shared 
with the WGs and investigators so that they may evaluate associations between baseline levels of circulating proteins and the 
incidence of a variety of health outcomes in prospective cohort analyses. We describe the design of CHS, the CHS Proteom-
ics Study, characteristics of participants, quality control measures, and structural characteristics of the data provided to CHS 
WGs. We additionally highlight plans for validation and replication of novel proteomic associations.
Conclusion The CHS Proteomics Study offers an opportunity for collaborative data sharing to improve our understanding 
of the etiology of a variety of health conditions in older adults.
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Introduction

In studies of cardiovascular disease (CVD), the emergence 
of various types of -omics data has transformed popula-
tion science. In the last decade, genome-wide association 
studies have identified and replicated thousands of genetic 
associations with measures of human health and disease. 
While risk scores aggregating multiple genetic variants can 
improve prediction of several cardiovascular conditions [1], 

the individual genetic associations are perhaps most valuable 
for providing biological insights about disease subtypes and 
potential molecular targets for therapeutics [2]. For instance, 
genetic studies that identified associations of ANGPTL3 var-
iants with triglyceride levels [3] have resulted in the devel-
opment of two new drug therapies for lipid disorders [4].

Proteomics, the large-scale study of hundreds to thou-
sands of proteins, provides another avenue to biologic dis-
covery. Proteins perform most biological functions, and 
they are often the targets of drug therapies [5]. The human 
genome encodes about 20,000 proteins, many of which 
undergo post-translational modifications that may affect 
their function [5]. Recent advances in technology have 
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improved multiplexed protein assays [5, 6]. Linking prot-
eomics with genomics is especially valuable. For instance, 
multiple studies have described associations between levels 
of the inflammation biomarker C-reactive protein (CRP) and 
CVD [7, 8], but these associations are not necessarily causal. 
Biologically, CRP is an acute phase reactant that increases 
in response to interleukin (IL)-6. Mendelian randomization 
(MR) studies, which use genetic variants as instrumental 
variables for modifiable risk factors, [9] suggest that CRP 
itself is not in the causal pathway for CVD [10]. Thus, direct 
efforts to reduce the levels of CRP for CVD prevention are 
unlikely to yield therapeutic benefit. In contrast, MR studies 
suggest a causal role for IL-6 in CVD [11]. Indeed, a clinical 
trial evaluating canakinumab, an IL-1-beta monoclonal anti-
body that decreases the levels of IL-6, significantly reduced 
the risk of recurrent CVD events [12].

The Cardiovascular Health Study (CHS), which recently 
completed large-scale proteomic assays on 3,188 partici-
pants, is providing both shared data and centralized ana-
lytic support to CHS investigators. Genomic and proteomic 
studies are expensive, and the National Institutes of Health 
(NIH) appropriately insists on passive methods of data 
sharing [13]. Approved NIH data-sharing methods involve 
depositing publicly funded data for widespread access, typi-
cally on dbGaP or BioLINCC. While CHS provides regular 
updates to these public sites, the CHS investigators devel-
oped a novel method of broad data sharing designed to be 
both productive and instructive. The NIH investment in 
cohort studies includes not only the participants, the data, 
and the biospecimens but also the investigators who have a 
deep understanding of the study design and its conduct. Over 
the last two decades, CHS developed a working-group (WG) 
model to provide “mentored access” to data, an approach 
that takes advantage of the investigators’ knowledge and 
experience [14]. Currently, contract funding provides active 
support, including central analysis, for seven trait-specific 
WGs. Each CHS WG is led by one or two senior investiga-
tors and includes 10 to 20 early or mid-career scientists. In 
this paper, we describe CHS, the WG model, the methods 
used to measure protein levels in CHS participants, data 
characteristics and the quality control measures undertaken, 
and the active design to share the proteomic data actively 
and widely.

Method

CHS design

CHS was designed to evaluate risk factors for coronary heart 
disease and stroke in older adults [15]. In 1989–90, four 
Field Centers used random samples from Medicare eligibil-
ity lists to recruit 5201 participants. Among eligible sampled 

individuals at baseline, 57% were enrolled [16]. In 1992–93, 
an additional sample of 687 predominantly African-Amer-
ican participants was recruited using similar methods. The 
primary outcomes in CHS are myocardial infarction (MI), 
angina, heart failure (HF), peripheral arterial disease, stroke, 
transient ischemic attack, and total mortality [17–20]. The 
events data collection through 2015 also included informa-
tion about all hospitalizations so that other events such as 
venous thromboembolism, hip fracture, and pneumonia 
could be studied. After 2015, study methods include mor-
tality follow-up, Medicare hospitalization data, and semian-
nual phone calls. The multiple methods of follow-up have 
allowed for near-complete ascertainment of CVD events and 
deaths [21].

The baseline examination assessed traditional risk factors 
and measures of subclinical cardiovascular disease. During 
the 1990s, contacts alternated between in-clinic examina-
tions and telephone calls. At each annual in-clinic visit, 
selected examination components were repeated, and some 
new components such as cranial magnetic resonance imag-
ing were added. Processing for EDTA plasma was standard-
ized, and samples were shipped to the University of Ver-
mont Core Laboratory on dry ice, stored initially in -70 °C 
freezers, with storage at -80 °C for the last 20 years. Since 
2000, participants have been contacted by telephone every 
6 months for information, including events, functional status, 
cognitive function, and quality of life. Additional details can 
be found at https:// chs- nhlbi. org/ CHSDa ta. Ancillary studies 
have provided a wealth of other data, including rare-variant 
exome chip data on 5028 CHS participants; genome-wide 
genotype data (n = 4094); whole exome sequence (WES) 
data (n = 2940); and whole-genome sequence (WGS) data 
(n = 4932). The genetic data, both GWAS [22] and sequence 
data [23], have undergone extensive quality control evalu-
ations. The CHS contract and ancillary studies have also 
funded novel assays and produced multiple publications on 
a score of established biomarkers [24–26].

CHS WG model: mentored access to CHS data

In 2001, several CHS investigators developed the approach 
of “mentored access” to CHS data and recruited young sci-
entists from across the country to work in CHS and par-
ticipate in the newly established Renal WG. The Renal WG 
was so productive that CHS conducted novel two-day work-
shops for early-career scientists targeting new investigators 
in March 2005 and May 2007. The CHS new-investigator 
workshops soon spawned a set of new WGs (currently, Car-
diovascular, Aging, Bone, Diabetes, Neurology, Renal and 
Genetics). Each WG includes one or more lead investiga-
tors, a CHS Coordinating Center (CHSCC) analyst, and 
other (often early-career) investigators from about 40 insti-
tutions. Typically, WG members participate in regular calls; 
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and the central CHSCC analysts perform the data analyses 
for the WG investigators. Data sharing across WGs has been 
the norm. For instance, The Diabetes WG funded assays of 
7 novel biomarkers [25], and also shared these data with 
the Cardiovascular [25], Bone, and Aging WGs. The CHS 
network of mentored access, described in a paper from the 
NHLBI [14], not only serves as a major national training 
effort in CVD epidemiology, but also promotes multiple uses 
of costly data to advance high-quality science and the health 
of older adults. As illustrated in Supplemental Fig.1, the 
increase in CHS publications after the workshops was driven 
primarily by collaborators, often members of the WGs, 
rather than by the original CHS investigators. The variety 
of available phenotypes in CHS provides a rich resource for 
a team-based approach to the analysis of the proteomic data.

Design of CHS Proteomics Ancillary Study

For the CHS Proteomics Study, we chose the 1992–93 
examination as the baseline. All 3188 CHS participants 
for whom we had unthawed plasma in the 1992–93 reposi-
tory were selected. In addition, to estimate the stability of 
protein levels through correlation of sample aptamer levels 
from plasma collected five years apart, unthawed plasma 
for a random sample of 100 participants from the 1997–98 
examination was selected. These samples were shipped on 
dry ice to SomaLogic (Boulder, CO) for assays on the 5 k 
SOMAscan. Samples were randomized across the plates 
with the exception of the 100 paired samples. Each pair was 
kept on the same plate. The variety of available phenotypes 
in CHS provide a rich resource for a team-based approach 
to proteomics.

SOMAscan assays

The SOMAscan assays have been described previously [27]. 
Briefly, slow off-rate modified aptamers (SOMA) are oligo-
nucleotides that bind tightly and specifically at a ratio of 1:1 
with a target protein and permit the evaluation of multiple 
proteins on a single assay [28]. The method, which takes 
advantage of novel chemically modified nucleotides [28], 
converts the measurement of protein levels into the measure-
ment of nucleic acid levels assessed by a DNA oligo-array 
plate reader. Measurement of the SOMAmer (aptamer) con-
centration across a 7  log10 range (100 fM to 1 uM) reflects 
the concentration of the protein with an average coefficient 
of variation of 6%. Results of these assays, reported in rela-
tive fluorescence units (RFU), are approximately propor-
tional to plasma protein concentrations. The SomaLogic 
assays included 4979 proteins: including those related to 
inflammation, CVD, aging, metabolism/endocrine, neurol-
ogy, pulmonary, renal, and others.

Recent reports by our group and others describe not only 
the analytic and clinical validity of the aptamer-based assay 
method [29], but also high correlations between SOMAscan 
levels and conventional laboratory measures of IL-6, IL-8, 
IL-16, MMP-3, CRP, and troponins [30]. Nevertheless, in 
view of concerns about the specificity of some aptamers, we 
plan to use “orthogonal” techniques to assess analyte speci-
ficity and quantification. For selected markers, we plan to (1) 
use the aptamers themselves as affinity reagents to capture 
and identify the protein targets that are binding using liquid-
chromatography-tandem mass spectrometry (LC–MS/MS) 
based affinity proteomics [29] and (2) develop quantitative 
LC–MS/MS-based assays by using anti-peptide antibodies 
to enrich unique tryptic peptides derived from the protein 
targets identified as binding to the aptamers. These analy-
ses are done in a targeted manner, thereby increasing both 
the specificity and sensitivity of the assays [31, 32]. Known 
amounts of synthetic, stable-isotopically labeled versions 
of the target peptides are captured simultaneously with the 
native peptides and used to quantify the amounts of the lat-
ter. This method known as stable isotope standards and cap-
ture by anti-peptide antibodies (SISCAPA) or immunoMRM 
is more specific than antibody or aptamer-based approaches 
and suffers fewer interferences, although it can be less sensi-
tive Liquid Chromatography-Mass Spectroscopy (LC–MS) 
[31–33].

Protein quantitative trait loci (pQTLs)

This study leverages genetic data from CHS and other 
studies to identify protein quantitative trait loci (pQTLs) 
both to aid in protein identification, and to assess whether 
novel biomarkers may belong to causal pathways. Briefly, 
whole-genome sequencing data on CHS participants from 
TOPMed were used [23]. Log-transformed and standardized 
SOMAscan values were residualized on age, sex, race, and 
principal components (PCs) of ancestry 1–10 as determined 
by GENetic EStimation and Inference in Structured sam-
ples (GENESIS), and the resulting residuals were normal-
ized. To evaluate the association between these values and 
genetic variants, the fastGWA model was used, implemented 
in GCTA software package (version 1.93.2beta/gcta64) [34]. 
Linear mixed effects models were adjusted for age, sex, race, 
the estimated genetic relationship matrix, and PCs 1–10, 
with repeat adjustment implemented to reduce type I error 
and improve statistical power. After implementing a proce-
dure to handle overlap, the variant with the lowest P value 
in the resulting region was labeled as the sentinel variant. 
Any sentinel variant within 1 Mb of the TSS for the cognate 
gene of a protein were considered ‘cis’.

The proteomics consortium led by Butterworth, the senior 
author on the Nature genomic atlas of the proteome [35], 
includes more than 18,000 participants with both genetic 
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and SOMAscan data, and these data are available to validate 
pQTLs, to aid in the selection of genetic variants, and to 
provide independent estimates of effect sizes for Mendelian 
randomization analyses.

Data analysis

Analytic methods for studies evaluating individual candi-
date proteins are generally straightforward. For an unbiased 
search of the available proteomic space, however, there are 
three general approaches [36]: 1) testing all proteins indi-
vidually with multiple comparison correction for statisti-
cal significance [37]; 2) data reduction strategies such as 
principal components [38] or network analysis [39–41]; and 
3) variable (protein) selection strategies [36, 42] such as 
the adaptive elastic net [43]. Some WGs may leverage pro-
teomic data to develop prediction models for clinical traits, 
in which case we will use the C-statistic to evaluate discrimi-
nation and risk-stratification tables to evaluate calibration 
and accuracy [44, 45]. For proteins with adequate genetic 
instruments, we will also perform MR analyses to examine 
the supporting evidence for potential causal associations 
between protein levels and clinical outcomes [46, 47]. The 
CHS Proteomics study has good power for association with 
a variety of outcomes. Investigators from the Framingham 
Heart Study (FHS) and the Jackson Heart Study (JHS), both 
of which have SomaLogic data and have subcontracts for 
replication and collaborative meta-analyses [48, 49], are 
active collaborators. Additionally, we are actively seeking 
collaboration with other national and international studies 
that have proteomic data to improve power.

Study organization

The CHS Proteomics Study relies on the CHS WG model 
but has added an analysis committee and provides modest 
central analytic support. In the setting of the COVID-19 
pandemic, weekly videoconferences calls provide mentored 
access to the data and methods. During the first year, scien-
tists have provided a series of talks: CHS design, proteomics 
study design, outline of analysis plans, SomaLogic assay 
methods, quality control, statistics for proteomics, analytic 
pipelines, penalized regression, mediation analysis, network 
analysis, and Mendelian randomization. During the same 
period, early-career young investigators from all 7 WG have 
brought at least one manuscript proposal to the group for 
review. A pipeline for proteomic analysis has been devel-
oped and made available to WG members and publicly avail-
able through GitHub (https:// github. com/ UWCHRU/ Omics 
Pipel ine). The analysis committee has provided recommen-
dations and support for network analysis and Mendelian ran-
domization. In addition to central analytic support, study 
data and analytic methods are available to WG analysts and 

to individual CHS investigators who are encouraged to par-
ticipate in the regular study videoconferences calls to share 
results and analysis issues so that solutions can be widely 
disseminated. This group will also help make plans for the 
use of mass spectrometry for protein validation and quanti-
fication and the development of new inexpensive enzyme-
linked immunosorbent assay (ELISA) assays for a few key 
proteins that might be essential to moving findings forward 
in other clinical studies, clinical trials, or clinical care.

Dataset creation and quality control analyses

In the results, we describe characteristics of the dataset 
received from SomaLogic and analytic decisions based on 
the quality of study samples, the characteristics of the CHS 
participants, the numbers of incident events, and the stability 
of protein levels over a five-year period. For selected bio-
markers, we compare protein concentrations at the 1992–93 
examination cycle based on ELISA assays and SomaLogic-
based proteomics measurements and describe the plan for 
multiple testing. Finally, we calculate the median RFU over 
all proteins for each CHS participant and describe the pres-
ence of outliers in the dataset.

Result

Results were returned from SomaLogic for all 3288 sam-
ples (3188 participants plus 100 repeat measures) on 4979 
aptamers. Our analysis excluded three participants with 
samples flagged by SomaLogic for poor quality, yielding 
a final analysis sample of 3185 participants, 100 of whom 
had samples from both the 1992–93 and 1997–98 CHS 
examinations (Fig. 1). There were no missing proteomic 
data for those 3185 participants. Calibrators included in the 
SOMAscan assays had a median intra-assay coefficient of 
variation of 3.4 (10%—90%: 1.6 – 7.6), and quality con-
trol samples had a median inter-assay coefficient of varia-
tion of 4.4 (10%—90%: 2.6 – 10.1). We excluded from the 
analysis dataset aptamers marked as “deprecated” (indicat-
ing a retired aptamer) and those marked as “non-human.” 
The final analysis sample included 3285 proteomes of 4979 
aptamers from 3185 unique CHS participants. The 731 
aptamers flagged for potential quality concerns remained in 
the analysis sample, and users are alerted to interpret results 
with caution. Aside from analyses of long-term stability, 
all the following analyses used the 4979 aptamers from the 
1992–93 examination on 3185 CHS participants.

Characteristics of participants included in our analysis 
are described in Table 1, along with characteristics of 
those participants who attended the 1992–93 examination 
but were not included in the analysis sample. Previous 
ancillary studies, which had partially depleted unthawed 

https://github.com/UWCHRU/OmicsPipeline
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Fig. 1  Flowchart of Inclusion 
in Cardiovascular Health Study 
proteomics analyses CHS = Car-
diovascular Health Study 
QC = Quality Control

Table 1  Characteristics of CHS 
Participants at the 1992–93 
study examination according to 
whether they were included in 
proteomics analyses

Analysis dataset N Not included in 
analysis

N

Women (%) 60.8 3185 56 2080
Age, years, mean (SD) 74 (5) 3185 76 (6) 2080
Race (%) 3185 2080
White 83.6 81.0
Black 15.9 18.2
American Indian/Alaskan Native 0.1 0.4
Asian/Pacific Islander 0.1 0.1
Other 0.3 0.4
Body Mass Index, mean (SD) 27 (5) 3167 27 (5) 1671
Systolic Blood Pressure, mmHg, mean (SD) 136 (21) 3184 138 (22) 1797
Diastolic Blood Pressure, mmHg, mean (SD) 71 (11) 3182 71 (13) 1794
Cohort (%) 3185 2080
Original cohort 88 85
New cohort 12 15
Smoking Status (%) 3185 1891
Never Smoked 46.2 45.3
Former Smoker 44.3 44.3
Current Smoker 9.5 10.4
eGFR, mL/min/1.73  m2, mean (SD) 64 (15) 3182 61 (17) 1510
Treated Hypertension (%) 39.9 3184 45.8 1992
Diabetes (%) 13.6 3178 22 1553
Myocardial Infarction (%) 7.5 3185 14.4 2080
Heart Failure (%) 3.8 3185 9.6 2080
Stroke (%) 3.8 3185 9.2 2080
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plasma, account for the differences. At baseline, 8% per-
cent of those included in the analysis sample had a history 
of myocardial infarction (MI), 4% stroke, and 4% heart 
failure (HF). During 25 years of follow-up for adjudi-
cated events, these 3185 participants had 555 incident 
MIs, 577 incident strokes, 1064 incident HF events, and 
2776 deaths, of which 963 were classified as cardiovas-
cular deaths.

For all analyses, aptamer levels were log transformed 
and standardized to have a mean of 0 and a standard devi-
ation of 1. Among the 100 participants for whom plasma 
was sampled from both the 1992–93 and 1997–98 exam-
inations, the median intraclass correlation coefficient 
across all proteins was 0.66 (IQR, 0.46 – 0.81). Within 
each individual, the median RFU of all 4979 aptamers 
served as a marker of total plasma protein level. Among 
the 100 participants with two assays five years apart, the 
intra-individual correlation between the median of all an 
individual’s RFU values was 0.61 (Supplemental Fig.2).

Figure 2 illustrates the relationships of biomarkers 
assayed by SomaLogic with those previously assayed in 
CHS using ELISA-based methods at the same examina-
tion. The pairwise correlation between the SomaLogic 
aptamers and ELISA-based methods (both log trans-
formed) ranged from 0.65 to 0.96: the correlations for 
C-reactive protein, Cystatin C, and N-terminal pro-B-type 
natriuretic peptide (NT-proBNP) were all > 0.90.

To determine a statistical significance threshold to 
account appropriately for multiple testing, principal com-
ponents (PC) were calculated from the standardized log 
protein RFUs in the analysis dataset in order to estimate 
the amount of independent information available within 
the protein data. The first PC explained 31% of the vari-
ance, while the first five collectively explained 45% of the 
variance. A total of 1566 PCs was required to explain 95% 
of the variance in the 4979 standardized log protein RFUs 
(Supplemental Fig.3). We propose to use 1566 as a proxy 
for the number of independent tests performed per analy-
sis, so that the empirically-informed Bonferroni-corrected 
0.05 significance level of 0.05/1566 is 3.2 ×  10–05 [50].

As part of initial quality control, we examined the pro-
tein data for evidence of batch effects. A plot of PC1 
against PC2 did not display any batch effects by plate, 
nor did a plot of t-distributed stochastic neighbor embed-
ding [51] (Supplemental Fig.4). Similarly, there was no 
apparent pattern among the first five PCs based upon 
self-identified race or sex (Supplemental Figs. 5 and 6). 
To identify whether samples with high median RFU val-
ues clustered by laboratory handling, we calculated the 
median RFU for all proteins from each sample and found 
that no plate had systematically higher or lower median 
RFU (Fig. 3).

Discussion

The CHS Proteomics Study offers high quality data on 
the relative concentrations of 4979 proteins in 3185 par-
ticipants and will be an important source of collaborative 
research on the etiology of cardiovascular disease and 
other health conditions of older adults. The WG structure 
in CHS allows for widespread distribution and use of these 
data, and the project offers opportunities for replication 
and integration of genomics and MR into ongoing projects. 
The results of these analyses will help inform our under-
standing of a variety of diseases and may inform biologic 
targets for drug development.

Out of 3188 total samples, only three samples were 
flagged for poor quality and removed from analysis data-
set, and the proteomic data did not appear to show any 
evidence of batch effects or undue influence of outlier val-
ues. For analysis of the raw RFUs, we have recommended 
log-transformation and standardization to a mean of 0 and 
SD of 1, and the number of PCs required to explain 95% 
of the variation in the data may be used empirically to 
inform adjustment for multiple comparisons rather than a 
conservative Bonferroni approach that assumes 4979 inde-
pendent tests. The finding that relative protein concentra-
tions for a number of proteins were strongly correlated 
with concentrations measured by ELISA-based methods 
in CHS suggests that the aptamer-based method is com-
parable to other available methods of measuring protein 
concentrations [30].

Because many longitudinal hypotheses in this study 
involve the associations of baseline protein levels and the 
incidence of a variety of clinical events, the long-term 
biological stability of these biomarkers is important. The 
median long-term correlation for the 4,979 proteins was 
0.66 (IQR, 0.46 – 0.81), which is similar to what has been 
previously observed for clinical biomarkers measured by 
standard assays. For instance, in CHS, the between-visit 
intra-individual correlation (ICC) from traditional assay 
methods across 3–4 years for fibrinogen was 0.62 (95% 
CI, 0.60–064); for factor VII, 0.77 (95% CI, 0.76 to 0.78); 
and for cystatin C, 0.71 (95% CI, 0.69 to 0.72). For com-
parison with other risk factors in CHS, the ICC for total 
cholesterol between the 1992–93 and 1997–98 exams 
was 0.47 (95% CI, 0.44–0.49) and the ICC for systolic 
blood pressure over the same period was 0.65 (95% CI, 
0.63–0.67). In other words, the within-individual ICCs for 
these protein log RFUs are comparable to the ICCs for 
several traditional CVD risk factors.

The specificity of some of the SomaLogic aptamers 
has been questioned. For instance, an aptamer for GDF11 
was also reported to bind to the protein GDF8 [52, 53]. 
The early GDF11 reports appear to be a misidentification 
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related to high homology between these two proteins. 
Genetic evidence can assist in protein validation (if genetic 
variation does not influence aptamer binding). For selected 
key findings, MS-based validation of the protein identity 
is essential to rigorous design; and the CHS Proteomics 
Study includes modest resources for unambiguous identi-
fication and quantification [29].

Many proteins exhibit strong genetic associations [48]. 
Using an aptamer-based assay in 3301 participants, for 
instance, Butterworth and colleagues identified 1927 genetic 
associations (p < 1.5E-11) with 1478 of 3622 proteins to pro-
duce a genomic atlas of the human plasma proteome [35]. 
Protein QTLs (pQTLs) replicated well. The median protein-
level variation explained by pQTLs was 5.8% (interquartile 

Fig. 2  Comparison of log-trans-
formed and standardized Soma-
Logic aptamer levels and CHS-
assayed biomarkers for (A) 
C-reactive protein (n = 3,158), 
(B) Cystatin C (n = 3,182), 
(C) Factor VII (n = 3,129), (D) 
Fibrinogen (n = 3,175), and (E) 
NT-proBNP (n = 2,837)
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range, 2.6 to 12.4%), and pQTLs explained more than 20% 
of the variation of 193 proteins. The pQTL findings have 
already aided in drug-target prioritization and identifying 
new indications for approved drugs [35]. The pQTL data in 
this genomic atlas will assist in assuring the specificity of 
selected aptamers and will also provide strong instruments 
for Mendelian randomization.

CHS is well designed and rigorously conducted study 
that has extensive longitudinal data, including events data 
and serial measures of physical and cognitive function. Loss 
to follow-up has been minimal. Unthawed plasma stored at 
-80° C makes protein degradation unlikely. Moreover, the 
extensive genetic data in CHS make possible MR analyses, 
which, under certain assumptions, can provide supportive 
evidence for a potential causal role. Major strengths of the 
study are the research team with expertise in protein bio-
marker research and population-based studies and the col-
laboration with FHS and JHS investigators. Additionally, 
CHS used Medicare files to sample a population-based 
cohort of older adults to whom the results may be gener-
alized. Nevertheless, we recognize inherent limitations in 
an observational cohort study, including the possibilities of 
measurement error, residual confounding, unmeasured con-
founding, and the difficulties of causal inference. Although 
CHS has data on a rich set of covariates, confounding is 
difficult to exclude, and a cautious interpretation of the find-
ings is appropriate. While CHS was able to obtain data on 
the SomaLogic 5 K platform, FHS and JHS currently only 
have data on the 1 K and 1.3 K platforms. Additional assays 
are planned or in progress. The platform differences, as well 
as differences in some participant characteristics among the 
studies, may limit the ability of FHS and JHS to replicate 
some findings in CHS.

Perhaps the most innovative aspect of this study is the 
reliance on the collaborative team science of the CHS WGs, 
where early-career investigators receive mentored access to 
the data and methods. The proteomics study has also linked 
the WGs with central analytic support. The central analysis 
committee makes recommendations about best practices. 
The video calls provide opportunities to identify problems, 
disseminate “best practices,” present or review analytic 
methods, develop manuscript proposals, discuss analytic 
approaches, review interim results, establish collaborations, 
decide on replication plans, and coordinate efforts across 
WGs and investigators. Typically, the manuscripts are led 
by early-career investigator “champions” who have the time, 
energy, and enthusiasm to bring them to fruition. In an effort 
to pursue the best science efficiently, this approach attempts 
to maximize the scientific and educational value of these 
publicly-funded research resources. While the data will 
be made publicly available on dbGaP and BioLINCC, we 
encourage national and international early-career investiga-
tors to consider joining a CHS WG (https:// chs- nhlbi. org for 
CHS and https:// chs- nhlbi. org/ Worki ngGro ups for the WGs).

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10654- 022- 00888-z.
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