

Received 30 June 2015 Accepted 1 July 2015

Edited by P. C. Healy, Griffith University, Australia

Keywords: crystals structure; ferrocene derivative; polymorph; conformation

CCDC reference: 1409866 Supporting information: this article has supporting information at journals.iucr.org/e

A new monoclinic polymorph of 1,1'-bis(diphenylthiophosphoryl)ferrocene

Yee Seng Tan, Chien Ing Yeo and Edward R. T. Tiekink*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia. *Correspondence e-mail: Edward.Tiekink@gmail.com

The title compound, $[Fe(C_{17}H_{14}PS)_2]$, is a second monoclinic polymorph ($P2_1/c$, with Z' = 1) of the previously reported monoclinic (C2/c, with Z' = 1/2) form [Fang *et al.* (1995). *Polyhedron*, **14**, 2403–2409]. In the new form, the S atoms lie to the same side of the molecule with the pseudo $S-P\cdots P-S$ torsion angle being -53.09 (3)°. By contrast to this almost *syn* disposition, in the C2/c polymorph, the Fe atom lies on a centre of inversion so that the S atoms are strictly *anti*, with a pseudo- $S-P\cdots P-S$ torsion angle of 180° . The significant difference in molecular conformation between the two forms does not result in major perturbations in the P—S bond lengths nor in the distorted tetrahedral geometries about the P atoms. The crystal packing of the new monoclinic polymorph features weak $Cp-C-H\cdots\pi(phenyl)$ interactions consolidating linear supramolecular chains along the *a* axis. These pack with no directional interactions between them.

1. Chemical context

Phosphanegold(I) dithiocarbamates, R_3 PAu(S₂CN R'_2), attract on-going interest owing to impressive biological activities against both cancer (Jamaludin *et al.*, 2013) and microbes (Sim *et al.*, 2014). It was in the course of these studies that crystals of the title compound, dppfS₂, an oxidation product of 1,1'bis(diphenylphosphane)ferrocene (dppf), were isolated as orange needles, being a side-product of a reaction, see *Synthesis and crystallization* for details. Crystallography shows the title compound to be a new monoclinic polymorph of a previously described *C*2/*c* form (Fang *et al.*, 1995). Herein, details of the new polymorph are described along with a comparison with the original polymorph. A discussion of the key structural characteristics of related dppf Y_2 , Y = 0, O, S and Se, structures ensues.

OPEN d ACCESS

2. Structural commentary

The molecular structure of $dppfS_2$ is shown in Fig. 1 and comprises two $Ph_2P=S$ units linked *via* the P atoms through a

Figure 1

The molecular structure of the new $P2_1/c$ polymorph of dppfS₂, showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

 $C_5H_4FeC_5H_4$ link. The S atoms lie to the same side of the molecule and might be described as having a *syn* conformation. When viewed down the P···P axis, the S atoms are gauche with the pseudo $S-P\cdots P-S$ torsion angle being -53.09 (3)°. This represents the major difference between dppfS₂ and its C2/c-dppfS₂ polymorph (Fang *et al.*, 1995). In the latter the Fe atom lies on a crystallographic centre of inversion, implying the S atoms are *anti* and that the pseudo $S-P\cdots P-S$ torsion angle is 180°.

The conformational differences in the polymorphs are highlighted in the overlay diagram shown in Fig. 2. The Fe atom is equally disposed from the centroids of the very nearly eclipsed Cp rings: Fe···Cg(C1–C5) and Cg(C6–C10) are 1.6487 (8) and 1.6451 (8) Å, respectively, and the Cg(C1– C5)···Fe···Cg(C6–C10) angle is 178.92 (5)°. The comparable parameters for the C2/c–dppfS₂ polymorph are 1.650 (3) Å and 180°, and the Cp rings are strictly staggered when viewed down the Cg(C1–C5)···Fe···Cg(C1–C5)ⁱ axis. In dppfS₂, the P=S bond lengths are experimentally distinct, *i.e.* P1=S1 of 1.9449 (6) Å is shorter than P2=S2 of 1.9530 (6) Å, with the former being equivalent to P1=S1 of 1.9384 (18) Å in C2/c– dppfS₂. Finally, the P1 and P2 atoms have distorted tetrahedral

Figure 2

Overlay diagram of the $P2_1/c$ (red image) and C2/c (green) polymorphs overlapped so that one Cp ring of each molecule is coincident.

Table 1
Hydrogen-bond geometry (A, $^{\circ}$).
Cg1 is the centroid of the C31–C36 benzene ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C2-H2\cdots Cg1^{i}$	0.95	2.92	3.6111 (18)	130

Symmetry code: (i) x - 1, y, z.

environments with the range of angles subtended at P1 of 103.94 (7)–113.78 (6)° being comparable to those subtended at P2, *i.e.* 105.55 (7)–114.92 (5)°; the equivalent range of angles in C2/c-dppfS₂ is 104.8 (2)–114.28 (15)°. In each case, the angles involving the S atom are wider than those involving C atoms only, and the narrowest angle always involves the two *ipso*-C atoms.

3. Supramolecular features

Globally, the crystal packing features columns of molecules aligned along the *a* axis. Based on the distance criteria employed in *PLATON* (Spek, 2009), the most notable intermolecular contact operating in the crystal structure is a Cp-C2-H2··· π (C31-C36) interaction, Table 1, that connects translationally related molecules into a supramolecular chain along the *a* axis, Fig. 3. Chains pack with no specific directional interactions between them, Fig. 4. In the *C*2/*c*-dppfS₂ polymorph, the most prominent directional interaction is a weak C-H···S contact. The crystal packing efficiencies calculated by *PLATON* (Spek, 2009) are 69.3 and 67.2%, respectively, indicating the more symmetric structure packs less efficiently.

4. Database survey

Subsequent to the report of the C2/c form by Fang *et al.* (1995), a second report appeared (Pilloni *et al.*, 1997). In the latter analysis, the authors suggested that Cc was the correct space group. The assignment of C2/c was later confirmed as being correct (Clemente & Marzotto, 2004).

The structures of several oxidation products of dppf, $Ph_2P(=Y)C_5H_4FeC_5H_4P(=Y)Ph_2$, Y = 0, O, S and Se, have been described in the crystallographic literature. The parent compound, *i.e.* with Y = lone pair, has the Fe atom situated on a centre of inversion (Casellato *et al.*, 1988). When Y = O, an

Figure 3 Supramolecular chain along the *a* axis sustained by $C-H\cdots\pi$ interactions shown as purple dashed lines.

Y	Symmetry	$Y - P \cdots P - Y$	Solvent	CSD refcode ^a	Reference
0	$\overline{1}$	180	_	KADXAO	Casellato et al. (1988)
0	$\overline{1}$	180	_	WARMUX	Pilloni et al. (1993)
0	_	155.57 (18)	H_2O	RUVJEX01	Bar et al. (2008)
0	$\overline{1}$	180	$2H_2O$	HATTUR	Munyejabo et al. (1994)
S	$\overline{1}$	180	-	ZEQSOD	Fang et al. (1995)
S	_	-53.09(3)	-	_	This work
Se	$\overline{1}$	180	-	KIHWAB	Arsenyan et al. (2012)
Se	1	180	CH_2Cl_2	RIPTIT	Pilloni et al. (1997)

Table 2	
Summary of structural data	(Å) for $Ph_2P(=Y)C_5H_4FeC_5H_4P(=Y)Ph_2$

Note: (a) Cambridge Structural Database (Groom & Allen, 2014), Version 5.35.

unsolvated form has been reported with the Fe atom again located on a centre of inversion (Pilloni *et al.*, 1993). A monohydrate (Bar *et al.*, 2008; Bolte *et al.*, 1997) as well as a dihydrate (Munyejabo *et al.*, 1994; Fang *et al.*, 1995) have also been described. In the former, the O atoms are approximately *syn* while the latter is centrosymmetric, *i.e.* resembling the situation with the Y = S polymorphs. Finally, when Y = Se, centrosymmetric structures are found in the unsolvated form (Arsenyan *et al.*, 2012) as well as in the CH₂Cl₂ monosolvate

Figure 4

Unit-cell contents shown in projection down the *a* axis. The C-H·· π contacts are shown purple dashed lines. One of the supramolecular chains shown in Fig. 3 has been highlighted in space-filling mode.

(Pilloni *et al.*, 1997). Clearly, there is significant conformational flexibility in the $Ph_2P(=Y)C_5H_4FeC_5H_4P(=Y)Ph_2$, Y = 0, O, S and Se, compounds suggesting a low energy barrier for the interchange from one conformation to another. The structural data for $Ph_2P(=Y)C_5H_4FeC_5H_4P(=Y)Ph_2$ are summarized in Table 2.

The dppfS₂ molecule can function as a ligand in metal complexes, often forming zero-dimensional mononuclear species (*e.g.* Gimeno *et al.*, 1995, 2000; Pilloni *et al.*, 1997) but sometimes binuclear species (Pilloni *et al.*, 1998). Two examples exist whereby dppfS₂ bridges metal toms to form one-dimensional coordination polymers (Gimeno *et al.*, 1998, 2000).

5. Synthesis and crystallization

Two solutions were prepared. Firstly, a solution sodium salt of piperazine dithiocarbamate (0.7 mmol) was prepared by dissolving piperazine (0.0582 g) in acetonitrile (50 ml). NaOH (112 μ l of 50% w/w) and CS₂ (84.6 μ l) were added. Chloroform (150 ml) was then added and the reaction mixture was stirred for 2 h. A second solution containing [1,1'-bis(diphenylphosphane)ferrocene]bis[chloridogold(I)] (1.4 mmol) was prepared by dissolving potassium tetrachloridoaurate(III) (1.06 g) in a solvent mixture of acetone and water (1:2, 45 ml). Drop-wise addition of sodium sulfite (0.71 g) in water (10 ml) followed. Upon discolouration, bis(diphenylphosphane)ferrocene (dppf, 0.78 g) in chloroform (25 ml) was added. After stirring for 15 mins, the resulting gold precursor was extracted with chloroform (150 ml). Acetonitrile (50 ml) was added to this to form solvent mixture of chloroform and acetonitrile (3:1). The solution containing the dithiocarbamate was added to that containing the gold precursor. The resulting mixture was stirred for 3 h. and then filtered. After three weeks, orange needles appeared, along with the precipitate, and these were subjected to the crystallographic study. Yield: 0.0890 g, 10.3% (based on dppf). M.p.: 519.5-519.9 K. IR: v(P=S) 628 (m).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Carbon-bound H-atoms were placed in calculated positions (C-H = 0.95 Å) and were

Table 3Experimental details.

$[Fe(C_{17}H_{14}PS)_2]$
618.47
Monoclinic, $P2_1/c$
100
8.7451 (3), 21.2453 (6), 15.4537 (5)
95.631 (3)
2857.32 (16)
4
Μο Κα
0.81
$0.25 \times 0.25 \times 0.25$
Agilent Technologies SuperNova Dual diffractometer with an Atlas detector
Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2013)
0.751, 1.000
31395, 6509, 5701
0.036
0.650
0.029, 0.073, 1.05
6509
352
H-atom parameters constrained
0.40, -0.24

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

included in the refinement in the riding-model approximation, with $U_{iso}(H)$ set to $1.2U_{equiv}(C)$.

Acknowledgements

This research is supported by the Trans-disciplinary Research Grant Scheme (TR002–2014 A) provided by the Ministry of Education, Malaysia.

References

- Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.
- Arsenyan, P., Petrenko, A., Oberte, K. & Belyakov, S. (2012). Chem. Heterocycl. Compd, 48, pp 1263–1266.
- Bar, A. K., Chakrabarty, R. & Mukherjee, P. S. (2008). Organometallics, 27, 3806–3810.
- Bolte, M., Naumann, F. & Hashmi, A. S. K. (1997). Acta Cryst. C53, 1785–1786.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Casellato, U., Ajo, D., Valle, G., Corain, B., Longato, B. & Graziani, R. (1988). J. Crystallogr. Spectrosc. Res. 18, 583–590.
- Clemente, D. A. & Marzotto, A. (2004). Acta Cryst. B60, 287-292.
- Fang, Z.-G., Andy, T. S., Wen, Y.-S., Liu, L.-K. & Mak, T. C. W. (1995). Polyhedron, 14, 2403–2409.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Modell. 19, 557-559.
- Gimeno, M. C., Jones, P. G., Laguna, A. & Sarroca, C. (1995). J. Chem. Soc. Dalton Trans. pp. 3563–3564.
- Gimeno, M. C., Jones, P. G., Laguna, A. & Sarroca, C. (1998). J. Chem. Soc. Dalton Trans. pp. 1277–1280.
- Gimeno, M. C., Jones, P. G., Laguna, A. & Sarroca, C. (2000). J. Organomet. Chem. 596, 10–15.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662– 671.
- Jamaludin, N. S., Goh, Z.-J., Cheah, Y. K., Ang, K.-P., Sim, J. H., Khoo, C. H., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). *Eur. J. Med. Chem.* 67, 127–141.
- Munyejabo, V., Postel, M., Roustan, J. L. & Bensimon, C. (1994). Acta Cryst. C50, 224–226.
- Pilloni, G., Corain, B., Degano, M., Longato, B. & Zanotti, G. (1993). J. Chem. Soc. Dalton Trans. pp. 1777–1778.
- Pilloni, G., Longato, B. & Bandoli, G. (1998). Inorg. Chim. Acta, 277, 163–170.
- Pilloni, G., Longato, B., Bandoli, G. & Corain, B. (1997). J. Chem. Soc. Dalton Trans. pp. 819–826.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Sim, J.-H., Jamaludin, N. S., Khoo, C.-H., Cheah, Y.-K., Halim, S. N. B.
- A., Seng, H.-L. & Tiekink, E. R. T. (2014). Gold Bull. 47, 225–236. Spek, A. L. (2009). Acta Cryst. D65, 148–155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2015). E71, 886-889 [doi:10.1107/S2056989015012682]

A new monoclinic polymorph of 1,1'-bis(diphenylthiophosphoryl)ferrocene

Yee Seng Tan, Chien Ing Yeo and Edward R. T. Tiekink

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2013); cell refinement: *CrysAlis PRO* (Agilent, 2013); data reduction: *CrysAlis PRO* (Agilent, 2013); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012), *QMol* (Gans & Shalloway, 2001) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

1,1'-Bis(diphenylthiophosphoryl)ferrocene

$[Fe(C_{17}H_{14}PS)_2]$ $M_r = 618.47$ Monoclinic, $P2_1/c$ a = 8.7451 (3) Å b = 21.2453 (6) Å c = 15.4537 (5) Å $\beta = 95.631$ (3)° V = 2857.32 (16) Å ³ Z = 4	Crystal data
$M_r = 618.47$ Monoclinic, $P2_1/c$ a = 8.7451 (3) Å b = 21.2453 (6) Å c = 15.4537 (5) Å $\beta = 95.631$ (3)° V = 2857.32 (16) Å ³ Z = 4	$[Fe(C_{17}H_{14}PS)_2]$
Monoclinic, $P2_1/c$ a = 8.7451 (3) Å b = 21.2453 (6) Å c = 15.4537 (5) Å $\beta = 95.631$ (3)° V = 2857.32 (16) Å ³ Z = 4	$M_r = 618.47$
a = 8.7451 (3) Å b = 21.2453 (6) Å c = 15.4537 (5) Å $\beta = 95.631 (3)^{\circ}$ $V = 2857.32 (16) \text{ Å}^{3}$ Z = 4	Monoclinic, $P2_1/c$
b = 21.2453 (6) Å c = 15.4537 (5) Å $\beta = 95.631 (3)^{\circ}$ $V = 2857.32 (16) \text{ Å}^{3}$ Z = 4	a = 8.7451 (3) Å
c = 15.4537 (5) Å $\beta = 95.631 (3)^{\circ}$ $V = 2857.32 (16) \text{ Å}^{3}$ Z = 4	<i>b</i> = 21.2453 (6) Å
$\beta = 95.631 (3)^{\circ}$ $V = 2857.32 (16) \text{ Å}^3$ Z = 4	c = 15.4537 (5) Å
$V = 2857.32 (16) Å^3$ Z = 4	$\beta = 95.631(3)^{\circ}$
Z = 4	$V = 2857.32 (16) Å^3$
	Z = 4

Data collection

Agilent Technologies SuperNova Dual diffractometer with an Atlas detector Radiation source: SuperNova (Mo) X-ray Source Mirror monochromator Detector resolution: 10.4041 pixels mm⁻¹ ω scan Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2013)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.073$ S = 1.056509 reflections 352 parameters 0 restraints F(000) = 1280 $D_x = 1.438 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 11974 reflections $\theta = 3.9-29.3^{\circ}$ $\mu = 0.81 \text{ mm}^{-1}$ T = 100 KPrism, orange $0.25 \times 0.25 \times 0.25 \text{ mm}$

 $T_{\min} = 0.751, T_{\max} = 1.000$ 31395 measured reflections 6509 independent reflections 5701 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{\max} = 27.5^{\circ}, \theta_{\min} = 2.8^{\circ}$ $h = -10 \rightarrow 11$ $k = -23 \rightarrow 27$ $l = -19 \rightarrow 20$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0304P)^2 + 1.6529P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.40$ e Å⁻³ $\Delta\rho_{min} = -0.24$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Fe	0.34255 (2)	0.23085 (2)	0.17509 (2)	0.01395 (7)
S1	0.24914 (5)	0.41754 (2)	0.09257 (3)	0.02424 (10)
S2	0.69563 (5)	0.15111 (2)	0.05280 (3)	0.02111 (10)
P1	0.10320 (5)	0.35615 (2)	0.12875 (3)	0.01579 (9)
P2	0.65005 (5)	0.13323 (2)	0.17155 (3)	0.01496 (9)
C1	0.16059 (18)	0.27653 (7)	0.11083 (10)	0.0166 (3)
C2	0.11134 (18)	0.21919 (7)	0.14866 (11)	0.0182 (3)
H2	0.0388	0.2156	0.1903	0.022*
C3	0.19051 (18)	0.16874 (8)	0.11258 (11)	0.0210 (3)
Н3	0.1802	0.1254	0.1262	0.025*
C4	0.28756 (19)	0.19377 (8)	0.05290 (10)	0.0203 (3)
H4	0.3530	0.1702	0.0196	0.024*
C5	0.27019 (18)	0.26013 (8)	0.05146 (10)	0.0179 (3)
Н5	0.3221	0.2887	0.0172	0.021*
C6	0.54850 (18)	0.19445 (7)	0.22183 (10)	0.0156 (3)
C7	0.56320 (18)	0.26062 (7)	0.20595 (10)	0.0165 (3)
H7	0.6280	0.2795	0.1674	0.020*
C8	0.46383 (19)	0.29294 (8)	0.25808 (11)	0.0200 (3)
H8	0.4509	0.3373	0.2604	0.024*
C9	0.38708 (19)	0.24804 (8)	0.30613 (10)	0.0202 (3)
H9	0.3140	0.2571	0.3460	0.024*
C10	0.43834 (18)	0.18708 (8)	0.28431 (10)	0.0185 (3)
H10	0.4056	0.1483	0.3070	0.022*
C11	0.07025 (18)	0.36206 (7)	0.24275 (10)	0.0172 (3)
C12	0.1599 (2)	0.40242 (8)	0.29758 (11)	0.0219 (3)
H12	0.2401	0.4260	0.2759	0.026*
C13	0.1318 (2)	0.40811 (9)	0.38407 (12)	0.0266 (4)
H13	0.1934	0.4355	0.4215	0.032*
C14	0.0144 (2)	0.37407 (9)	0.41629 (11)	0.0264 (4)
H14	-0.0051	0.3786	0.4754	0.032*
C15	-0.0743 (2)	0.33340 (8)	0.36210(11)	0.0237 (4)
H15	-0.1535	0.3095	0.3843	0.028*
C16	-0.04748 (19)	0.32759 (8)	0.27542 (11)	0.0204 (3)
H16	-0.1093	0.3001	0.2382	0.025*
C21	-0.08745 (18)	0.36448 (7)	0.07138 (10)	0.0176 (3)
C22	-0.1447 (2)	0.42511 (8)	0.05516 (11)	0.0220 (3)
H22	-0.0829	0.4607	0.0717	0.026*
C23	-0.2922 (2)	0.43325 (8)	0.01480 (11)	0.0254 (4)
H23	-0.3320	0.4745	0.0049	0.030*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C24	-0.3816 (2)	0.38158 (9)	-0.01103 (11)	0.0234 (4)
H24	-0.4826	0.3874	-0.0385	0.028*
C25	-0.32411 (19)	0.32144 (8)	0.00299 (11)	0.0227 (3)
H25	-0.3850	0.2860	-0.0158	0.027*
C26	-0.17703 (19)	0.31268 (8)	0.04459 (10)	0.0196 (3)
H26	-0.1380	0.2713	0.0547	0.023*
C31	0.82272 (18)	0.11941 (7)	0.24346 (10)	0.0177 (3)
C32	0.9158 (2)	0.06866 (8)	0.22515 (13)	0.0268 (4)
H32	0.8863	0.0421	0.1769	0.032*
C33	1.0508 (2)	0.05695 (9)	0.27696 (13)	0.0328 (4)
H33	1.1126	0.0218	0.2650	0.039*
C34	1.0959 (2)	0.09614 (10)	0.34592 (13)	0.0314 (4)
H34	1.1889	0.0880	0.3812	0.038*
C35	1.0063 (2)	0.14718 (9)	0.36387 (11)	0.0267 (4)
H35	1.0390	0.1746	0.4106	0.032*
C36	0.86822 (19)	0.15844 (8)	0.31345 (11)	0.0201 (3)
H36	0.8051	0.1928	0.3269	0.024*
C41	0.53591 (18)	0.06263 (7)	0.18021 (11)	0.0176 (3)
C42	0.53090 (19)	0.03306 (8)	0.26044 (11)	0.0205 (3)
H42	0.5890	0.0493	0.3107	0.025*
C43	0.4402 (2)	-0.02033 (8)	0.26646 (12)	0.0254 (4)
H43	0.4356	-0.0404	0.3211	0.031*
C44	0.3569 (2)	-0.04412 (8)	0.19325 (13)	0.0279 (4)
H44	0.2945	-0.0803	0.1979	0.033*
C45	0.3636 (2)	-0.01573 (8)	0.11305 (13)	0.0285 (4)
H45	0.3070	-0.0327	0.0628	0.034*
C46	0.4534 (2)	0.03775 (8)	0.10640 (11)	0.0230 (4)
H46	0.4584	0.0573	0.0515	0.028*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Fe	0.01307 (12)	0.01394 (11)	0.01483 (12)	-0.00055 (8)	0.00125 (9)	-0.00082 (8)
S 1	0.0231 (2)	0.0228 (2)	0.0270 (2)	-0.00807 (17)	0.00339 (18)	0.00380 (17)
S2	0.0243 (2)	0.0204 (2)	0.0197 (2)	-0.00123 (16)	0.00761 (17)	-0.00035 (15)
P1	0.0150 (2)	0.01549 (19)	0.0169 (2)	-0.00153 (15)	0.00182 (15)	0.00147 (15)
P2	0.0147 (2)	0.01333 (18)	0.0172 (2)	-0.00070 (15)	0.00332 (16)	-0.00081 (15)
C1	0.0142 (7)	0.0186 (7)	0.0168 (8)	-0.0006 (6)	0.0000 (6)	0.0003 (6)
C2	0.0128 (7)	0.0204 (8)	0.0213 (8)	-0.0018 (6)	0.0010 (6)	0.0006 (6)
C3	0.0172 (8)	0.0185 (8)	0.0262 (9)	-0.0025 (6)	-0.0038 (7)	-0.0035 (6)
C4	0.0187 (8)	0.0240 (8)	0.0175 (8)	0.0008 (7)	-0.0019 (6)	-0.0068 (6)
C5	0.0153 (8)	0.0237 (8)	0.0144 (7)	-0.0005 (6)	0.0004 (6)	0.0001 (6)
C6	0.0145 (7)	0.0158 (7)	0.0161 (7)	0.0008 (6)	0.0002 (6)	-0.0009 (6)
C7	0.0134 (7)	0.0159 (7)	0.0195 (8)	-0.0021 (6)	-0.0014 (6)	-0.0006 (6)
C8	0.0193 (8)	0.0171 (8)	0.0226 (8)	0.0010 (6)	-0.0031 (7)	-0.0045 (6)
C9	0.0204 (8)	0.0254 (8)	0.0144 (7)	0.0039 (7)	0.0002 (6)	-0.0033 (6)
C10	0.0189 (8)	0.0198 (8)	0.0167 (8)	0.0011 (6)	0.0010 (6)	0.0017 (6)
C11	0.0171 (8)	0.0169 (7)	0.0175 (8)	0.0045 (6)	0.0009 (6)	0.0013 (6)

supporting information

C12	0.0216 (8)	0.0196 (8)	0.0241 (9)	0.0020 (6)	0.0004 (7)	0.0009 (7)
C13	0.0279 (9)	0.0282 (9)	0.0225 (9)	0.0042 (7)	-0.0042 (7)	-0.0047 (7)
C14	0.0282 (9)	0.0328 (10)	0.0181 (8)	0.0119 (8)	0.0015 (7)	0.0017 (7)
C15	0.0214 (8)	0.0275 (9)	0.0229 (9)	0.0069 (7)	0.0063 (7)	0.0063 (7)
C16	0.0188 (8)	0.0211 (8)	0.0215 (8)	0.0028 (6)	0.0021 (7)	0.0008 (6)
C21	0.0170 (8)	0.0201 (8)	0.0157 (7)	0.0000 (6)	0.0024 (6)	0.0026 (6)
C22	0.0245 (9)	0.0190 (8)	0.0223 (8)	0.0011 (7)	0.0016 (7)	0.0013 (6)
C23	0.0271 (9)	0.0235 (8)	0.0257 (9)	0.0075 (7)	0.0030 (7)	0.0059 (7)
C24	0.0182 (8)	0.0338 (9)	0.0182 (8)	0.0023 (7)	0.0012 (7)	0.0066 (7)
C25	0.0188 (8)	0.0270 (9)	0.0220 (8)	-0.0049 (7)	0.0016 (7)	0.0033 (7)
C26	0.0186 (8)	0.0196 (8)	0.0208 (8)	0.0000 (6)	0.0036 (7)	0.0040 (6)
C31	0.0148 (7)	0.0173 (7)	0.0215 (8)	-0.0014 (6)	0.0039 (6)	0.0040 (6)
C32	0.0230 (9)	0.0218 (8)	0.0360 (10)	0.0026 (7)	0.0050 (8)	0.0002 (7)
C33	0.0226 (9)	0.0322 (10)	0.0444 (12)	0.0097 (8)	0.0064 (8)	0.0096 (9)
C34	0.0148 (8)	0.0469 (12)	0.0324 (10)	0.0004 (8)	0.0018 (7)	0.0179 (9)
C35	0.0211 (9)	0.0397 (10)	0.0194 (8)	-0.0078 (8)	0.0023 (7)	0.0066 (7)
C36	0.0167 (8)	0.0247 (8)	0.0195 (8)	-0.0018 (6)	0.0049 (6)	0.0031 (6)
C41	0.0163 (8)	0.0131 (7)	0.0239 (8)	0.0005 (6)	0.0041 (6)	-0.0022 (6)
C42	0.0169 (8)	0.0178 (8)	0.0269 (9)	0.0005 (6)	0.0028 (7)	0.0016 (7)
C43	0.0202 (9)	0.0201 (8)	0.0367 (10)	0.0017 (7)	0.0063 (8)	0.0074 (7)
C44	0.0203 (9)	0.0150 (8)	0.0489 (11)	-0.0025 (7)	0.0062 (8)	-0.0010 (8)
C45	0.0250 (9)	0.0218 (9)	0.0384 (10)	-0.0036 (7)	0.0008 (8)	-0.0094 (8)
C46	0.0244 (9)	0.0199 (8)	0.0250 (9)	-0.0006 (7)	0.0045 (7)	-0.0049 (7)

Geometric parameters (Å, °)

Fe—C6	2.0269 (15)	C13—C14	1.387 (3)
Fe—C10	2.0341 (16)	C13—H13	0.9500
Fe—C1	2.0372 (16)	C14—C15	1.387 (3)
Fe—C2	2.0383 (16)	C14—H14	0.9500
Fe—C7	2.0421 (15)	C15—C16	1.388 (2)
Fe—C3	2.0470 (16)	C15—H15	0.9500
Fe—C5	2.0495 (16)	C16—H16	0.9500
Fe—C9	2.0569 (16)	C21—C26	1.390 (2)
Fe—C4	2.0589 (16)	C21—C22	1.396 (2)
Fe—C8	2.0597 (16)	C22—C23	1.387 (2)
S1—P1	1.9449 (6)	C22—H22	0.9500
S2—P2	1.9530 (6)	C23—C24	1.383 (3)
P1—C1	1.7936 (16)	С23—Н23	0.9500
P1-C11	1.8171 (16)	C24—C25	1.382 (2)
P1-C21	1.8184 (16)	C24—H24	0.9500
P2—C6	1.7943 (16)	C25—C26	1.393 (2)
P2-C31	1.8089 (16)	С25—Н25	0.9500
P2-C41	1.8139 (16)	C26—H26	0.9500
C1—C5	1.433 (2)	C31—C36	1.390 (2)
C1—C2	1.436 (2)	C31—C32	1.397 (2)
С2—С3	1.419 (2)	C32—C33	1.382 (3)
С2—Н2	0.9500	С32—Н32	0.9500

C3—C4	1.417 (2)	C33—C34	1.379 (3)
С3—Н3	0.9500	С33—Н33	0.9500
C4—C5	1.418 (2)	C34—C35	1.382 (3)
C4—H4	0.9500	C34—H34	0.9500
С5—Н5	0.9500	C35—C36	1.392 (2)
С6—С7	1.435 (2)	С35—Н35	0.9500
C6—C10	1.438 (2)	C36—H36	0.9500
С7—С8	1.419 (2)	C41—C46	1.393 (2)
С7—Н7	0.9500	C41—C42	1.394 (2)
C8—C9	1.418 (2)	C42—C43	1.392 (2)
С8—Н8	0.9500	C42—H42	0.9500
C9—C10	1 422 (2)	C43-C44	1,380(3)
С9—Н9	0.9500	C43—H43	0.9500
C10—H10	0.9500	C44-C45	1.385(3)
C11-C12	1 392 (2)	C44—H44	0.9500
C11 - C16	1.392(2) 1 398(2)	C45 - C46	1.391(2)
C12-C13	1.398(2)	C45_H45	0.9500
С12—С13 С12—Ц12	1.588 (5)	C45—1145 C46 H46	0.9500
C12—n12	0.9300	C40—H40	0.9500
C6C10	41 47 (6)	C6-C7-Fe	68 78 (9)
C6— Fe — $C1$	168 45 (6)	C8 - C7 - H7	126.1
C10 - Fe - C1	149.39(7)	C6 - C7 - H7	126.1
$C6 - Fe - C^2$	148.69(6)	$E_0 = C_7 = H_7$	126.1
$C_10 F_2 C_2$	146.09(0) 115.49(7)	C_{0} C_{8} C_{7}	120.5 108.65 (14)
C10 Fe $C2$	113.49 (7)	$C_{2} = C_{3} = C_{1}$	103.05(14)
$C_1 - F_2 - C_2$	41.23 (0)	C_{7} C_{8} F_{8}	69.75 (9) 69.10 (9)
C_10 E ₂ C_7	41.30 (0) 60.21 (6)	$C_{1} = C_{3} = C_{3}$	125 7
C10 Fe $C7$	120.88 (6)	$C_{7} C_{8} H_{8}$	125.7
C1 - Fc - C7	129.88 (0)	$C_{1} = C_{0} = H_{0}$	123.7
C_2 — re — C_7	106.00 (0)	$\Gamma e - C \delta - H \delta$	12/.1 108 10 (14)
$C_{10} = C_{2}$	107.00(7)	$C_8 = C_9 = C_{10}$	100.19(14)
C10— Fc — $C3$	107.00(7)	C_{0} C_{0} F_{0}	68 80 (0)
C1 - Fe - C3	00.71(0)	C10-C9-Fe	08.80 (9) 125.0
C2— Fe — $C3$	40.00 (0)	C_{0}	125.9
C/-Fe-C3	149.88 (7)	C10-C9-H9	125.9
$C_0 - r_e - C_5$	129.07 (6)	Fe-C9-H9	120.9
C10— Fe — $C5$	107.58 (0)	C9 - C10 - C6	107.92 (14)
C1 - Fe - C5	41.00 (0)	C9-C10-Fe	70.53 (9)
C2—Fe—C5	68.94 (<i>1</i>)	$C_0 = C_{10} = F_0$	69.00 (9) 12C 0
C/-Fe-CS	108.78 (6)	C9—C10—H10	126.0
C_3 —Fe— C_5	68.22 (7)	C6-C10-H10	126.0
C6—Fe—C9	68.97 (6) 40.67 (6)	Fe—C10—H10	126.0
C10—Fe—C9	40.67 (6)	C12— $C11$ — $C16$	119.58 (15)
CI—Fe—C9	117.30 (7)	C12—C11—P1	119.96 (13)
C2—Fe—C9	107.89 (7)		120.43 (12)
C/—Fe—C9	68.40 (7)	C13—C12—C11	119.85 (16)
C3—Fe—C9	129.09 (7)	C13—C12—H12	120.1
C5—Fe—C9	151.07 (7)	C11—C12—H12	120.1
C6—Fe—C4	107.48 (6)	C14—C13—C12	120.49 (17)

C10—Fe—C4	128.77 (7)	C14—C13—H13	119.8
C1—Fe—C4	68.55 (6)	C12—C13—H13	119.8
C2—Fe—C4	68.40 (7)	C15—C14—C13	119.86 (16)
C7—Fe—C4	117.58 (7)	C15—C14—H14	120.1
C3—Fe—C4	40.37 (7)	C13—C14—H14	120.1
C5—Fe—C4	40.38 (6)	C14-C15-C16	120.05 (17)
C9—Fe—C4	167 28 (7)	C14—C15—H15	120.05 (17)
C6-Fe-C8	68 73 (6)	C16-C15-H15	120.0
C10 Ee $C8$	68 36 (7)	C_{15} C_{16} C_{11}	120.0
C1 Fe $C8$	100 16 (6)	C15 C16 H16	110.0
C_2 Fa C_3	109.10(0) 120.00(7)	C11 C16 H16	110.0
$C_{2} - C_{0} - C_{0}$	129.99(7)	$C_{10} = C_{10} = C_{10}$	119.9
$C^2 = C^2$	40.47(0)	$C_{20} = C_{21} = C_{22}$	119.08(13)
C5 = C8	107.04(7)	$C_{20} = C_{21} = P_1$	122.07(12)
C_{3}	118.02 (7)	C_{22} C_{21} P_1	118.24 (12)
C4 F: C8	40.28 (7)	$C_{23} = C_{22} = C_{21}$	119.82 (16)
C4—Fe—C8	151.13 (7)	C23—C22—H22	120.1
	106.75 (7)	C21—C22—H22	120.1
C1—P1—C21	105.88 (7)	C24—C23—C22	120.32 (16)
C11—P1—C21	103.94 (7)	C24—C23—H23	119.8
C1—P1—S1	112.74 (6)	С22—С23—Н23	119.8
C11—P1—S1	113.78 (6)	C25—C24—C23	120.12 (16)
C21—P1—S1	113.00 (5)	C25—C24—H24	119.9
C6—P2—C31	105.69 (7)	C23—C24—H24	119.9
C6—P2—C41	105.55 (7)	C24—C25—C26	120.06 (16)
C31—P2—C41	104.63 (7)	С24—С25—Н25	120.0
C6—P2—S2	114.92 (5)	С26—С25—Н25	120.0
C31—P2—S2	111.95 (6)	C21—C26—C25	119.97 (15)
C41—P2—S2	113.24 (6)	C21—C26—H26	120.0
C5—C1—C2	107.49 (14)	С25—С26—Н26	120.0
C5—C1—P1	122.88 (12)	C36—C31—C32	119.35 (15)
C2—C1—P1	129.63 (12)	C36—C31—P2	122.64 (12)
C5—C1—Fe	69.93 (9)	C32—C31—P2	117.97 (13)
C2—C1—Fe	69.42 (9)	C33—C32—C31	120.22 (18)
P1—C1—Fe	126.24 (8)	С33—С32—Н32	119.9
C3—C2—C1	107.67 (14)	С31—С32—Н32	119.9
C3—C2—Fe	70.00 (9)	C34—C33—C32	120.14 (18)
C1—C2—Fe	69.33 (9)	С34—С33—Н33	119.9
C3—C2—H2	126.2	C32—C33—H33	119.9
C1-C2-H2	126.2	C_{33} C_{34} C_{35}	120.27(17)
$Fe_{}C2_{}H2$	126.1	C33—C34—H34	119.9
C4-C3-C2	108 58 (14)	C_{35} C_{34} H_{34}	119.9
C4-C3-Fe	70 27 (9)	C_{34} C_{35} C_{36}	120.01 (17)
C_{1} C_{2} C_{3} F_{2}	60.21(0)	C_{34} C_{35} C_{30}	120.01 (17)
C_{4} C_{3} H_{3}	125.7	C36_C35_H35	120.0
$C_{7} = C_{3} = H_{2}$	125.7	$C_{30} - C_{30} - C$	120.0
$C_2 = C_3 = H_3$	125.7	$C_{31} = C_{30} = C_{33}$	120.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.3 108 26 (14)	$C_{25} = C_{26} = H_{26}$	120.0
$C_2 = C_4 = C_3$	108.20(14)	$C_{33} = C_{30} = H_{30}$	120.0
U3-U4-re	09.30 (9)	U40 - U41 - U42	119.88 (13)

C5—C4—Fe	69.45 (9)	C46—C41—P2	119.87 (13)
C3—C4—H4	125.9	C42—C41—P2	120.25 (12)
C5—C4—H4	125.9	C43—C42—C41	119.62 (16)
Fe—C4—H4	126.9	C43—C42—H42	120.2
C4—C5—C1	108.00 (14)	C41—C42—H42	120.2
C4—C5—Fe	70.17 (9)	C44—C43—C42	120.12 (17)
C1—C5—Fe	69.01 (9)	C44—C43—H43	119.9
C4—C5—H5	126.0	C42—C43—H43	119.9
C1—C5—H5	126.0	C43 - C44 - C45	120.61 (16)
Fe-C5-H5	126.4	C43—C44—H44	1197
C7-C6-C10	107 38 (14)	C45—C44—H44	119.7
C7-C6-P2	12542(12)	C44-C45-C46	119.71 (17)
C_{10} C_{6} P_{2}	123.12(12) 127.20(12)	C44— $C45$ — $H45$	120.1
C7 - C6 - Fe	69.92 (9)	$C_{46} C_{45} H_{45}$	120.1
$C_1 = C_0 = 10$	69.52(9)	$C_{45} = C_{45} = C_{45}$	120.1 120.03(17)
$P_2 C_6 F_8$	125.62(8)	$C_{45} = C_{46} = C_{41}$	120.05 (17)
12 - 0 - 10	125.02(0) 107.86(14)	$C_{45} = C_{40} = 1140$	120.0
C_{8} C_{7} E_{2}	107.00(14)	C41—C40—H40	120.0
C8-C/Fe	/0.45 (9)		
C11 D1 C1 C5	145 22 (12)	C1 P1 C11 C12	117 28 (12)
C11 - F1 - C1 - C5	-143.23(13)	C1 - F1 - C11 - C12	117.30(13)
$C_2I - PI - CI - C_3$	104.40(14) 10.57(15)	$C_2I = PI = CII = CI2$	-130.93(13)
SI = PI = CI = CS	-19.57(15)	SI - PI - CII - CI2	-7.64(13)
CII = PI = CI = C2	55.24 (17) 75.09 (10)	CI = PI = CII = CI6	-04.30 (14)
$C_2I = PI = CI = C_2$	-/5.08 (16)	$C_2I = PI = CII = CI6$	47.30 (14)
SI_PI_CI_C2	160.89 (13)	SI_PI_CII_CI6	170.61 (11)
CII—PI—CI—Fe	-57.11 (12)	C16—C11—C12—C13	0.0 (2)
C21—P1—C1—Fe	-167.42 (9)	P1—C11—C12—C13	178.28 (13)
S1—P1—C1—Fe	68.54 (11)	C11—C12—C13—C14	-0.3(3)
C5—C1—C2—C3	0.08 (17)	C12—C13—C14—C15	0.9 (3)
P1C1C3	179.67 (12)	C13—C14—C15—C16	-1.1(3)
Fe—C1—C2—C3	-59.75 (11)	C14—C15—C16—C11	0.8 (2)
C5—C1—C2—Fe	59.82 (11)	C12—C11—C16—C15	-0.3 (2)
P1—C1—C2—Fe	-120.58 (14)	P1—C11—C16—C15	-178.54 (12)
C1—C2—C3—C4	-0.18 (18)	C1—P1—C21—C26	16.91 (16)
Fe—C2—C3—C4	-59.51 (11)	C11—P1—C21—C26	-95.38 (14)
C1—C2—C3—Fe	59.33 (11)	S1—P1—C21—C26	140.79 (12)
C2—C3—C4—C5	0.21 (18)	C1—P1—C21—C22	-163.87 (13)
Fe—C3—C4—C5	-58.72 (11)	C11—P1—C21—C22	83.84 (14)
C2—C3—C4—Fe	58.93 (11)	S1—P1—C21—C22	-39.99 (15)
C3—C4—C5—C1	-0.16 (18)	C26—C21—C22—C23	1.9 (3)
Fe—C4—C5—C1	-58.83 (11)	P1-C21-C22-C23	-177.31 (13)
C3—C4—C5—Fe	58.66 (11)	C21—C22—C23—C24	-1.3 (3)
C2—C1—C5—C4	0.05 (17)	C22—C23—C24—C25	-0.2(3)
P1—C1—C5—C4	-179.57 (11)	C23—C24—C25—C26	1.2 (3)
Fe—C1—C5—C4	59.55 (11)	C22—C21—C26—C25	-1.0 (2)
C2—C1—C5—Fe	-59.50 (11)	P1-C21-C26-C25	178.21 (13)
P1—C1—C5—Fe	120.88 (12)	C24—C25—C26—C21	-0.6 (3)
C31—P2—C6—C7	91.76 (14)	C6—P2—C31—C36	-9.64 (15)

C41 P2 C6 C7	-15772(13)	CA1 D2 C31 C36	-120.81(14)
$C_{1} = 12 = C_{0} = C_{1}$	137.72(13)	$C_{1} = 12 = C_{21} = C_{30}$	120.81(14)
S2—P2—C6—C7	-32.20 (13)	S2—P2—C31—C30	110.17(13)
C31—P2—C6—C10	-88.52 (15)	C6—P2—C31—C32	172.81 (13)
C41—P2—C6—C10	21.99 (16)	C41—P2—C31—C32	61.64 (15)
S2—P2—C6—C10	147.51 (12)	S2—P2—C31—C32	-61.38 (14)
C31—P2—C6—Fe	-178.74 (9)	C36—C31—C32—C33	0.9 (3)
C41—P2—C6—Fe	-68.22 (11)	P2-C31-C32-C33	178.53 (14)
S2—P2—C6—Fe	57.30 (11)	C31—C32—C33—C34	-1.4 (3)
C10—C6—C7—C8	0.13 (17)	C32—C33—C34—C35	0.2 (3)
P2—C6—C7—C8	179.89 (11)	C33—C34—C35—C36	1.4 (3)
Fe—C6—C7—C8	59.83 (11)	C32—C31—C36—C35	0.8 (2)
C10—C6—C7—Fe	-59.70 (11)	P2-C31-C36-C35	-176.76 (13)
P2—C6—C7—Fe	120.06 (12)	C34—C35—C36—C31	-1.9 (2)
C6—C7—C8—C9	-0.11 (18)	C6—P2—C41—C46	107.95 (14)
FeC7C8C9	58.68 (11)	C31—P2—C41—C46	-140.78 (13)
C6—C7—C8—Fe	-58.79 (10)	S2—P2—C41—C46	-18.60 (15)
C7—C8—C9—C10	0.06 (18)	C6—P2—C41—C42	-72.25 (14)
FeC8C9C10	58.34 (11)	C31—P2—C41—C42	39.01 (15)
C7—C8—C9—Fe	-58.28 (11)	S2—P2—C41—C42	161.20 (11)
C8—C9—C10—C6	0.02 (18)	C46—C41—C42—C43	-1.6 (2)
Fe-C9-C10-C6	59.08 (11)	P2-C41-C42-C43	178.63 (13)
C8—C9—C10—Fe	-59.05 (11)	C41—C42—C43—C44	0.6 (3)
C7—C6—C10—C9	-0.09 (17)	C42—C43—C44—C45	0.6 (3)
P2C6C10C9	-179.85 (12)	C43—C44—C45—C46	-0.9 (3)
FeC6C10C9	-60.04 (11)	C44—C45—C46—C41	-0.1 (3)
C7C6C10Fe	59.94 (10)	C42—C41—C46—C45	1.3 (3)
P2C6C10Fe	-119.81 (13)	P2-C41-C46-C45	-178.86 (13)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C31–C36 benzene ring.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C2—H2···Cg1 ⁱ	0.95	2.92	3.6111 (18)	130

Symmetry code: (i) x-1, y, z.