
Proliferative vitreoretinopathy (PVR) is the main cause 
of failed rhegmatogenous retinal detachment (RD) surgery 
(approximately 5%–10% of cases) [1]. PVR is the result of 
an overstimulated wound healing process induced after a 
retinal break, and is characterized by marked fibrotic and 
inflammatory responses [2,3]. This process is likely initiated 
by a cascade of cytokines and growth factors produced by 
interactions between resident and non-resident retinal cells 
[3]; chief among them are glial cells and macrophages [3-5]. 
Glial cells, mainly Müller cells, strongly proliferate, form 
fibrocellular membranes, and induce intraretinal changes that 
characterize the most clinically severe forms of PVR [6-8]. 
Macrophages migrate into the retina after the breakdown of 

the blood–retinal barrier [9,10] and secrete several proinflam-
matory and proangiogenic cytokines, such as tumor necrosis 
factor alpha (TNFα). TNFα intraocular synthesis is increased 
in PVR [11-13], and TNFα binds to receptors on Müller cells 
and probably activates them [14,15]. Furthermore, microglia, 
the resident macrophages of the retina, become activated 
after retinal damage [16] and potentially release transiently 
high levels of TNFα [17]. TNFα also plays a significant role 
in various intraocular diseases such as uveitis, glaucoma, 
and retinal degenerations [18-20]. Therefore, regulating and 
suppressing TNFα using various biologic agents has recently 
emerged as a therapeutic strategy for several ocular inflam-
matory conditions [21-25].

Organotypic culture of the neural retina has been 
demonstrably useful for improving the knowledge of neuro-
degenerative disease pathophysiology. Several methods have 
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expression of glial fibrillary acidic protein immunoreactivity 
increased by exogenous tumor necrosis factor alpha in an 
organotypic culture of porcine neuroretina
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Purpose: To determine if exogenous addition of tumor necrosis factor alpha (TNFα) exacerbates retinal reactive gliosis 
in an organotypic culture of porcine neuroretina and to evaluate if concomitant adalimumab, a TNF-blocker, diminishes 
it.
Methods: Porcine retinal explants from 20 eyeballs were cultured. Cultures with 100 pg/ml TNFα, 10 µg/ml adalim-
umab, 100 pg/ml TNFα plus 10 µg/ml adalimumab, or controls without additives were maintained for 9 days. Freshly 
detached retinas were processed in parallel. TNFα levels in control culture supernatants were quantified with enzyme-
linked immunosorbent assay. Cryostat sections were doubly immunostained for glial fibrillary acidic protein (GFAP), 
a marker for reactive gliosis, and cellular retinaldehyde-binding protein (CRALBP), a marker for Müller cells. Sections 
were also labeled with the isolectin IB4, a label for microglia/macrophages.
Results: TNFα in control culture supernatants was detected only at day 1. Compared to the fresh neuroretinal samples, 
upregulation of GFAP and downregulation of CRALBP occurred during the 9 days of culture. Exogenous TNFα stimu-
lated glial cells to upregulate GFAP and downregulate CRALBP immunoreactivity. TNFα-treated cultures also initi-
ated the growth of gliotic membranes and underwent retinal disorganization. Adalimumab inhibited the spontaneous 
increases in GFAP and maintained CRALBP. In combination with TNFα, adalimumab reduced GFAP expression and 
conserved CRALBP, with only slight retinal disorganization. No appreciable changes in IB4 labeling were observed 
under the different culture conditions.
Conclusions: In cultured porcine neuroretina, spontaneous reactive gliosis and retinal disorganization were exacerbated 
by exogenous TNFα. Adalimumab reduced spontaneous changes and those induced by TNFα. Therefore, inhibiting 
TNFα may represent a novel approach to controlling retinal fibrosis observed in some human diseases.
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been described for culturing retinal explants from different 
species. In the late 1980s, Caffe et al. [26] developed a 
method in which the neural retina is placed with the photore-
ceptor layer facing downward on rafts made of nitrocellulose 
filters and polyamide gauze grids. Since then, variations of 
this method have been used in several studies to evaluate the 
therapeutic effect and potential toxicity of substances [27-30]. 
Furthermore, retinal explant culture systems can mimic the 
functional dynamics of the organ beyond those of the dissoci-
ated cells [31], and many alterations observed during in vitro 
retina culturing [26,32-35] resemble some characteristics of 
experimental RD in vivo [36]. Thus, these similarities allow 
further research of pharmacological and bioengineering treat-
ment modalities [37,38].

Interactions between glial cells and macrophages via 
TNFα could have a key role in the pathogenesis of PVR, 
and this cytokine could be a target for treating this disease. 
Adalimumab is a recombinant human monoclonal antibody 
specific for TNFα that forms stable bonds with this cytokine 
[24]. Adalimumab has been successfully used in treating 
systemic inflammation such as rheumatoid arthritis and 
Crohn’s disease [24], and ocular inflammation such as uveitis 
and Behcet’s disease [39,40]. Our group has experience in a 
model of organotypic culture of porcine neuroretina in which 
increased reactive gliosis modifications occur when retinas 
were cocultured with macrophages [35]. Thus, the purpose 
of this work was to determine if exogenous TNFα exacer-
bates retinal reactive gliosis modifications in an organotypic 
culture and to evaluate if concomitant adalimumab could 
diminish it. Experimental testing of new drugs in this field is 
necessary because previous medical approaches for treating 
PVR or inhibiting retinal reactive gliosis have already failed 
[2,8].

METHODS

Tissue culture: Twenty fresh porcine eyes from animals aged 
6–8 months old were obtained from the local slaughterhouse. 
Immediately after enucleation, the eyes were immersed in 
ice-cold transport medium composed of Dulbecco’s Modified 
Eagle Medium (DMEM) supplemented with a 1% antibiotic-
antimycotic mixture containing penicillin, streptomycin, and 
amphotericin B (both Gibco, Paisley, UK) and transported on 
ice to the laboratory. Under aseptic conditions, each eyeball 
was immersed in 70% ethanol and then washed in clean 
DMEM. Neuroretinal explants were obtained as previously 
described by our group [35]. Briefly, the eyes were dissected 
to exclude the iris and the lens. The vitreous was then 
removed from the posterior eyecup with cotton swabs. The 
entire neuroretina was detached by paintbrushing and cutting 

the optic nerve. Finally, the neuroretina was unrolled in a 
Petri dish containing Neurobasal A medium (Gibco, Paisley, 
UK) supplemented with the 1% antibiotic-antimycotic 
mixture. The neuroretina was then cut into 5×5 mm explants 
in such a way as to avoid taking the most peripheral retina 
and visible blood vessels.

A total of 100 retinal pieces were obtained. Eighty were 
explanted on Transwell culture dishes (0.4 μm pore, 24 mm; 
Corning Inc., Corning, NY) with the photoreceptor layer 
facing the membrane. Explants were cultured in Neurobasal 
A medium supplemented with 2% B-27, 2% fetal porcine 
serum (both Gibco), 1% L-glutamine (Sigma-Aldrich, St. 
Louis, MO), and 1% antibiotic-antimycotic mixture. Explants 
were maintained at 37 °C in an atmosphere of 5% CO2 with 
95% humidity. The culture medium level was maintained 
in contact with the support membrane beneath the explant 
and changed with freshly prepared warmed medium on the 
following day and then every second day. Explants were 
cultured in different experimental conditions described 
below, and harvested for analysis after 9 days. Twenty fresh 
neuroretinal samples were used as culture day 0 controls and 
processed in parallel.

Experimental conditions:

Control culture—To determine spontaneous retinal 
reactive gliosis modifications during culture, 20 neuroretinal 
explants were maintained in the culture medium described 
above.

Tumor necrosis factor alpha–treated culture—To 
determine if exogenous TNFα induced changes in retinal 
reactive gliosis, 20 neuroretinal explants were cultured with 
100 pg/ml of porcine TNFα (Escherichia coli derived, R&D 
Systems, Minneapolis, MN) added to the medium at day 0. 
The cytokine concentration was based on previous studies 
in which the levels of TNFα produced by human monocytes 
were described [41,42] and in previous studies performed by 
our group (data not yet published).

Adalimumab-treated culture—To determine if adali-
mumab could block or diminish neuroretinal reactive gliosis 
modifications that occur spontaneously during culture, 20 
neuroretinal explants were cultured with 10 µg/ml of adali-
mumab (Humira®, 40 mg/0.8 ml, Abbott Laboratories Ltd., 
Queenborough, UK) added to the culture medium at day 0. 
The adalimumab concentration was selected based on its 
efficacy in culture as described elsewhere [43,44].

Tumor necrosis factor alpha plus adalimumab-
treated culture—To determine if adalimumab could block or 
diminish neuroretinal reactive gliosis modifications induced 
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by exogenous TNFα, 20 neuroretinal explants were cultured 
with 100 pg/ml of TNFα plus 10 µg/ml of adalimumab added 
to the culture medium at day 0.

Tumor necrosis factor alpha quantification: TNFα concen-
tration was determined in the control culture supernatants 
collected at medium exchange, on days 1, 3, 5, 7, and 9 of 
culture (n=5 each). The concentration was measured with 
quantitative enzyme-linked immunosorbent assays specific 
for porcine TNFα (Quantikine; R&D Systems, Abingdon, 
UK). The mean minimum dose of porcine TNFα detected 
with this method was 3.7 pg/ml.

Tissue processing: Samples were fixed in 4% parafor-
maldehyde (Panreac Química S.L.U., Barcelona, Spain) 
in phosphate buffer, pH 7.4, for 2 h and then subjected to 
sucrose cryoprotection [45]. On the following day, they were 
embedded in Tissue-Tek (O.C.T. Compound; Sakura Finetek 
Europe B.V., Alphen, the Netherlands). Sections (5 μm) were 
cut on a cryostat and mounted on glass slides (SuperFrost 
Plus; Menzel-Gläser, Braunschweig, Germany). Sections 
were doubly immunostained with primary antibodies against 
glial fibrillary acidic protein (GFAP, 1:500 rabbit polyclonal; 
DakoCytomation Inc., Glostrup, Denmark) as a reactive 
gliosis marker, and cellular retinaldehyde-binding protein 
(CRALBP, 137 1:1,000 mouse monoclonal [B2]; Abcam plc., 
Cambridge, UK) as a Müller cell functionality marker. Both 
antibodies were diluted in phosphate buffer containing 0.5% 
Triton X-100 (Sigma-Aldrich, St. Louis, MO), and incubated 
30 min at room temperature for GFAP and overnight at 4°C 
for CRALBP. The next day, sections were washed in phos-
phate buffer. Thereafter, the corresponding species-specific 
secondary antibodies to immunoglobulin gamma conjugated 
to Alexa Fluor 488 (green) and/or 568 (red; both from Molec-
ular Probes, Eugene, OR) were applied at a 1:200 dilution for 
1 h. Some sections were incubated in 5% normal goat serum 
(Sigma Aldrich) in phosphate buffered saline (PBS; pH 7.4; 
Gibco), with 0.5% bovine serum albumin, 0.1% Triton X-100, 
and 0.1% sodium azide (Sigma-Aldrich), overnight at 4 °C. 
The following day, the isolectin IB4 (1:50 isolectin GS-IB4 
from Griffonia simplicifolia, Alexa Fluor 488 conjugate; 
Molecular Probes) was added and incubated overnight at 
4 °C. This lectin was used as a label for microglia/macro-
phages. Finally, cellular nuclei were stained with 10 μg/ml 
4’,6-diamino-2-phenylindole dihydrochloride (Molecular 
Probes) for 8 min. Sections were washed in PBS (Gibco), 
mounted in Fluorescence Mounting Medium (DakoCytoma-
tion Inc., Carpinteria, CA) and coverslipped.

Fluorescence was detected with a Leica DM4000B light 
microscope equipped for epifluorescence (Leica Microsys-
tems, Wetzlar, Germany), and images were obtained with a 

Leica DFC490. Comparative studies of immunoreactivity 
expression were performed on images acquired at the same 
levels of exposure, intensity, and gain. Brightness and 
contrast were finally adjusted using Adobe Photoshop 7.0 
(Adobe Systems, San Jose, CA). Primary antibodies used in 
this work were used in previous studies and are well char-
acterized by us and other authors regarding specific cell-
type immunostaining. Furthermore, control slides in which 
primary antibodies were omitted were processed in parallel, 
with no immunoreactivity found in any case.

RESULTS

Fresh neuroretinal samples: In freshly prepared specimens 
(0 day control; Figure 1A–C), GFAP immunoreactivity 
was localized to glial cells, astrocytes and Müller cells as 
confirmed with evaluation of cellular morphology. GFAP 
expression was limited to the innermost layers of the neuro-
retinal tissue (Figure 1A). CRALBP was present in the cell 
bodies and extensions of the Müller cells throughout the 
entire retina (Figure 1B). CRALBP was also evident along 
the outer limiting membrane (OLM; Figure 1B, arrows). 
4’,6-diamino-2-phenylindole dihydrochloride staining of the 
nuclei allowed assessment of the ganglion cell layer (GCL), 
inner nuclear layer (INL), and outer nuclear layer (ONL) 
organization. IB4-labeled cells, typical of microglia and 
macrophages, were present in the retinal inner layers to the 
INL (Figure 2A, arrows). The complex retinal architecture 
was well preserved after mechanical detachment for explants 
preparation.

Control culture: At 9 days of culture (Figure 1D–F), GFAP 
and CRALBP immunoreactivity was modified compared 
to the fresh samples (Figure 1A–C). GFAP was clearly 
upregulated (Figure 1D). In the inner layers of the retina, 
expression of this protein was mainly localized to astrocytes, 
as confirmed by cellular morphology and the absence of 
CRALBP labeling (Figure 1F, arrows). In the Müller cells, 
GFAP immunoreactivity extended from the end-feet through 
the cell body, into the outer retinal layers and the OLM 
(Figure 1D, arrows), whereas CRALBP labeling was reduced. 
CRALBP remained in the inner retinal layers, and it was not 
detected in the outer layers (Figure 1E). Furthermore, retinal 
tissue showed some disorganization, and the retinal cells 
were less densely packed at the ONL and the INL. Müller cell 
branches located between photoreceptor cell bodies expressed 
GFAP (Figure 1D, arrowheads). IB4-immunoreactive cells 
were apparent between the INL and the GCL and extended 
into the INL (Figure 2B, arrows).

The supernatants of cultured neuroretinas contained low, 
but detectable, levels of TNFα at day 1 (Table 1). After 3 days 
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in culture and at all later stages, the concentration was below 
the detectable level.

Effect of exogenous tumor necrosis factor alpha on cultured 
neuroretinas: After 9 days of culture, the retinal explants 
exposed to exogenous TNFα (Figure 1G–I) showed marked 
upregulation of GFAP with the cell bodies and processes of 
the Müller cells (Figure 1G). CRALBP expression was nearly 
absent, detectable only in some Müller cell bodies (Figure 
1H, arrows). There were fewer retinal cell nuclei, and they 
were randomly distributed and surrounded by numerous 
GFAP-rich Müller cell processes. An increased number of 
these branches were located in the ONL (Figure 1G, arrows), 
disrupting photoreceptor organization, and some crossed 
the OLM (Figure 1G, asterisk). These processes extended 
outside the retinal tissue and formed a layered structure that 

stained with anti-GFAP and -CRALBP markers (Figure 1G, 
H, arrowheads). Furthermore, some cellular nuclei were 
distributed along these membranes (Figure 1I, arrows). Cells 
labeled with the lectin IB4 were present in the inner retinal 
layers to the INL (Figure 2C, arrows).

Effect of adalimumab on cultured neuroretinas: In cultures 
treated with adalimumab (Figure 1J–L), glial cell expression 
of GFAP (Figure 1J) was comparable to the fresh samples 
(Figure 1A) and notably reduced compared with the control 
group (Figure 1D). Nevertheless, minor GFAP spots appeared 
in some Müller cell bodies at the INL (Figure 1J, arrows). 
CRALBP labeling remained throughout the entire cyto-
plasm of the Müller cells, extending to the OLM (Figure 1K, 
arrows). IB4-immunoreactive cells were detectable in the 
GCL and the INL (Figure 2D, arrows). The retinal structure 
and organization of the nuclei were well preserved after 9 
days of culture.

Effect of tumor necrosis factor alpha plus adalimumab on 
cultured neuroretinas: In the neuroretina explants exposed to 
TNFα and simultaneously treated with adalimumab (Figure 
1M–O), GFAP immunoreactivity was increased in astrocytes, 
identified by morphology and the absence of CRALBP 
expression (Figure 1O, arrows). Müller cells showed spots 
of anti-GFAP marker within the cell bodies that extended 
into the INL (Figure 1M, arrows). CRALBP expression 
was absent at the outermost retinal layers but still present 
at the inner ones (Figure 1N). IB4-labeled cells were present 
between the INL and the GCL and extended into the INL 
(Figure 2E, arrows). There was some retinal disorganization, 

Table 1. Porcine tumor necrosis factor alpha 
(TNFa) levels in culture supernatants from control 

organotypic neuroretina cultures as determined 
by enzyme-linked immunosorbent assay.

Days of culture TNFα % detected TNFα (pg/
ml) (mean ± SD)

1 100% 4.2±0.4
3 0% <3.7
5 0% <3.7
7 0% <3.7
9 0% <3.7

TNFα mean minimun detectable dose is 3.7 pg/ml. SD: standard 
deviation.

Figure 1. Retinal distribution of glial fibrillary acidic protein (GFAP, red; A, D, G, J, M) and cellular retinaldehyde-binding protein 
(CRALBP, green; B, E, H, K, N), and corresponding merged compositions (Merge; C, F, I, L, O), in fresh neuroretinal samples (A–C) and 
experimental 9 day culture conditions (D–O). Ada: adalimumab treated culture; DAPI: 4’,6-diamino-2-phenylindole dihydrochloride staining 
(blue); INL: inner nuclear layer; GCL: ganglion cell layer; ONL: outer nuclear layer; TNFα: tumor necrosis factor alpha treated culture; 
TNFα/Ada: tumor necrosis factor alpha plus adalimumab treated culture. 4’,6-diamino-2-phenylindole dihydrochloride (DAPI) staining 
(blue) was present in the nuclei of the ganglion cell layer (GCL), the inner nuclear layer (INL), and the outer nuclear layer (ONL). In fresh 
specimens, glial fibrillary acidic protein (GFAP) expression was present in glial cells in the inner retinal layers (A). Cellular retinaldehyde-
binding protein (CRALBP) was localized to the cytoplasm and extensions of the Müller cells (B), clearly visible along the outer limiting 
membrane (OLM; B, arrows). Retinal structure and cellular organization were adequately preserved before culturing. In the control cultures 
(D–F), GFAP expression increased (D) in the Müller cells and astrocytes (F, arrows). Müller cell branches at the ONL (D, arrowheads) and 
at the OLM (D, arrows) expressed GFAP; whereas CRALBP was reduced (E). Retinal tissue started to lose its characteristic organization. 
In cultures with tumor necrosis factor alpha (TNFα; G–I), GFAP was markedly upregulated (G). It appeared in Müller cell processes at the 
ONL (G, arrows) and crossing the OLM (G, asterisk). CRALBP was scarcely present in some Müller cells (H, arrows). Retinal cell nuclei 
were reduced and randomly distributed. Glial branches formed a layered structure, positive to anti-GFAP and anti-CRALBP markers (G 
and H, arrowheads). Cellular nuclei appeared along these membranes (I, arrows). Adalimumab (Ada) treatment (J–L) caused a reduction in 
GFAP expression (J) compared to control cultures (D). A few GFAP spots appeared in some Müller cells at the INL (J, arrows). CRALBP 
labeling appeared throughout the entire Müller cells to the OLM (K, arrows). Retinal structure and nuclei organization were preserved. 
TNFα cultures simultaneously treated with adalimumab (TNFα/Ada; M–O), showed GFAP upregulation in astrocytes (O, arrows). Whereas 
GFAP spots appeared in the cytoplasm of Müller cells into the INL (M arrows), CRALBP was present mainly at the inner layers (N). Scarce 
retinal disorganization was apparent. Scale bars: 20 µm.
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and the cellular nuclei were slightly less densely packed at 
the INL.

DISCUSSION

PVR is an anomalous scarring process related to ocular 
inflammation that occurs after RD [2,6]. Müller cells and 
macrophages seem to play an important role in its pathogen-
esis [6,46,47]. Cytokines potentially secreted by macrophages 
are implicated in PVR development, and TNFα, a proinflam-
matory cytokine, is considered a major effector [11-13,48]. 
In fact, our group previously reported increased reactive 
gliosis modifications in retinas cocultured with macrophages 
[35]. However, in cocultures of porcine retina with macro-
phages that did not produce significant TNFα levels, there 
were no appreciable retinal gliotic changes [49]. Therefore, 
TNFα could act as a signaling molecule, initiating the reac-
tive response of the glial cells. For this reason, inhibition of 
TNFα may be a new therapeutic strategy in retinal fibrosis 
prophylaxis.

Organotypic culture of the neural retina is an adequate 
tool for reproducing some of the cellular dynamics after RD 
[26,32-34]. There are some obvious limitations of this culture 
system such as the axotomy of ganglion cells, the absence of 
retinal and choroidal blood supply, and the absence of the 
retinal pigment epithelium. Nevertheless, the morphology 

and functionality of the organ are temporarily retained, and 
experimental conditions are under control [31]. Therefore, 
we consider neuroretinal organotypic cultures a good model 
to further develop our understanding of the roles played by 
different retinal cells and cell signaling in the development 
of retinal degeneration.

In the current study, the characterization of fresh neuro-
retinal explants and retinal modifications during culture were 
consistent with previous studies [50,51] and in vivo models of 
RD [36,51]. Furthermore, spontaneous and transient produc-
tion of TNFα by retinal cells detected in these experiments 
were also reported in organotypic cultures of the rat retina 
[17] and attributed to secretion by microglia. Retinal modi-
fications observed after TNFα addition resulted in greater 
hypertrophy of glial cells and a higher level of retinal disorga-
nization. Furthermore, the processes of Müller cells crossed 
the OLM and formed gliotic membranes in the subretinal 
space. Similar observations also occur in PVR [6,46] and 
have been described by our group when neuroretinas were 
cultured with macrophages [35]. Therefore, the secretion of 
TNFα by non-resident macrophages may be an integral part 
of the glial cell response in reactive gliosis and subretinal 
membrane formation. Thus, TNFα could be an important 
therapeutic target for PVR that has not yet been adequately 
explored.

Figure 2. Retinal cells labeled with the lectin IB4 from Griffonia simplicifolia (IB4, green) in fresh neuroretinal samples (A) and experimental 
9-day cultures (B–E). Ada: adalimumab treated culture; DAPI: 4’,6-diamino-2-phenylindole dihydrochloride staining (blue); INL: inner 
nuclear layer; GCL: ganglion cell layer; ONL: outer nuclear layer; TNFα: tumor necrosis factor alpha treated culture; TNFα/Ada: tumor 
necrosis factor alpha plus adalimumab treated culture. 4’,6-diamino-2-phenylindole dihydrochloride (DAPI) staining (blue) was present in 
the nuclei of the ganglion cell layer (GCL), the inner nuclear layer (INL), and the outer nuclear layer (ONL). IB4-labeled cells were present 
between the INL and the GCL and extended into the INL in the fresh samples and the 9-day culture experiments (A–E, arrows). Scale bars: 
20 µm.
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The adalimumab concentration used in these experi-
ments (10 µg/ml) was lower than the doses reported toxic 
after intravitreal injection in rabbits (5 mg/ml) [52,53], and 
were higher than the effective doses necessary to neutralize 
90% of TNFα [54]. In adalimumab-treated cultures, hyper-
trophy of glial cells was not evident, and retinal organization 
and Müller cell functionality related to CRALBP expression 
were preserved. This finding, which involves the inhibition 
of TNFα spontaneously produced by retinal cells, emphasizes 
the important molecular role of this cytokine in the develop-
ment of retinal reactive gliosis. Cultures treated with TNFα 
and adalimumab showed only the initial steps of glial cell 
modifications and slight retinal disorganization. Therefore, 
adalimumab considerably diminished TNFα-induced reactive 
gliosis and retinal degeneration during culture.

Microglia activation with subsequent cellular migration 
to the photoreceptor layer occurs after retinal damage [16]. 
In the present study, IB4-labeled cells, presumably microglia, 
showed a similar distribution through the retinal tissue in the 
fresh samples and under different culture experiments. In 
rat retinal cultures, activated microglia modifications were 
no longer observed after 7 days [17], which is in concor-
dance with our findings at 9 days of porcine retina culture. 
Evaluation of retinal microglia dynamics was not the main 
purpose of this study, and further research will be necessary 
to discern the contribution to retinal gliosis of these cells and 
the cytokines released by the cells.

Numerous drugs have been tested to inhibit cell prolif-
eration, membrane formation, and further contraction in 
animal models and cell cultures [8]. However, many have 
potentially severe side effects, and only a few have been used 
in clinical trials [2]. Recent promising studies have described 
a reduction in glial cell growth by an inhibitor of the protein 
kinase B/mammalian target of rapamycin pathway [55] or 
an inhibitor of the Rho-associated protein kinase pathway 
[30]. Nevertheless, the precise mechanism of action of both 
substances is unknown, and they have not been approved by 
the U.S. Food and Drug Administration.

In summary, our current data showed that adding 
exogenous TNFα to porcine neuroretina cultures upregu-
lates GFAP expression with downregulation of CRALBP. 
Adding exogenous TNFα also induced the disorganization of 
retinal structure and formation of gliotic membranes. These 
changes are typical of retinal reactive gliosis processes [5]. 
Adalimumab diminished TNFα-induced modifications and 
contributed to preserving retinal organization. Thus, the data 
presented here suggest that adalimumab is an effective agent 
for decreasing glial cell modifications and retinal degenera-
tion induced by TNFα, and therefore may represent a novel 

way to control retinal gliosis. Even though further studies 
are necessary, this represents an important step toward the 
potential clinical application of this TNF-blocker in retinal 
degeneration diseases.
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