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Abstract  
Numerous studies have shown that many patients who suffer from type 2 diabetes mellitus exhibit cognitive dysfunction and neuro-
nal synaptic impairments. Therefore, growing evidence suggests that type 2 diabetes mellitus has a close relationship with occurrence 
and progression of neurodegeneration and neural impairment in Alzheimer’s disease. However, the relationship between metabolic 
disorders caused by type 2 diabetes mellitus and neurodegeneration and neural impairments in Alzheimer’s disease is still not fully deter-
mined. Thus, in this study, we replicated a type 2 diabetic animal model by subcutaneous injection of newborn Sprague-Dawley rats with 
monosodium glutamate during the neonatal period. At 3 months old, the Barnes maze assay was performed to evaluate spatial memory 
function. Microelectrodes were used to measure electrophysiological function in the hippocampal CA1 region. Western blot assay was 
used to determine expression levels of glutamate ionotropic receptor NMDA type subunit 2A (GluN2A) and GluN2B in the hippocampus. 
Enzyme-linked immunosorbent assay was used to determine levels of interleukin-1β, tumor necrosis factor α, and interleukin-6 in the hip-
pocampus and cerebral cortex, as well as hippocampal amyloid beta (Aβ)1–40 and Aβ1–42 levels. Our results showed that in the rat model of 
type 2 diabetes mellitus caused by monosodium glutamate exposure during the neonatal period, latency was prolonged and the number of 
errors increased in the Barnes maze. Further, latency was increased and time in the escape platform quadrant shortened. Number of times 
crossing the platform was also reduced in the Morris water maze. After high frequency stimulation of the hippocampus, synaptic trans-
mission was inhibited, expression of GluN2A and GluN2B were decreased in the hippocampus, expression of interleukin 1β, interleukin 6, 
and tumor necrosis factor α was increased in the hippocampus and cortex, and levels of Aβ1–40 and Aβ1–42 were increased in the hippocam-
pus. These findings confirm that type 2 diabetes mellitus induced by neonatal monosodium glutamate exposure results in Alzheimer-like 
neuropathological changes and further causes cognitive deficits and neurodegeneration in young adulthood. 
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Graphical Abstract   

Type 2 diabetes mellitus caused by monosodium glutamate (MSG) exposure during neonatal period led to 
cognitive deficits and Alzheimer-like neuropathological impairments in ~3-month-old Sprague-Dawley 
rats
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Introduction 
Type 2 diabetes mellitus (T2DM) is one of the most com-
mon glycometabolic disorders (Chen et al., 2011) and is 
characterized by insulin resistance that reflects a relative 
insulin deficiency (Kahn, 2003; Muoio and Newgard, 2008). 
Like Alzheimer’s disease (AD), T2DM can also cause a 
cognitive disorder and impaired neuronal synaptic struc-
ture and function (Luchsinger, 2012). Metabolic disorders 
(including hyperglycemia, hyperinsulinemia, and insulin 
resistance caused by T2DM) are considered to be indepen-
dent risk factors for developing AD (Haan, 2006; Vagelatos 
and Eslick, 2013). Moreover, epidemiological surveys have 
found that 70–80% of patients with AD have T2DM or 
show blood glucose or insulin level abnormalities (Janson 
et al., 2004; Mwamburi and Qiu, 2016). Thus, an increasing 
number of studies have considered that metabolic disor-
ders caused by T2DM have a close relationship with the oc-
currence and progression of neurodegeneration and neural 
impairment in AD (Barbagallo and Dominguez, 2014; Sri-
dhar et al., 2015). 

AD is the most common neurodegenerative disorder in 
the elderly and is characterized clinically by progressive de-
terioration of memory and cognitive dysfunction (Scheltens 
et al., 2016) caused by neural loss and degeneration, extra-
cellular precipitation of amyloid beta (Aβ), and intracellular 
tau hyperphosphorylation (Nisbet et al., 2015; Lewis and 
Dickson, 2016; Selkoe and Hardy, 2016). Diabetes mellitus 
shares many pathophysiological similarities with AD (Bahr-
mann et al., 2012; Barbagallo and Dominguez, 2014). These 
similarities include degenerative processes, Aβ aggregation, 
mitochondrial dysfunction, dyslipidemia, protein hyper-
phosphorylation, oxidative stress response, and inflam-
matory response (Li and Hölscher, 2007; Blázquez et al., 
2014; De Felice and Ferreira, 2014; Mushtaq et al., 2014), 
which can lead to neural impairment and degeneration. 
Even if hyperglycemia cannot cause diabetic symptoms 
in the early stage of T2DM, it can lead to central nervous 
system impairment and aggravate cognitive dysfunction 
(Cox et al., 2005; Biessels et al., 2014; Hamed, 2017). Dis-
rupted insulin metabolism is also associated with cognitive 
dysfunction and synaptic impairment (Gispen and Biessels, 
2000; Zhao et al., 2004; de la Monte and Wands, 2005; Gril-
lo et al., 2015). Meanwhile, several studies have found that 
abnormal insulin levels and disruption of insulin receptor 
signal transduction pathways can cause reduced Aβ deg-
radation, increased Aβ levels (Gasparini et al., 2001; Farris 
et al., 2003; Miller et al., 2003), and accelerated tau hyper-
phosphorylation via activation of glycogen synthase kinase 
3 beta (Schubert et al., 2004; Planel et al., 2007; Liu et al., 
2011). In addition, hyperinsulinemia has been found in pa-
tients with AD and an animal model of AD (Hiltunen et al., 
2012; Barron et al., 2013; Mwamburi and Qiu, 2016). Many 
studies have also observed insulin insensitivity and reduced 
insulin receptor activity in the brain of AD patients (Bosco 
et al., 2011; Schioth et al., 2012; Blázquez et al., 2014). Be-
cause of disordered insulin and insulin signaling pathways 

in the AD brain, AD was even thought to be type 3 diabetes 
in a study conducted by Steen et al. (2005). Consequently, 
further understanding of the relationship between meta-
bolic disorders caused by diabetes mellitus and neuropathy 
in AD has positive implications for research and clinical 
treatment of AD and diabetes. 

Monosodium glutamate (MSG)-treated rodents are used 
as an animal model of T2DM for the study of glycometa-
bolic diseases (Ribeiro et al., 1997; Iwase et al., 1998). Pre-
vious studies have reported that MSG exposure can cause 
cognitive dysfunction in an animal model (Sasaki-Hamada 
et al., 2015; Madhavadas et al., 2016; Franco et al., 2017). 
However, none of these studies have examined the occur-
rence and progression of neurodegeneration and neural 
impairments in AD. Indeed, we are interested in whether 
metabolic disorders induced by MSG exposure can cause 
cognitive deficits and Alzheimer-like neuropathological 
impairments and neurodegeneration. In particular, we are 
interested in the effects of neonatal MSG exposure on cog-
nitive deficits and neural function and in the underlying 
links between metabolic disorders caused by T2DM and 
AD neuropathy.

In this study, we investigated the effects of T2DM caused 
by MSG on cognitive capacity and synaptic function of 
Sprague-Dawley (SD) rats. Further, we investigated the 
links between metabolic disorders caused by T2DM and 
neuropathy of AD using behavioral, electrophysiology, mo-
lecular biology, and enzyme-linked-immunosorbent assay 
(ELISA) tests in SD rat models of T2DM. 

Materials and Methods
Animals
Ten 18-day-old pregnant SD rats were obtained from the 
Laboratory Animal Center of Henan Province of China (li-
cense number: SCXK (Yu) 2015-0004). In total, 20 neona-
tal male SD rats were used in this study. Neonatal rats were 
selected from 10 different litters. Based on treatments with 
or without MSG (Sigma-Aldrich, St. Louis, MO, USA), all 
pups were randomly divided into two groups. Experimen-
tal pups were administered 50% water-soluble MSG by 
subcutaneous injection at a dosage of 4 mg/g body weight 
at postnatal days 1, 3, 5, 7, and 9. Control pups were treat-
ed with the same volume of normal saline (0.008 mL/g). 
All animals were housed in polypropylene cages (4–5 rats 
per cage), and maintained in a light cycle-controlled (12-
hour light/dark cycle) environment with 23 ± 1°C and 50 
± 10% relative humidity. All pups were fed by their moth-
er until weaning at 28 days and were then allowed free 
access to regular diet and water. All animal experiments  
conformed to the ‘Policies on the Use of Animals and Hu-
mans in Neuroscience Research’ revised and published by 
the Society for Neuroscience in 1995, and the animal study 
was approved by the Academic Review Board of Henan 
Medical College of China (approval number: 170301001). 
All rats were sacrificed at the end of behavioral tests for 
further experiments.



1997

Jin L, Li YP, Feng Q, Ren L, Wang F, Bo GJ, Wang L (2018) Cognitive deficits and Alzheimer-like neuropathological impairments during 
adolescence in a rat model of type 2 diabetes mellitus. Neural Regen Res 13(11):1995-2004. doi:10.4103/1673-5374.239448

Blood sample assays
Blood samples of all rats were collected from the tail vein 
after fasting for 12 hours at 3 months old. Levels of fasting 
blood glucose (FBG) were measured using a glucose test 
meter (LifeScan, Inc., New Brunswick, NJ, USA). Levels of 
fasting insulin (FINS) were determined using a radioimmu-
noassay kit (Chinese Institute of Atomic Energy, Beijing, 
China). The insulin sensitivity index (ISI) was calculated 
by: Ln [1 / (FBG × FINS)], with FBG expressed as mM and 
FINS as mU/L.

Barnes maze assay
All rats were subjected to the Barnes maze assay (Tech-
man, Chengdu, China) to evaluate their spatial memory 
function at 3 months old. For the Barnes maze assay, rats 
were trained to find a hole that connected to a black escape 
box, which was positioned around the circumference of a 
circular platform. The circular platform was 115 cm diam-
eter and 1.5 cm thick, with 20 evenly spaced 7 cm diameter 
holes at the edges. It was brightly illuminated by 4 overhead 
lights as an aversive stimulus. Each trial was recorded by a 
video camera installed over the platform. Rats were trained 
for five consecutive days (two trials per day). In each trial, 
the rat was placed in the center of the platform under a 
cylindrical black chamber for 10 seconds before the cham-
ber was lifted. When the chamber was lifted, the rat was 
allowed to locate the target hole and enter the escape box in 
the allowed time (180 seconds). Each trial ended when the 
rat had entered the escape box in 180 seconds. When the rat 
failed to locate the target hole in 180 seconds, it was guided 
into the escape box and stayed there for 60 seconds. On the 
sixth day, the escape box was removed for the test. Primary 
latency to the target hole and the number of errors while 
exploring during the test were recorded. Between trials, the 
platform surface and escape box were cleaned with 70% 
ethanol and water.

Morris water maze assay 
Spatial memory function of rats was assessed using the 
Morris water maze test (Techman) at 3 months old. The 
Morris water maze assay was performed in a circular pool 
(60 cm high and 160 cm in diameter) filled with water to 
a depth of 22 cm. The pool water was opacified using dry 
milk, and the water temperature maintained between 22 
and 24°C. The circular pool was virtually divided into four 
quadrants. A glass platform was submerged 1.5 cm below 
the water surface in the third quadrant. During the train-
ing session, rats were trained to locate the platform for five 
continuous days (four times per day). Briefly, rats were 
manually placed into the water facing the wall of the pool 
from each of four cardinal start locations and allowed to 
find the platform for a maximum of 60 seconds per train-
ing trial. Each training trial was automatically terminated 
when the animal climbed onto the platform in 60 seconds 
and then stayed there for 15 seconds. Rats that failed to 
find the platform in 60 seconds were manually placed onto 

the platform and stayed there for 15 seconds. For each rat, 
the swimming path and time taken to locate the escape 
platform was recorded in each training trial using the Nol-
dus video tracking system (Ethovision; Noldus Information 
Technology, Beijing, China). Following training trials, the 
platform was removed for the probe trial on the sixth day. 
The percentage time spent in each quadrant and total times 
crossing the place where the escape platform was located 
were recorded.

Electrophysiological measure
Rats were deeply anesthetized by intraperitoneal injection 
with 10% chloral hydrate (0.6 mL/100 g). Brains were re-
moved and coronal slices (300-μm thick) cut using a vi-
bratome (Leica, Wetzlar, Germany) in ice-cold artificial ce-
rebrospinal fluid containing (in mM): NaCl (Sigma-Aldrich) 
126, KCl 3.0, MgCl2 1.0, CaCl2 2.0, NaH2PO4 1.25, NaHCO3 
26, and glucose 10, saturated with 95% O2, 5% CO2 (pH 
7.4). Subsequently, slices were transferred to an incubation 
chamber filled with oxygenated artificial cerebrospinal fluid 
to recover for 1 hour before testing. 

For long-term potentiation (LTP), slices were placed on a 
chamber with an 8 × 8 microelectrode array in the bottom 
planar (each 50 μm × 50 μm in size, with an interpolar dis-
tance of 450 μm), and submerged in artificial cerebrospinal 
fluid (4 mL/min) with a nylon silk glued to a platinum ring. 
Signals were acquired using the MED64 System (Alpha 
MED Sciences, Panasonic, Osaka, Japan), as described in a 
previous study (Yin et al., 2016). Field excitatory postsyn-
aptic potentials in the CA1 region were recorded by stimu-
lating Schaffer fibers from CA3. Stimulation intensity was 
adjusted to evoke field excitatory postsynaptic potential am-
plitudes that were 40% of maximal size. LTP was induced 
by applying one train of high-frequency stimulation (100 
Hz, 1 second duration at test strength).

Western blot assay
Rats were decapitated under deep anesthesia, and hippo-
campi quickly dissected from the head on ice and stored at 
−80°C. Hippocampi were homogenized in buffer contain-
ing: NaCl 50 mM, Tris (Sigma-Aldrich) 10 mM, ethylene-
diamine tetraacetic acid 1 mM, Na3VO4 0.5 mM, NaF 50 
mM, phenylmethyl sulfonylfluoride 1 mM, and a prote-
ase-inhibitor cocktail (Sigma-Aldrich; P8340). Afterwards, 
extracts were centrifuged at 14,000 × g for 10 minutes at 4°C, 
boiled for 10 minutes in water at 130°C, and then stored at 
−80°C for western blot assay. For western blot assays, equal 
quantities of protein samples were separated by 10% sodi-
um dodecyl sulfate-polyacrylamide gel electrophoresis and 
transferred to nitrocellulose membranes. Next, membranes 
were incubated with rabbit polyclonal antibody anti-gluta-
mate ionotropic receptor NMDA type subunit 2A (GluN2A, 
1:1000; Abcam, Cambridge, MA, USA), rabbit polyclonal 
antibody anti-glutamate ionotropic receptor NMDA type 
subunit 2B (GluN2B, 1:1000; Abcam), and mouse monoclo-
nal antibody anti-α-tubulin (DM1A, 1:1000; Sigma-Aldrich) 
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Figure 1 Effect of MSG exposure 
during the neonatal period on 
levels of FBG, FINS, and ISI 
value in 3-month-old rats. 
(A) Experimental process. (B−
D) Levels of FBG and FINS and 
ISI value in control and MSG rats, 
respectively. Data are expressed as 
the mean ± SD (n = 10 per group). 
***P < 0.001, vs. control group (in-
dependent-sample t-test). BM: Barn 
maze assay; MWM: Morris water 
maze assay; FBG: fasting blood 
glucose; FINS: fasting insulin; ISI: 
insulin sensitivity index; Con: con-
trol; MSG: monosodium glutamate; 
P: postnatal day; M: months.

Figure 2 Effect of MSG exposure during the neonatal period on learning and spatial memory in 3-month-old rats in the Barnes maze. 
(A) Latency to enter the escape box during training. (B, C) Primary latency to the target hole (B) and number of errors (C) during probe trials. Data are 
expressed as the mean ± SD (n = 10 per group). **P < 0.01, ***P < 0.001, vs. control group (independent-sample t-test). Con: Control; MSG: monoso-
dium glutamate; S: second(s).

Figure 3 Effect of MSG exposure during the 
neonatal period on learning and spatial memory in 
3-month-old rats using the Morris water maze.
(A) Time taken to reach the escape platform during 
training. (B) Swimming distance within the third quad-
rant. (C) Representative swim-paths in the probe trial 
on day 6 (when the escape platform was removed). (D) 
Number of times that rats crossed the target region 
within 1 minute on day 6. Data are expressed as the 
mean ± SD (n = 10 per group). **P < 0.01, ***P < 0.001, 
vs. control group (independent-sample t-test). Con: 
Control; MSG: monosodium glutamate. 
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Figure 4 Effect of MSG exposure during 
the neonatal period on neuronal 
synaptic plasticity of the hippocampus 
of 3-month-old rats.
(A) Input-output curve of fEPSP in CA3–
CA1 regions, normalized by fEPSP am-
plitude induced by minimum stimulation 
intensity. (B) Slope of fEPSP after HFS, 
normalized by baseline. The arrow indi-
cates onset of HFS. Traces reflect average 
fEPSPs from five sweeps before (thin) and 
after (thick) LTP induction. (C) Quantita-
tive analyses for fEPSPs measured 60–180 
minutes after HFS relative to baseline. (D, 
E) Expression of GluN2A and GluN2B in 
hippocampal extracts of control and MSG 
rats by western blot assay (D) and quantita-
tive analyses (E). Data are expressed as the 
mean ± SD (n = 5 per group). *P < 0.05, 
**P < 0.01, ***P < 0.001, vs. control group 
(independent-sample t-test). fEPSP: Field 
excitatory postsynaptic potentials; HFS: 
high frequency stimulation; LTP: long-term 
potentiation; GluN2A: glutamate ionotropic 
receptor NMDA type subunit 2A; GluN2B: 
glutamate ionotropic receptor NMDA type 
subunit 2B; DM1A: alpha-tubulin; Con: 
control; MSG: monosodium glutamate.
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the neonatal period on expression of 
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rats.
(A−C) Expression levels of IL-1β (A), IL-6 
(B), and TNF-α (C) in cortical extracts of 
contro of control and MSG rats by enzyme 
linked immunosorbent assay. (D−F) Expres-
sion levels of IL-1β (D), IL-6 (E), and TNF-α 
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by enzyme-linked immunosorbent assay. 
Data are expressed as the mean ± SD (n = 3 
per group). *P < 0.05, **P < 0.01, vs. control 
group (independent-sample t-test). IL-1β: 
Interleukin-1β; IL-6: interleukin-6; TNF-α: 
tumor necrotic factor-α; Con: control; MSG: 
monosodium glutamate.
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at 4°C overnight after blocking with 5% (w/v) non-fat milk/
Tris-buffered saline with Tween-20 for 1 hour. Finally, blots 
were probed with goat anti-mouse (for DM1A, 1:10,000) or 
goat anti-rabbit (for GluN2A and GluN2B, 1:10,000) IgG 
conjugated to IRDye (800CW, Licor Biosciences, Lincoln, 
NE, USA) for 1 hour at room temperature, and then an-
alyzed using the Odyssey infrared imaging system (Licor 
Biosciences).

ELISA
Concentrations of interleukin-1 beta (IL-1β), tumor ne-
crotic factor-alpha (TNF-α), and interleukin-6 (IL-6) in the 
hippocampus and cortex were determined using rat ELISA 
kits (Diaclone, London, UK), according to the manufactur-
er’s protocol. Hippocampal concentrations of Aβ1–40 and 
Aβ1–42 were detected using ELISA kits (Biosource Interna-
tional, Inc., Camarillo, CA, USA), in accordance with the 
manufacturer’s protocol. Results were expressed as pg/mg 
of protein.

Statistical analysis
Data were expressed as the mean ± SD. Comparison among 
two groups was performed by independent-sample t-test 
using SPSS 18.0 software (IBM, Armork, NY, USA). P-values 
of < 0.05 were accepted as statistically significant.

Results
MSG exposure during the neonatal period increased FBG 
and FINS levels and reduced ISI value in 3-month-old rats
To replicate the T2DM animal model, newborn SD rats 
were administered MSG by subcutaneous injection at post-
natal days 1, 3, 5, 7, and 9. Blood samples were collected to 
examine FBG and FINS levels in the rats at 3 months old 
(Figure 1A). MSG exposure during the neonatal period 
significantly increased levels of FBG (Figure 1B; P < 0.001) 
and FINS (Figure 1C; P < 0.001) in 3-month-old rats com-
pared with age-matched rats from the control group. ISI 
value was also reduced in 3-month-old MSG-treated rats 
compared with age-matched rats from the control group 
(Figure 1D; P < 0.001). Altogether, this indicates that the 
type 2 diabetic animal model was successfully replicated in 
our study.

T2DM caused by MSG exposure during the neonatal 
period led to cognitive deficits in 3-month-old rats
Cognitive dysfunction and memory loss are principal clin-
ical manifestations in patients with AD (Scheltens et al., 
2016). To investigate the effect of T2DM caused by MSG 
exposure during the neonatal period on cognitive abili-
ty, the Barnes maze assay was first performed to examine 
cognitive ability in rats at 3 months old. Our results show 
obvious cognition and memory deficits in MSG-treated 
rats compared with age-matched rats from the control 
group. Latency (taken time to enter the escape chamber) 
was significantly increased from the fourth day of training 
in MSG-treated rats compared with age-matched rats of the 

control group (Figure 2A; Pday 4 = 0.003, Pday 5 < 0.001). MSG 
exposure also decreased learning and memory abilities of 
MSG-exposed rats, as shown by significantly increased pri-
mary latency to enter the escape chamber and number of 
errors during the test (Figure 2B and C; Pprimary latency < 0.001, 
Pnumbers of errors < 0.001). 

To further examine the effect of T2DM caused by MSG 
exposure during the neonatal period on cognitive ability, 
the Morris water maze assay was also performed. Similar-
ly, our results also showed that MSG exposure decreased 
cognitive ability of MSG-treated rats in the Morris water 
maze assay. Latency to reach the platform was significantly 
increased from the third day of training in MSG-exposed 
rats compared with age-matched rats of the control group 
(Figure 3A; Pday 3 = 0.02, Pday 4 < 0.001, Pday 5 < 0.001). Fur-
ther, on day 6 of the testing session, MSG-treated rats were 
less likely to remain in the quadrant where the escape plat-
form had been located (Figure 3B and C; P = 0.005) and 
also exhibited a significantly decreased number of platform 
crossings compared with the control group (Figure 3D; P = 
0.001). 

T2DM caused by MSG exposure during the neonatal 
period impaired hippocampal neuronal synaptic 
plasticity in 3-month-old rats
Neuronal synaptic plasticity is critical for learning and 
memory function (Lamprecht and LeDoux, 2004). Pro-
gression of AD can cause impairment of neuronal synaptic 
plasticity, which correlate with cognitive deficits caused by 
AD (Jacobsen et al., 2006; Shankar et al., 2008). In the next 
part of our study, we investigated LTP in the hippocampus, 
a neuroelectrophysiological measure related to learning 
and memory function (Lynch, 2004), by recording field 
excitatory postsynaptic potentials after tetanic stimulation. 
Extracellular field excitatory postsynaptic potentials were 
recorded in the CA1 stratum radiatum of acute slices in 
response to stimulation of Schaffer collateral input from 
CA3. Our results found that T2DM caused by MSG expo-
sure during the neonatal period suppressed basal synaptic 
transmission, as shown by input-output curves (Figure 4A; 
P3 stimulus intensity = 0.014, P3.5 stimulus intensity = 0.009) and attenu-
ated slope of field excitatory postsynaptic potentials after 
high-frequency stimulation in the hippocampus (Figure 4B 
and C; P < 0.001) compared with age-matched rats from the 
control group. 

To investigate the underlying molecular mechanism 
of LTP impairment, western blot assay was performed to 
examine expression changes of synaptic plasticity-related 
proteins in the hippocampus of rats that underwent electro-
physiological testing. Our results show that T2DM caused 
by MSG exposure during the neonatal period decreased 
expression levels of synaptic plasticity-related proteins. Spe-
cifically, we found significantly reduced expression levels of 
GluN2A and GluN2B in the hippocampus compared with 
age-matched rats from control group (Figure 4D and E; 
PGluN2A = 0.033, PGluN2B = 0.003). 
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T2DM caused by MSG exposure during the neonatal 
period resulted in high expression of inflammatory 
cytokines in the hippocampus and cortex of 3-month-old  
rats
Inflammatory responses and activation of inflammatory 
signaling pathways are common phenomena in the AD 
brain (Heneka and O’Banion, 2007). Expression levels of 
inflammatory cytokines in the hippocampus and cortex 
were detected by ELISA. Our results show that IL-1β, 
IL-6, and TNF-α expression levels were significantly in-
creased in the hippocampus and cortex of MSG-exposed 
rats compared with age-matched rats from the control 
group (Figure 5; cortex: PIL-1β = 0.024, PIL-6 = 0.002, PTNF-α 
= 0.007; Hip: PIL-1β = 0.004, PIL-6 = 0.012, PTNF-α = 0.003). 
This indicates that T2DM caused by MSG exposure leads 
to an inflammatory response in 3-month-old rats.

T2DM caused by MSG exposure during the neonatal 
period increased Aβ1–40 and Aβ1–42 concentration in the 
hippocampus of 3-month-old rats
Extracellular deposition of Aβ in the brain of patients 
with AD is a main neuropathological characteristic of AD 
(Selkoe, 1996). Thus, concentration of Aβ1–40 and Aβ1–42 
in the hippocampus was measured using ELISA kits. We 
found that Aβ1–40 and Aβ1–42 concentration was significantly 
increased in the hippocampus of MSG-exposed rats com-
pared with age-matched rats from the control group (Figure 
6; PAβ1–40 = 0.013, PAβ1–42 = 0.012). This indicates that T2DM 
caused by MSG exposure leads to Alzheimer-like neuro-
pathological impairments in 3-month-old rats.

Discussion
Diabetes mellitus and AD are both age-related chronic 
degenerative diseases, which pose a serious hazard to the 
health of aged people (Pasquier et al., 2006). Diabetes mel-
litus can cause impairment of the central nervous system 
and severe deterioration of cognitive capacity (Gispen and 
Biessels, 2000; Kodl and Seaquist, 2008; McCrimmon et al., 
2012). An increasing number of investigators have consid-
ered that metabolic disorders caused by diabetes mellitus 
have a close relationship with progression of AD (Steen et 
al., 2005; Sridhar et al., 2015; Kandimalla et al., 2017). How-
ever, the underlying mechanism and relationship between 
metabolic disorders caused by T2DM and neuropathy of 
AD are still not fully elucidated. Our results here show that 
neonatal exposure to MSG can lead to overexpression of 
Aβ and an inflammatory response in young adulthood (3 
months), which further causes cognitive dysfunction and 
neurodegeneration (impairment of synaptic function and 
loss of synaptic molecules). This indicates that metabolic 
disorders caused by T2DM can lead to neurodegeneration 
and Alzheimer-like neuropathological changes in young 
adulthood, which ultimately contributes to further un-
derstanding of the effect of metabolic disorders caused by 
T2DM on occurrence and progression of AD. Furthermore, 
occurrence and progression of cognitive dysfunction and 

neurodegeneration show a strong relationship with over-
expression of Aβ and inflammatory response induced by 
MSG exposure, which may reflect the underlying mecha-
nism of Alzheimer-like symptoms and neuropathy caused 
by T2DM.

As a salt of glutamic acid, MSG is used as a flavoring 
agent in Asian countries (Jinap and Hajeb, 2010). In the 
1970s, a previous study involving the effect of subcuta-
neous MSG injection during the neonatal period of rats 
revealed that early MSG exposure has detrimental effects 
on rat growth, reproductive and brain function, as well as 
impaired glucose tolerance (Lengvári, 1977). Further, many 
studies in the late 1990s also found that MSG exposure 
can lead to development of many common clinical patho-
logical symptoms of T2DM, such as insulin resistance, 
hyperinsulinemia, glucose intolerance, and hyperglycemia 
in experimental animals (Hirata et al., 1997; Ribeiro et 
al., 1997; Iwase et al., 1998). Furthermore, several studies 
have found that complications of diabetes mellitus (such 
as atherosclerosis, hypercholesterolemia, central obesity 
and hypertension) can be induced by early MSG exposure 
(Iwase et al., 1998; Nagata et al., 2006; Morrison et al., 
2008). Therefore, in recent years, an increasing number of 
studies have served as MSG-treated animals as a model of 
T2DM (Islam and Wilson, 2012). MSG was also used to 
replicate animal models of T2DM in our study. Moreover, 
we found that MSG exposure during the neonatal period 
increased FBG and FINS levels and reduced ISI value. ISI 
reflects insulin sensitivity on regulation of blood glucose. 
Reduction of ISI in experimental animals signifies insulin 
resistance, which indicates that the type 2 diabetic animal 
model was successfully replicated in this study. Neuronal 
synaptic structure and function in the hippocampus are 
strongly associated with learning and memory ability (Bliss 
and Collingridge, 1993; Santin et al., 2000). Impairment 
in structure and function of neuronal synapses is a ma-
jor characteristic of neuronal structural pathology in the 
AD brain and is considered to lead to cognitive deficits 
in patients with AD (Arendt, 2009; Metaxas and Kempf, 
2016; Zhang et al., 2016). In particular, much evidence has 
demonstrated that AD progression is able to cause impair-
ment of neuronal synaptic plasticity in the hippocampus 
(Chapman et al., 1999; Walsh et al., 2002; Oddo et al., 
2003; Lacor et al., 2004). The results of our study show that 
MSG exposure during the neonatal period results in cog-
nitive deficits and impaired LTP of hippocampal neurons 
in 3-month-old rats. LTP is a major reflection of synaptic 
plasticity and is regarded as a principal cellular mechanism 
involved in learning activity and memory formation. Inhi-
bition of LTP in this study suggests that T2DM induced by 
MSG exposure causes impaired synaptic plasticity function 
in the hippocampus, which may be an underlying link be-
tween structural pathology and AD.

Synaptic-related proteins are the molecular biological 
basis of neuronal synaptic function, with changes in these 
proteins directly impacting on learning and memory func-
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tion (Izquierdo and Medina, 1997; Riedel et al., 2003). Ac-
cordingly, we next performed western blot assays to further 
investigate the underlying molecular mechanisms of LTP 
impairment. Our results show that MSG exposure during 
the neonatal period decreases expression levels of synaptic 
plasticity-related proteins, including GluN2A and GluN2B. 
GluN2A and GluN2B play critical roles in excitatory synap-
tic transmission and synaptic plasticity in the central ner-
vous system (Malenka, 1994; Yashiro and Philpot, 2008). 
LTP requires GluN receptor activation, and the subsequent 
cascade of events is triggered by Ca2+ influx (Malenka and 
Bear, 2004). Reduction of GluN2A and GluN2B expression 
is associated with LTP inhibition (Lau and Zukin, 2007). 
These molecular assay results are consistent with our elec-
trophysiological analysis. 

There are complex links between diabetes mellitus and 
AD (Yang and Song, 2013; Ninomiya, 2014). The inflam-
matory response and inflammatory signaling pathway are 
among the major pathogenic links between diabetes mel-
litus and AD (Jones et al., 2009; Kamal et al., 2014). Many 
studies have demonstrated that progression of diabetes 
mellitus and AD both cause an inflammatory response and 
trigger high expression of inflammatory cytokines (Granic 
et al., 2009). Furthermore, the inflammatory response is 
also regarded as a major pathological process in AD pro-
gression (Akiyama et al., 2000). We found that MSG expo-
sure during the neonatal period leads to high expression 
of inflammatory cytokines in the hippocampus and cortex, 
which indicates that T2DM induced by MSG exposure can 
cause an inflammatory response in 3-month-old Sprague–
Dawley rats. The inflammatory response and activation of 
the inflammatory signaling pathway play an important role 
in AD progression (Heneka and O’Banion, 2007). Much 
evidence has revealed that the inflammatory response and 
inflammatory signaling pathway activation are tightly 
correlated with generation and deposition of Aβ, which is 
a crucial step in the cascade process of Aβ (Selkoe, 1996; 
Heneka and O’Banion, 2007). Consequently, our results 
here suggest that the inflammatory response and inflamma-
tory signaling pathway activation may reflect an underlying 
link of disease progression between T2DM and AD. 

Hippocampal accumulation of amyloid plaques chiefly 
formed by Aβ deposition is a principal pathological char-
acteristic of AD (Selkoe and Hardy, 2016) and tightly cor-
relates with cognitive dysfunction and neuronal synaptic 
impairment. Our data show that MSG exposure during the 
neonatal period significantly increases hippocampal con-
centration of Aβ1–40 and Aβ1–42 compared with age-matched 
rats from the control group. Previous studies have reported 
that hyperinsulinemia and dysfunction in the insulin re-
ceptor signal transduction pathway contribute to reduced 
Aβ degradation and production of Aβ (Carlsson, 2010). 
Our data further indicate that T2DM causes Alzheimer-like 
neuropathological changes, which is a main reason for AD-
like neurodegeneration caused by T2DM. Intracellular tau 
hyperphosphorylation is another main neuropathological 

characteristic of AD. However, we did not investigate the 
effect of MSG exposure during the neonatal period on tau 
phosphorylation levels in this study, and this needs further 
investigation. 

In conclusion, T2DM induced by MSG exposure during 
the neonatal period leads to Aβ overexpression and an 
inflammatory response. Ultimately, this leads to cognitive 
deficits and neurodegeneration, including impairment of 
synaptic plasticity function and loss of synaptic molecules 
in young adulthood. Our study provides experimental data 
for a connection between T2DM and AD.
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