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Pancreatic ductal adenocarcinoma is one of themost lethal types of tumour, and its incidence is risingworldwide. Although survival
can be improved when these tumours are detected at an early stage, this cancer is usually asymptomatic, and the disease only
becomes apparent aftermetastasis.The only prognostic biomarker approved by the FDA to date is carbohydrate antigen 19-9 (CA19-
9); however, the specificity of this biomarker has been called into question, and diagnosis is usually based on clinical parameters.
Tumour size, degree of differentiation, lymph node status, presence of distant metastasis at diagnosis, protein levels of KI-67 or C-
reactive protein, and mutational status of P53, KRAS, or BRCA2 are the most useful biomarkers in clinical practice. In addition to
these, recent translational research has provided evidence of new biomarkers based on different molecules involved in endoplasmic
reticulum stress, epithelial-to-mesenchymal transition, and noncoding RNA panels, especially microRNAs and long noncoding
RNAs.These new prospects open new paths to tumour detection usingminimally or noninvasive techniques such as liquid biopsies.
To find sensitive and specific biomarkers tomanage these patients constitutes a challenge for the research community and for public
health policies.

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the fourth
leading cause of cancer death in both sexes in the USA. In
2014, the number of deaths from PDAC in the USA was
39,590, and PDAC is the cause of 227,000 deaths per year
worldwide [1, 2]. Furthermore, a statistical analysis carried
out from 2001 to 2010 indicates that death rates are rising
[3]. Survival can be improved when tumours are detected at
an early stage: it has been reported that 5-year survival rate
is 50% when tumours are <2 cm [4] and close to 100% for
tumours <1 cm [5]. However, PDAC is usually asymptomatic,
and the disease only becomes apparent after the tumour
invades surrounding tissues or metastasises to distant organs
[6].

Cigarette smoking is the leading preventable extra-
genetic cause of PDAC and is believed to account for 20%
of PDAC cases [7]. Smoking shows a dose-related effect
on tumour development, increasing the risk of PDAC by

25% compared to nonsmokers [8]. Chronic pancreatitis also
increases the risk of PDAC, causing a cumulative risk of
4% after 20 years [9]. Additionally, diabetes was recently
considered a potential and early symptom of PDAC, as the
disease is observed in approximately 30% of all patients [10].
Also, several studies have investigated the specific role of
infectious agents that affect PDAC. Of these, the strongest
association has been reported forHelicobacter pylori: a meta-
analysis comprising seven studies found that presence of
Helicobacter pylori was correlated with as much as a 65%
increased risk of developing PDAC [11, 12].

For the moment, surgical resection remains the best
option to manage PDAC, and survival can be predicted
based on the pathological characteristics of the tumour such
as T, N, and M stage, grade of differentiation, or positive
resection margins [13]. However, there is a lack of validated
postsurgical prognostic or predictive markers to be used in
patient management [14]. In this context, several reports
of prognostic molecular biomarkers have appeared in the
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Figure 1: Molecular biomarkers in PDAC. Most of the molecular
biomarkers may have multiple functions. Some prognosis biomark-
ers could be used both for diagnosis (HOTAIR, PVT-1, GAS-5,
and KRAS) and for predicting treatment response (SPARC, GRP78,
TWIST, SNAIL, and miR-21).

literature. They include SMAD4, MUC1, and also predictive
markers including SPARC, HuR, or members of the BRCA2
family [15–17]. However, new high throughput genetic pro-
filing platforms have become a useful tool for analysing
whole DNA, RNA, and other factors that may or may not
be translated into protein, mainly microRNAs (miRNA). In
the era of genomics, transcriptomics, and proteomics, these
methodologies have helped to elucidate potential biomarkers
to manage patients with PDAC.

The NIH Biomarker Working Group defined biomarkers
as “a characteristic i.e., objectively measured and evaluated
as an indicator of normal biological processes, pathogenic
processes or pharmacologic responses to a therapeutic inter-
vention [18].” Biomarkers can be categorised as diagnostic,
prognosis, or predictive based on their function; however,
some biomarkers may have multiple functions (Figure 1,
Table 1). Diagnostic biomarkers are able to identify early
high-risk premalignant lesions. Prognostic biomarkers pro-
vide information about disease outcome in surgically resected
individuals not treated with chemotherapy, radiotherapy,
or their combinations. Predictive markers can discriminate
between responders to a given treatment and nonresponders.

2. Biomarkers Based on Clinical Variables

Very few biomarkers have been introduced in the routine
clinical management of PDAC.Themost commonly used are
based on clinical variables such as ECOG and other variables
like levels of CA19-9. The way the disease affects a patient’s
daily living abilities is determined according to the ECOG
(Eastern Cooperative Oncology Group) classification. ECOG
has been considered as an important independent prognostic
factor for patient outcome. This system published in 1982
was agreed upon as standard criteria to quantify functionality
of cancer patients in terms of their ability to have daily
regular and physical activity or provide self-care in order to
determine the ability to receive a certain treatment (Table 2)
[61]. Several clinical trials demonstrated that poor ECOG is

an independent negative prognostic factor in PDAC. Thus,
a baseline ECOG value of 2 was reported as an independent
adverse prognostic factor for survival (HR = 1.735;𝑃 < 0.001)
in one study that compared gemcitabine in combination with
oxaliplatin to gemcitabine alone [19]. A phase III clinical
trial comparing gemcitabine in combination with tipifarnib
to gemcitabine plus placebo revealed ECOG 0 to be a better
prognostic factor associated with survival (HR = 0.53; 𝑃 <
0.001) [20]. Recently, high ECOG (HR = 2.26; 𝑃 = 0.001)
was associated with poorer overall survival in patients treated
with FOLFOXIRI as a first-line treatment [21].

In addition to these, new molecular biomarkers have
appeared which can dissect disease information. Deletions,
mutations, translocations, amplifications, overexpression or
downregulation of DNA, RNA, protein, or noncoding RNA
factors are themost commonly described in scientific reports.
A selection of these molecular biomarkers is summarised
below to broaden the understanding of their functions and
potential clinical uses.

3. Carbohydrate Antigen 19-9

Elevated serum levels of carbohydrate antigen 19-9 (CA19-9)
have been confirmed as a prognostic biomarker for PDAC,
since patients with high values for this antigen presented
statistically significant poor survival. In one study, it was
suggested that elevated preoperative serum levels of CA19-
9 could predict time to recurrence after surgery (𝑃 =
0.0049) [22]. To date, the only FDA-approved biomarkers for
resectable PDAC are preoperative levels of CA19-9, and this
biomarker is used for both early detection and establishing
prognosis (𝑃 = 0.003) [23]. CA19-9 shows higher sensitiv-
ity for PDAC [62] compared to carcinoembryonic antigen
(CEA), carbohydrate antigen 50 (CA-50), and DUPAN-2
[63, 64]. However, the specificity of this marker has been
called into question since other clinical events such as biliary
obstruction can increase CA19-9 serum levels [65] and
because up to 10% of the population cannot synthesise this
antigen [66]. Nevertheless, CA19-9 is currently considered
the best serum marker for PDAC [67].

4. C-Reactive Protein

C-reactive protein is a protein produced by the liver as part of
the systemic inflammatory response and has been considered
a useful biomarker based on detection of inflammation
[68, 69]. High concentration of C-reactive protein has been
previously associated with shorter survival in unresectable
PDAC [24, 25]. Concerning resectable PDAC, it has been
reported that C-reactive protein levels ≤10mg/L after surgery
predicted better disease outcome (𝑃 < 0.001). However, ele-
vated preoperative C-reactive protein associated with higher
tumour size (𝑃 < 0.05), vascular invasion (𝑃 < 0.05), and
poor differentiation (𝑃 < 0.05) [26]. In another study, high
concentration of C-reactive protein (>5mg/L) associated
with a significantly reduced survival in unresectable PDAC
(𝑃 = 0.027) independently of biliary tract obstruction,
although no association was found in resectable cohort
[27]. Recently, it has been reported that the ratio between
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Table 2: Eastern cooperative oncology group classification of performance status.

Grade ECOG, performance status
0 Fully active, able to carry on all predisease performance without restriction

1 Restricted in physically strenuous activity but ambulatory and able to carry out work of a light or sedentary nature, for
example, light house work, office work

2 Ambulatory and capable of all self-care but unable to carry out any work activities; up and about more than 50% of waking
hours

3 Capable of only limited self-care; confined to bed or chair more than 50% of waking hours
4 Completely disabled; cannot carry on any self-care; totally confined to bed or chair
5 Dead

C-reactive protein and albumin is a significant prognostic
biomarker for resectable PDAC after operation (𝑃 = 0.035),
together with TNM classification (𝑃 = 0.003) [70]. Further-
more, C-reactive protein at low (<0.5mg/L), medium (≥0.5
and <2.0mg/L), and high levels (≥2.0mg/L) is associated
with good, moderate, and poor survival, respectively [28].

5. SPARC

The secreted protein acidic and rich in cysteine, abbreviated
as SPARC, is a crucial glycoprotein for PDAC proliferation,
invasion, metastasis, and chemoresistance [71, 72]. In one
study, expression of SPARC was not associated with patient
prognosis (𝑃 = 0.13), although the authors report that
patients whose tumour stroma expressed SPARC had shorter
median survival than patients whose tumour stroma lacked
this expression (15 months versus 30 months, resp., 𝑃 <
0.001) [29]. Another study supports the role of SPARC as a
prognostic factor, with a similarmedian survival to that of the
aforementioned study (11.5 versus 25.3 months; 𝑃 = 0.020)
[30]. Further research has associated stromal and cytoplasmic
SPARC expression with short survival and poor response to
gemcitabine [31].

6. KRAS

One of the causes of mutation in KRAS is the uncontrolled
activation of RAS via Hedgehog pathway through SMO
[73]. However, Hedgehog is not enough to trigger the RAS
pathway in pancreatic malignancies [74]. Another factor that
interacts and regulates the KRAS variants G12V and G12D is
ribonucleoprotein HNRNPA2B1 [75]. PDAC has the highest
incidence ofKRASmutation of all types of tumours, andmore
than 50% of patients could exhibit this abnormality [32, 76];
additionally, theKRASmutation is considered a critical event
for the initiation of this type of cancer [77].

The FDA approved Therascreen (Qiagen) and Cobas
480 (Roche) assays to detect KRAS mutations status [78,
79]. One study that compared both methodologies showed
98% of concordance between them, although Cobas 480
identified other mutations that were not detected by initial
Therascreen assay [80]. Apart from real-time PCR-based
assays [81, 82], othermethodologies based onpyrosequencing
[83, 84] have appeared to detect higher number of KRAS
mutations (Table 3).

One study performed with 272 patients with resectable
PDAC reported the following incidence in the differentKRAS
mutations: wild type 46.2%; GAT 31.2%; GTT 14.5%; CGT
5.6%; TGT 1.7%; CTG 0.4%; and AGT 0.4% [32]. Mutational
status is an independent biomarker for PDAC at multiple
steps, mainly for diagnosis and prognosis, although some
mutations should be taken into consideration as predictive
biomarker to specific drugs [85]. Mutation G12D indicates
poor prognosis (HR = 1.44; 𝑃 = 0.01) [33]. Recently,
determination ofKRASwas performed in circulating tumour
cells (CTCs) or in plasma circulating DNA (ctDNA) to
determine PDAC prognosis; the results of this study have
confirmed the utility of liquid biopsy as a promising material
for diagnosis [34, 35].

7. P53

The P53 phosphoprotein encoded by the gene TP53 is a
nuclear factor that inhibits cell proliferation through activa-
tion of apoptosis [86]. TP53 is mutated in 50% and 75% of
PDAC tumour cells [87, 88]. Loss of P53 has been argued
to be a negative prognostic factor in pancreatic neoplasm
[89–91]. However, the relation between TP53mutation status
and clinical outcome is rather controversial, so its role as
a prognostic biomarker has yet to be validated [36–40, 92,
93]. P53 overexpression showed a marked trend toward
significance when compared to survival (𝑃 = 0.07); however,
its high hazard ratio (HR = 1.8) suggests that it may be a
poor prognostic factor for PDAC [36]. Another study showed
statistically significant differences in disease-free survival
between patients with and without P53 overexpression (𝑃 =
0.029), although this comparison failed to reach clinical
significance, leading the authors to conclude that they did not
have enough evidence in support of P53 as a prognosis factor
[40].

8. KI-67

Ki-67 is a protein that is not expressed in resting cells, but
it is present during all cell cycle phases, including G1, S, G2,
and mitosis. This fact makes it an excellent clinical marker
for determining the growth fraction of a tumour [94]. Ki-
67 positive expression has been associated with pathologi-
cal characteristics such as TNM stage, surgical resectability,
or tumour grade in pancreatic cancer [42]. Kim et al. reported
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a statistical association between Ki-67 expression and recur-
rence after surgery within 1 year (𝑃 = 0.029) [43]. In contrast,
this marker, when quantified by immunohistochemistry [37,
44] or by flow cytometry [45], seems not to have any
association with survival.

9. BCL2 and BAX

BCL2 acts as an inhibitor of mitochondrial apoptosis, while
BAX has been reported as a proapoptotic factor. Preclinical
studies have concluded that increased BCL2 expression cor-
related with apoptotic resistance andmalignant phenotype in
pancreatic cancer [95, 96]. Interestingly, as opposed to other
neoplasms, BCL2 in PDAChas been clinically associatedwith
better outcome and longer survival [38, 41]. Contrary to these
results, another report did not show correlation between
BCL2 and survival improvement [46]. On the other hand, the
same study suggested BAX expression as a strong indicator
of longer survival (𝑃 < 0.001) even when BAX and BCL2
were found to be overexpressed in pancreatic tumour cells
[46].Thus, it seems that the role of BCL2 in pancreatic cancer
progression is still unclear, and further research is needed.

10. P16

Encoded by the CDKN2A gene, P16 is a tumour suppressor
factor that plays a crucial role in cell cycle regulation [97,
98]. Preclinical studies on pancreatic cancer cell lines and
xenografts have reported several alterations concerning P16
that include homozygous deletions, point mutations, and
inactivation by P16 promoter methylation [92]; most such
alterations are accompanied by loss of the wild-type allele
[99]. Clinical studies with PDAC patients support that lack
of P16 protein expression is associated with advanced disease
stage and poor survival (𝑃 < 0.05) [39, 47]. Furthermore,
P16 expression may differentiate chronic pancreatitis from
PDAC that frequently lacks P16 [48]. Interestingly, Ohtsubo
et al. found P16 positivity in 77%of PDAC tumours. However,
they settled on an association betweenP16mutation or hyper-
methylation and shorter patient survival (𝑃 < 0.05) [49].
Concerning associations with clinicopathological character-
istics, studies have shown several discrepancies. Loss of P16
expression was associated with lymph node metastasis (𝑃 =
0.040), more advanced stage (𝑃 = 0.015) [40], and greater
tumour size [49]. On the other hand, loss of P16 is associated
with poor differentiation grade (𝑃 < 0.01) but not with other
clinicopathological characteristics, including clinical stage,
tumour location, resectability, and survival [48].

11. DPC4/SMAD4

DPC4 (Deleted in Pancreatic Cancer 4) is a truncated protein
encoded by a mutated form of the SMAD4 gene located in
the human chromosome 18. It has been considered a tumour
suppressor gene and has been found to be highly mutated
in colorectal cancer and PDAC [100]. The signalling pathway
triggered by TGF-𝛽 has become of great interest concerning
DPC4. A nonsense mutation in SMAD4 generates a C-
terminal truncation of 38 amino acids in the DPC4 protein,

and it has been detected in 55% of patients with PDAC
[101]. The mutant DPC4 is unable to be recruited to DNA by
transcription factors and thus cannot form transcriptionally
active DNA-binding complexes [102]. These mutations acti-
vate the RB pathway involved in cellular proliferation [103].
It has been suggested that inactivation of SMAD4 occurs as a
late event in neoplastic progression [104]. DPC4 inactivation
resulted in a reduction in survival after surgical resection in
PDAC (𝑃 = 0.047) [32]. Tascilar et al. also confirmed that
PDAC patients with SMAD4 protein expression had signi-
ficantly longer survival than those lacking expression of the
protein (𝑃 = 0.03) [50]. Furthermore, the frequency of loss
of SMAD4 expression is different in various locations of the
hepatobiliopancreatic cancers, so tumour origin may merit
consideration analysing this factor [104]. In contrast, another
study suggested that preoperative assessment of SMAD4
mutation associated with resectability (𝑃 < 0.0001) and with
improved survival (𝑃 < 0.0001) [51].

12. BRCA2

BRCA2 is a tumour suppressor gene identified as a factor for
heritable cancer susceptibility [105]. The role of BRCA2 is
focused on regulation of RAD51 recombination in response
to DNA damage and regulates sister chromatid cohesion
and/or alignment [106]. Initially, BRCA2 mutations were
associated with breast and ovarian cancer [107, 108], but these
alterations were also associated with risk of familial PDAC.
Hahn et al. reported that 19% of the families they studied
(range 7–39%) had either a mutation or a variant of BRCA2
[109]. Furthermore, the probability of finding a germline
mutation of BRCA2 in a PDAC patient is between 6% and
12% when the patient has a first-degree relative diagnosed
with PDAC [52]. The most common mutations found in
pancreatic cancer patients are the 6174delT frameshift muta-
tion, 6158insT mutation, splice site mutation 16-2A>G, and
the splice site mutation 15-1G>A [52, 110]. BRCA2 inactiva-
tion has been reported to be a late event in pancreatic
tumorigenesis [111] and suffices to initiate PDAC driven by
KRASmutation G12D or disrupted TP53 [112, 113].

It seems that BRCA2 is a high-risk factor for pancreatic
cancer development but has not been related to patient
outcome or treatment response.

13. Noncoding RNAs

Over the last few years, noncoding RNA (ncRNA), espe-
cially microRNAs (miRNAs) and long noncoding RNAs
(lncRNAs), has become a new diagnostic, prognostic, and
predictive tool for pancreatic cancer. Several miRNAs have
been related to cell proliferation, invasion, and metastasis,
the most relevant of which are miR-21, miR-155, and miR-34.
The overexpression of miR-21 was associated with a shorter
disease-free survival in patients who received adjuvant gem-
citabine after surgical resection [114], andmiR-21 overexpres-
sion predicts resistance to 5-fluorouracil [115]. Furthermore,
high miR-21 levels in plasma were associated with poor out-
come in those patients treated with induction chemotherapy
followed by chemoradiotherapy [53]. MiR-155 was found
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to be overexpressed in PDAC and could be used as an
early diagnostic biomarker [54].Moreover, miR-155 represses
expression of nuclear protein 1 induced by P53 (TP53INP1),
and it has been shown how its restoration inhibits PDAC
tumour development [116]. Pang et al. reported that miR-
155 is able to reprogram normal fibroblasts into pancreatic
cancer-associated fibroblasts [117]. These findings highlight
the great potential of miR-155 as a future drug target. MiR-34
is able to restore partial activity of P53 inP53-deficient human
pancreatic cancer cells [118].

HOTAIR, PVT-1, MALAT-1, and GAS5 are some of most
widely studied lncRNAs in pancreatic cancer. Concerning
HOTAIR, its overexpression has been described as a poor
prognostic factor in PDAC and recently has been proposed as
a salivary biomarker for early diagnosis with PVT-1 expres-
sion. Surprisingly, both lncRNAs were downregulated after
surgical resection, which suggests their potential for use as
tumour recurrence biomarkers after operation [55].MALAT-
1 is potential oncogenic lncRNA involved in proliferation,
migration, and invasion [119] and promotes undifferentiated
phenotype of pancreatic tumour cells [120]. GAS5 (growth
arrest-specific 5) is a potential tumour suppressor factor that
negatively regulates CDK6 and is significantly decreased in
PDAC tissues compared to untransformed tissues [121].

All the aforementioned miRNAs and lncRNAs could
serve as diagnostic and prognostic factors, complementing
clinical and pathological parameters in the effort to predict
the outcome of patients with pancreatic cancer. Moreover,
these factors could be quantified from a whole panel and
detected from biofluids, thus making them easily imple-
mented in routine clinical diagnosis [122].

14. Endoplasmic Reticulum Stress
Response Proteins

The main functions of endoplasmic reticulum (ER) include
synthesis, folding, and modification of proteins [123]. ER
stress is induced by glucose deprivation, oxidative stress,
or infection. These phenomena lead to accumulation of
unfolded or misfolded proteins in the ER lumen and trigger
pancreatic cell dysfunction and apoptosis [124]. To counteract
ER stress and induce survival, a response mechanism has
emerged [125]. ATF6𝛼 and GRP78 are proteins that are
needed to induce response to ER stress. In normal conditions,
ATF6𝛼 is linked to GRP78; however, in conditions of ER
stress, which are critical for pancreatic cells, both proteins
dissociate. ATF6𝛼 is activated in Golgi apparatus [126],
migrates to the nucleus, and transcribes survival genes to
neutralise ER stress, avoiding apoptosis and promoting cell
survival [127, 128]. Furthermore, ATF6𝛼 is considered an
important component in the VEGF-induced vascularization
and induces tumour cell survival and angiogenesis [129].
Recently, our group reported a protein expression signature
based on high expression of ATF6𝛼 and low expression of P38
as a poor prognosis biomarker associated with shorter time
to recurrence after surgery for resectable PDAC [56]. GRP78
is a member of the heat-shock protein 70 (HSP70) family
and acts as a chaperone that promotes cell proliferation,
invasion, metastasis, and drug resistance inmultiples types of

cancer [130]. In PDAC, GRP78 has been suggested as a poor
prognosis biomarker due to its role in proliferation, migra-
tion, and invasion of tumour cells [57] and as a predictive
factor for chemoresistance to gemcitabine-based treatment
[131]. Such findings open possibilities for new therapeutic
strategies based on blocking the activity of GRP78.

15. Epithelial-to-Mesenchymal
Transition Factors

Epithelial-to-mesenchymal transition (EMT) involves the
changes that allow conversion from epithelial-to-mesenchy-
mal-like phenotype [132]. In pancreatic tumours, an
increased number of EMT positive cells are associated with
poor survival [133]. It is one of the phenomena that sub-
serve stimulation of tumour cells to metastasise to distant
organs in the early stages of disease [134, 135]. Some of the
crucial factors involved in EMT are TWIST and SNAIL
[135–137]. These two factors are necessary for initiation and
progression of primary PDAC, their downregulation has
been reported to increase survival in preclinical models, and
they have also been reported to confer sensitivity to gem-
citabine and irradiation [138–142]. However, knockout of
these EMT factors does not reduce metastasis in PDAC
[138]. On the other hand, vimentin and E-cadherin are also
considered significant proteins associated with EMT. Vimen-
tin expression in tumour cells is a sign ofmesenchymal differ-
entiation [143] and then associated with shorter survival
[144]. In fact, vimentin expression in tumour cells from
resected PDAC patients is an indicator of poor outcome (𝑃 <
0.01) and was associated with poorly differentiated tumour
phenotype (𝑃 < 0.01) [58]. The lack of E-cadherin expres-
sion is linked to both poor differentiation tumour histology
and poor outcome in PDAC patients [59, 145]. In one study,
partial and complete loss of E-cadherin expression showed
statistically significant association with poor survival of
PDAC patients (𝑃 = 0.009 and 𝑃 = 0.005, resp.) [60]. These
findings suggest that some proteins involved in EMT could
be considered as biomarkers of poor prognostic in PDAC
and subsequently be potentially used to design target-specific
drugs in the near future.

16. Conclusions

PDAC generally arises from other neoplasms, including
pancreatic intraepithelial and intraductal papillary mucinous
andmucinous cystic neoplasms [146]. An early diagnosis and
the possibility of resection are themilestones formanagement
of these aggressive neoplasms. To date, both diagnosis and
prognosis are based on clinicopathologic parameters like
tumour size, grade of differentiation, lymph node status,
or presence of distant metastasis at diagnosis [13]. Recent
advances in translational research are scarcely implemented
in routine clinical practice, and only those patients with
high risk for development of PDAC gain access to genetic
screening [147].

After surgical resection, there are no validated prognostic
or predictive markers to be used in patient management [14].
Used widely, CA19-9 is the only FDA-approved biomarker
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in PDAC [23]. By contrast, its low specificity brings a high
number of false positives, which has caused its utility to be
called into question, and its use is restricted to detection
of recurrence after operation [148]. Recently, a three-marker
signature based on levels of CA19-9, IGF-1, and albumin has
shown a sensitivity of 93.6% and specificity of 95% when
differentiating PDAC patients from other pancreatic diseases
[149].

Novel molecular biomarkers must allow for quantifi-
cation by means of minimally or noninvasive techniques.
New molecules detected in liquid biopsies will be used to
diagnose PDAC patients and will replace single markers with
multimarker panels (Figure 1) [122].

Protein detection has been the gold-standard method-
ology for pathological diagnosis. Nowadays, immunohisto-
chemistry is losing favour relative to qRT-PCR, and it shows
that in situ hybridisation, microarray, and deep-sequencing
will be considered the best tools for pathological diagnosis in
the future (Table 1).

On the other hand, biomarkers studies sometimes lead to
controversial results. Therefore, new biomarkers and larger
validation cohorts are required. In addition, only biomarkers
that combine high-sensitivity and specificity and being highly
cost-effective will be incorporated in healthcare systems.
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[37] K. Mäkinen, T. Hakala, P. Lipponen, E. Alhava, and M. Eske-
linen, “Clinical contribution of bcl-2, p53 and Ki-67 proteins
in pancreatic ductal adenocarcinoma,”Anticancer Research, vol.
18, no. 1, pp. 615–618, 1998.

[38] Y. Nio, M. Dong, C. Iguchi et al., “Expression of Bcl-2 and
p53 protein in resectable invasive ductal carcinoma of the
pancreas: effects on clinical outcome and efficacy of adjuvant
chemotherapy,” Journal of Surgical Oncology, vol. 76, no. 3, pp.
188–196, 2001.

[39] B. Gerdes, A. Ramaswamy, A. Ziegler et al., “p16INK4a is a pro-
gnostic marker in resected ductal pancreatic cancer: an analysis
of p16INK4a, p53, MDM2, an Rb,” Annals of Surgery, vol. 235,
no. 1, pp. 51–59, 2002.

[40] J. Jeong, Y. N. Park, J. S. Park, D.-S. Yoon, H. S. Chi, and B. R.
Kim, “Clinical significance of p16 protein expression loss and
aberrant p53 protein expression in pancreatic cancer,” Yonsei
Medical Journal, vol. 46, no. 4, pp. 519–525, 2005.

[41] R. J. Bold, K. R. Hess, A. S. Pearson et al., “Prognostic factors
in resectable pancreatic cancer: p53 and Bcl-2,” Journal of
Gastrointestinal Surgery, vol. 3, no. 3, pp. 263–277, 1999.

[42] J. Lundin, S. Nordling, K. Von Boguslawsky, P. J. Roberts, and
C. Haglund, “Prognostic value of Ki-67 expression, ploidy and
S-phase fraction in patients with pancreatic cancer,” Anticancer
Research, vol. 15, no. 6B, pp. 2659–2668, 1995.

[43] H. Kim, C. Y. Park, J. H. Lee, J. C. Kim, C. K. Cho, and H. J.
Kim, “Ki-67 and p53 expression as a predictive marker for early
postoperative recurrence in pancreatic head cancer,” Annals of
Surgical Treatment and Research, vol. 88, no. 4, pp. 200–207,
2015.
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