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A model of bi-directional
interactions between
complementary learning
systems for memory
consolidation of sequential
experiences

Michael D. Howard†, Steven W. Skorheim and Praveen K. Pilly*†

Proficient Autonomy Center, Intelligent Systems Laboratory, HRL Laboratories, Malibu, CA,

United States

The standard theory of memory consolidation posits a dual-store memory

system: a fast-learning fast-decaying hippocampus that transfers memories

to slow-learning long-term cortical storage. Hippocampal lesions interrupt

this transfer, so recent memories are more likely to be lost than more

remote memories. Existing models of memory consolidation that simulate

this temporally graded retrograde amnesia operate only on static patterns

or unitary variables as memories and study only one-way interaction from

the hippocampus to the cortex. However, the mechanisms underlying the

consolidation of episodes, which are sequential in nature and comprise

multiple events, are not well-understood. The representation of learning

for sequential experiences in the cortical-hippocampal network as a

self-consistent dynamical system is not su�ciently addressed in prior models.

Further, there is evidence for a bi-directional interaction between the two

memory systems during o	ine periods, whereby the reactivation of waking

neural patterns originating in the cortex triggers time-compressed sequential

replays in the hippocampus, which in turn drive the consolidation of the

pertinent sequence in the cortex. We have developed a computational

model of memory encoding, consolidation, and recall for storing temporal

sequences that explores the dynamics of this bi-directional interaction and

time-compressed replays in four simulation experiments, providing novel

insights into whether hippocampal learning needs to be suppressed for stable

memory consolidation and into how new and old memories compete for

limited replay opportunities during o	ine periods. The salience of experienced

events, based on factors such as recency and frequency of use, is shown

to have considerable impact on memory consolidation because it biases

the relative probability that a particular event will be cued in the cortex

during o	ine periods. In the presence of hippocampal learning during sleep,
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our model predicts that the fast-forgetting hippocampus can continually

refresh the memory traces of a given episodic sequence if there are no

competing experiences to be replayed.

KEYWORDS

episodicmemories, replays,memory consolidation, complementary learning systems,

hippocampus, neocortex

Introduction

Studies on patients with lesions of the hippocampus report

deficits both in forming new memories and in retrieving

recent memories (Scoville and Milner, 1957). Based on these

and subsequent studies, the hippocampus was found to be

necessary for these functions (Squire, 1992; Izquierdo and

Medina, 1997). It learns rapidly due to its ability to quickly

develop synaptic connections (Malenka, 1994), but fast learning

also means fast decay as older memories are overwritten by

new ones—which would mean catastrophic interference in

a unitary memory (Grossberg, 1980; McCloskey and Cohen,

1989; Ratcliff, 1990). This motivates the need for a two-

stage memory system: the hippocampal engram gets strong

quickly but also decays quickly, and the task of systems-level

consolidation is to gradually train the more stable, slower

learning neocortex (Buzsáki, 1989; Zola-Morgan and Squire,

1990; Marr et al., 1991; Alvarez and Squire, 1994; McClelland

and O’Reilly, 1995; Squire and Alvarez, 1995; Dudai, 2004; Gais

and Born, 2004; Káli and Dayan, 2004; Marshall and Born, 2007;

Born and Wilhelm, 2012).

Replays of neural activity during sleep, which were

first directly observed in the rat hippocampus (Wilson

and McNaughton, 1994; Skaggs and McNaughton, 1996;

Buzsáki, 1998), have been hypothesized to play a key

role in memory consolidation (Alvarez and Squire, 1994;

McClelland and O’Reilly, 1995; Káli and Dayan, 2004). During

slow-wave sleep (SWS), the cortex exhibits synchronized

slow-wave oscillations (SWOs) that are characterized by

a rhythmic alternation between depolarized (“UP states”)

and hyperpolarized states (“DOWN states”) (Sanchez-Vives,

2020). Replays generally occur during SWS (Nádasdy et al.,

1999) and are coordinated between the hippocampal and

cortical UP states (Ji and Wilson, 2007). Hippocampal

replays can boost the weaker cortical representations and

strengthen them until, eventually, they become independent

of the hippocampus. Moreover, replays occur in a time-

compressed manner (Nádasdy et al., 1999; Euston et al.,

2007; Ji and Wilson, 2007) to likely facilitate more efficacious

strengthening of synaptic connections among pertinent neurons

in the cortex for memory consolidation (Nádasdy et al.,

1999) through spike timing dependent plasticity (STDP;

Bi and Poo, 1998; Caporale and Dan, 2008; Cai et al., 2016). The

likelihood that a particular memory is replayed during limited

SWS UP states appears to be dependent on saliency factors

such as novelty (Cheng and Frank, 2008), recency, emotional

involvement, and reward (Singer and Frank, 2009; McNamara

et al., 2014).

In the last 15 years, several animal and human studies

have demonstrated improved post-nap or post-sleep memory

performance by either boosting cortical SWOs with sensory or

transcranial electrical stimulation (Marshall et al., 2006; Cox

et al., 2014; Ketz et al., 2018), or by applying cues during

SWOs that were previously used to tag associations during

learning (Rasch et al., 2007; Rudoy et al., 2009; Antony et al.,

2012; Pilly et al., 2019). These demonstrations suggest that even

though cortex learns slowly, it can nonetheless be modulated

to boost the memory consolidation process at various levels

of specificity. Some experimental evidence suggests that neural

activity in the cortex during SWO UP states leads and can

potentially bias the content of the time-compressed replays in

the hippocampus, which then in turn drive coordinated replays

in the cortex (Ji and Wilson, 2007).

Existing computational models of memory

consolidation (Alvarez and Squire, 1994; McClelland and

O’Reilly, 1995; Káli and Dayan, 2004) primarily simulate the

behavioral effects of lesioning the hippocampus at different

times after learning. But they use only static patterns or

unitary variables to represent memories, though the episodes

that we experience on a daily basis are sequential in nature

and have a temporal aspect to them. Moreover, the effect of

hippocampal learning during sleep replays on the persistence

of memory traces in the supposedly short-term storage in the

hippocampus has not been examined. In this regard, none of

the existing models have investigated any scheme to prioritize

the reactivation of individual events during the limited offline

periods. And as such, there is no computational theory for how

memory replays of sequential experiences emerge dynamically

during offline periods and how they are coordinated between

the hippocampus and neocortex to facilitate the stabilization of

episodic memories (Ji and Wilson, 2007).

In order to overcome these limitations, we developed a

model of memory encoding, consolidation, and recall for storing

temporal sequences that explores the waking and sleep dynamics
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of the bi-directional interactions between the fast-learning

hippocampus and the slow-learning cortex. Details of the model

are in the Materials and methods section. Our model simulates

episodicmemories as a temporal sequence of activations of items

in both regions (Tulving et al., 1972; Tulving and Markowitsch,

1998), where each item represents the conjunctive activation

of a pool of neurons sensitive to the salient features of a

particular event in the experience (Liu et al., 2012; Ramirez et al.,

2013). The Results section provides results from four simulation

experiments. First, we demonstrate how a five-item temporal

sequence can be initially encoded in the hippocampus and

subsequently consolidated in the cortex.We show how items can

be probabilistically reactivated in the cortex during simulated

UP states of SWS based on their recency and frequency of use

(i.e., salience metric), how fast replays in the hippocampus can

be triggered by these item reactivations in the cortex, and how

they cascade into coordinated replays in the cortex that drive

efficacious learning for long-term storage. Second, we replicate

the phenomenon of retrograde amnesia with lesions of feedback

projections from the hippocampus to the cortex. Third, we show

how a more salient five-item sequence is preferentially replayed

and consolidated compared to another five-item sequence.

Fourth, we investigate if hippocampal learning during offline

replays is critical for episodic memory consolidation. Finally,

the Discussion section compares and contrasts our model with

previous models of memory consolidation and also makes

several testable predictions.

Materials and methods

Model of memory encoding,
consolidation, and recall

Our core model consists of a hippocampal module and

a cortical module (Figure 1), which are both simulated as

recurrent networks capable of learning sequences of items.

Items, which are constituents of various sequential experiences,

are represented by individual neurons in either module.

There is all-to-all excitatory and inhibitory connectivity

within each module. In particular, each neuron receives fixed

inhibitory projections from all the other neurons, and each

neuron can learn directional excitatory projections to other

neurons in response to the sequential presentation of items

from the environment. As proposed by the complementary

learning systems theory (McClelland and O’Reilly, 1995), intra-

hippocampal excitatory projections have a much higher rate of

learning compared to the intra-cortical excitatory projections.

In other words, the cortex is slow to encode sequences of items

compared to the hippocampus. Further, the memory traces

(namely, weights of excitatory projections) in the hippocampus

decay to their baseline levels (zero) at a much faster rate in

the hippocampus compared to the cortex. Neurons also have

FIGURE 1

An illustration of the cortico-hippocampal memory model.

Encoding, consolidation, and recall of sequential experiences

are simulated. When a percept is entered into the input register,

it energizes a matching cortical item. If a matching cortical item

is not found, a new one is allocated. Activation is spread from

cortical items to their counterparts in hippocampus and back to

the cortex through fixed inter-module links or bi-directional

projections (black arrows). Directional intra-module links (red

arrows) develop between any simultaneously active items within

each memory module as a function of their dynamic activations.

The illustration shows an input three-item sequence

(“A”-“B”-“C”) with directional links having formed first from “A” to

“B.” When “C” is encountered, if “A” and “B” are still active, links

are instantiated from “A” to “C” and from “B” to “C.” The learning

rate in the hippocampus is an order of magnitude faster than in

the cortex.

self-excitation as well as delayed self-inhibition to regulate

activations. Further, there are item-specific bi-directional fixed

excitatory projections between the hippocampus and the cortex.

Each waking sensory experience is represented as a sequence

of items in an input register, providing bursts of excitation

that coincide with their presentation to the corresponding

neurons in the cortex. It is the spread of activation through

the learned excitatory projections that is responsible for recall

of a previously experienced sequence. In the remainder of this

paper, for simplicity, we use “item” to also refer to the cortical

and hippocampus neurons, which each represent a particular

perceptual item.

Figure 2A is a plot of a training session in which the percepts

“A,” “B,” “C,” “D,” and “E” (applied to the input register for 2 s

each) sequentially activate the corresponding items in the cortex,

and thereby in the hippocampus. Figure 2B shows a recall cued

by applying the single item “A” to the input register for 1.5

s, which spreads to activate items “B” and “C” in turn. Item

activations in either memorymodule are ephemeral, falling soon

after they rise to a high level. In the example shown, the network

has not been trained enough to develop strong links to items “D”

and “E” for a full recall. Figure 4 shows cued recall inmore detail.

Simulation of memory encoding and
recall during wake

The activation of a given item x in either cortex or

hippocampus (ax) is bounded between 0 and 1 and governed

by shunting dynamics in a recurrent competitive network
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FIGURE 2

An example of item activations during (A) training and (B) cued recall. (A) A five-item sequence is trained by presenting a series of inputs (the

colored rectangles in cortex) that stimulate activation of matching items in cortex, and in turn activate the matching items in hippocampus.

Directional excitatory projections between items within each memory module are learned as a function of their mutual activation dynamics.

(B) Dynamics of neuronal activations when item “A” is cued in the input register after training. The activation of “A” in hippocampus lags behind

the cued activation in cortex as cortex is driving it, but subsequent items are activated more quickly in hippocampus due to its stronger

excitatory projections (owing to faster learning). In the example shown, neither module’s weights have strengthened enough to spread

activation through the entire sequence, so only “A,” “B,” and “C” become activated.

(Grossberg, 1976) as follows:

σa
dax

dt
= −

ax

τa
+ (1− ax)Ex − axIx, (1)

where σa modulates the rate of the neuron’s temporal

integration (the smaller σa is, the faster the temporal dynamics

are), τa modulates the rate of passive decay of the neuron’s

activation (the smaller τa is, the faster the decay is), and Ex and

Ix are the net excitatory and inhibitory inputs to the neuron,

respectively. Note that the time constant of the dynamics is

equal to σa × τa. All model parameters are summarized in

Table 1 along with default values. All equations were numerically

integrated using Euler’s forward method with a fixed time step

1t = 1 ms. The excitatory input to each neuron, Ex, is

a sum of the feedforward input F (from items in the input

register to the cortex, and from items in the cortex to the

hippocampus), the adaptive excitatory projections from other

neurons in the module, and self-excitation (modeled using a

sigmoidal function), as follows:

Ex =

[

µF + γ
∑

x 6=y

wyxay +
αamx

amx + tma

]

. (2)

F = 0.1 for cortex (in response to the pertinent item in

the input register) and F = cx for hippocampus, where cx is

the activation of the corresponding item in the cortex. Cortical

neurons are additionally excited by hippocampal feedback

(ζ [hx]+), where hx is the activation of the corresponding item in

the hippocampus). The inhibitory input to each neuron, Ix, is a

sum of the fixed inhibitory projections from other neurons in the

module and delayed self-inhibition (modeled using a sigmoidal

function of an inactivation current gx), as follows:

Ix =

[

β
∑

y 6=x

ay +
θgnx

gnx + tn
h

]

. (3)

The inactivation current gx simulates the inhibitory effect

on active neurons that have been depolarized for a prolonged

period (Mickus et al., 1999; Koch, 2004) as follows:

σg
dgx

dt
= −

gx

τg
+ (1− gx)

[

κax
]

, (4)

where σg modulates the speed of temporal dynamics and τg

modulates the rate of passive decay. The inactivation current

gx evolves and decays at a slower rate than the corresponding

neuron’s activation ax (σg > σa and τg > τa), providing delayed

inhibition on the item when it gets large. The effect of self-

excitation in Equation (2) is to raise the item’s activation quickly
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TABLE 1 Model parameters.

Description Default values

Item activation (Equations 1–3)

σa Parameter for speed of dynamics σa,wake = 2, σa,sleep = 0.04

τa Passive decay parameter 0.8

µ Strength of feedforward excitation µh = 2, µc = 1

γ Strength of spreading excitation between items 0.9

α Strength of self-excitation 1

m Order of sigmoid nonlinearity for self-excitation 2

ta Threshold of self-excitation sigmoidal function 0.09

ζ Strength of feedback from hippocampus to cortex 0.5

β Strength of inhibition between items 15

θ Strength of inactivation current 10

n Order of sigmoid nonlinearity for inactivation current 2

th Threshold of inactivation current sigmoidal function 0.02

Inactivation current (Equation 4)

σg Parameter for speed of dynamics 10

τg Passive decay parameter 1.2

κ Strength of excitation from item activation 1

Adaptive weights (Equation 5)

τw Passive decay parameter τw,h = 1.5552× 109 , τw,c = 3.73248× 1010

Q Parameter for controlling non-causal links 0.5

η Learning rate ηh = 15, ηc = 1.5

Item salience (Equation 6)

τs Passive decay parameter τs = 86, 400

λ Gating variable for updating λwake = 1, 000, λsleep = 0

Parameters with subscripts h and c correspond to different values for the hippocampus and cortex, respectively.

to a high level once activation reaches a certain threshold.

However, the inhibitory input specified in Equation (3) ensures

that few items will remain active at any time, and none for

any prolonged period. All item activations ax and inactivation

currents gx are initialized to 0 at the start of each experiment.

Note that associative links between any two arbitrary items are

instantiated at the first co-occurrence of their activations, as

illustrated in Figure 1.

While an arbitrary item y is active, its activity spreads

across weighted directional projections wyx (in Equation 2)

to other items x, and across the fixed links between the two

memory modules (see Figure 2B). These directional projections

are causal, based on the order in which the linked items are

experienced. As a projection becomes stronger, more excitation

is transmitted to the post-synaptic neuron, which becomes

activated more quickly. This results behaviorally in faster

memory recalls. Thus, the strength of the excitatory directional

projections between the component items of a memory in both

hippocampus and cortex are predictive of the ability to recall the

sequential experience.

The adaptive weight of the excitatory directional projection

from item x to another item y in either cortex or hippocampus

(wxy), bounded between 0 and 1, is governed by a novel rate-

based learning rule:

dwxy

dt
= η

{

−
wxy

τw
+ ax(1− wxy)

[

[day

dt

]+
− Q

[

−
day

dt

]+
]}

,

(5)

where η is the learning rate (the bigger η is, the faster the

weights change) , τw modulates the rate of passive decay, and

Q is a parameter that controls the emergence of non-casual

(reverse) links. Equation (5) models how causal associative links

are formed as a result of overlapping activation of the pre-

synaptic neuron (item x) and the rate of change in the activation

of the post-synaptic neuron (item y; cf., Cai et al., 2016; Yokose

et al., 2017). If the activation of item x reliably increases the

activation of item y, then x is assumed to be causal and as a result

the connection from x to y (namely, wxy) increases in strength.

On the other hand, if the activation of item y reliably declines

despite strong activation of item x, then x is assumed to be non-

causal and as a result wxy reduces in strength. The reduction in

weight is a fractionQ of the increase, which not only ensures that

associative links in the causal direction are created, but also is
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FIGURE 3

Weights develop as a function of item activations. Weights learn

to be directional from earlier items to later items in a sequence.

necessary for the learning of connections between simultaneous

events. At the default value for Q of 0.5, reverse links are

eliminated. In the model, the hippocampus learns (ηh >> ηc)

as well as forgets (τw,h << τw,c) faster compared to the cortex.

With the default values for τw in Table 1, hippocampal weights

undergo natural decay on the order of about 10 days and cortical

weights on the order of about 2 years. Each weight is initialized

to 0 when the corresponding connection is instantiated.Weights

in both directions are updated at the same time, as illustrated

in Figure 3. Existing connections are strengthened during recall,

but new connections can only be created during training when

a new item is presented while recently activated items are still

active. Once associative links are learned between items in either

memory module, a sequential memory can be reactivated by a

relevant cue from the environment during waking or randomly

during sleep. Note that by default, learning is enabled in both the

hippocampus and cortex at all times including SWS.

Memory recall metrics

Figure 4 illustrates the recall metrics used in the experiments

discussed below, with an example of a cortical recall when

cued by “A” after being exposed to the sequence “A”-“B”-

“C”-“D”-“E” (or ABCDE for short) for 20 trials. In this case,

the cortical representation was strong enough that every item

became activated in turn. An item is considered recalled when

its activation level in the cortex rises above a threshold of 0.01.

Recall accuracy is the proportion of sequence items successfully

recalled in the correct order. So if all five items in the sequence

reach the threshold in the correct order, the accuracy is 100%.

However, if any item crosses the threshold out of order, no credit

is given for it or any further items. Thus, if the activation level

of the first and second items crossed the threshold in order,

followed by the fourth then third and fifth, the accuracy would

be 40% as two of the five items crossed the threshold in the

correct order before an incorrect item recall. For a recall trial

FIGURE 4

Spreading activation recalls a cued sequence during waking.

After multiple training exposures, a presentation of the “A” cue

(input activation of 0.1 for 1.5 s shown as a blue rectangle)

causes a recall cascade in the cortex due to spreading activation

through causal links. Each item in the sequence is considered

recalled when it reaches the recall threshold of 0.01, shown as

the blue dotted line.

with 100% accuracy, the recall time is defined as the interval

between the beginning of cue stimulation to the moment at

which the final item crosses the threshold, provided this occurs

before the arbitrary ceiling of 30 s. If the accuracy is <100%, the

recall time is assigned the arbitrary ceiling value of 30 s.

Simulation of memory consolidation
during sleep

As described in the Introduction section, memories are

consolidated in long-term cortical memory during SWS, when

events experienced in the daytime can be reactivated or

“replayed” during the UP states of SWOs. We simulate these

emergent replays in each UP state by selecting an item

probabilistically and activating it as described below. Figure 5

plots emergent replays during a SWS simulation. An item

cued in this way excites other items along existing directed

connections, just as in waking, but the parameter for speed

of dynamics (σa in Equation 1) is set so the activations rise

and fall about 20 times as fast in sleep compared to waking.

Sleep replays in rats are reported to occur between 6 and 20

times faster than waking experiences in rodents (Nádasdy et al.,

1999; Lee and Wilson, 2002; Euston et al., 2007; Rasch and

Born, 2013). There is also some evidence of time-compressed

episodic memory replays in humans (Michelmann et al., 2019).

The actual speed of a given replay depends on the strength of

the causal associative links between the constituent items of

the corresponding sequence. The change in a given weight is
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FIGURE 5

A series of time-compressed replays during UP states in SWS. The last six replays on Night 1 after training the sequence ABCDE for 10 trials are

plotted. The initial item in each replay is selected from a weighted distribution based upon the recent activation of each item (i.e., the salience),

and its activity spreads to the subsequent items of the pertinent sequence stored in memory. In this example, six replays are generated by cueing

“E,” “A,” “C,” “B,” “D,” and “A” in turn. The duration of the cue to initiate the replay in each UP state is 12.5 ms, and the amplitude is 0.2. Note a 1 Hz

SWO is superimposed for illustration.

primarily driven by the overlap in the activation of the pre-

synaptic neuron and the rate of change in the activation of the

post-synaptic neuron (see Equation 5), which is higher when

the replay is compressed in time. Thus, learning in the model

is generally more efficacious during sleep replays compared to

waking training. This is most important in the slower-learning

cortex, and accounts for why sleep replays are so critical for

strengthening connections in the cortex over time with no

additional waking training.

During UP states of SWOs, any item in either memory

module can be randomly chosen to cue a replay by sampling

from a weighted distribution called “salience.” The salience sx of

an item x is essentially a moving average of its activation during

wake, which is defined as follows.

dsx

dt
= −

sx

τs
+ λax, (6)

where τs modulates the rate of passive decay and λ scales

the input of the corresponding activation, which is active only

during wake. Activations during sleep replays do not contribute

to salience in order to prevent a self-activation feedback that

would lead to a few items dominating. Since any item can be

selected, not just the first item in a sequence, replays are typically

fragmentary. Note that all item activations ax and inactivation

currents gx are reset to zero at the end of each UP state, which is

also the beginning of the next DOWN state. There is supporting

in vivo evidence for hippocampal and cortical interneurons to

be active during UP states and silent during DOWN state (Hahn

et al., 2006; Zucca et al., 2017).

Results

Experimental details

Figure 6 shows typical timings for presentation of input

percepts and recall cues in the experiments that follow.

Training trials present a sequence of input stimuli in the

input register, such as the sequence ABCDE shown in

Figure 2A. Each percept during waking stimulates the input

register at the level of 0.1 for 2 s, with an inter-stimulus

interval of 5 ms. Trials are separated by 1 min. When a

recall test is required, it is separated from training by at

least 1 min, and the recall cue is presented in the input

register for 1.5 s. As noted above, the recall is measured

based on the spreading activations of the pertinent items in

the cortex.

For our simulation experiments, without loss of generality,

each UP state during SWS randomly activates an item in

the cortex with probability proportional to its corresponding

salience with a brief pulsed cue in the input register (amplitude

= 0.2, duration = 12.5 ms). In order to incorporate the

possibility of no replay, a null item is added to the list

of items with a fixed salience of 0.5. This ensures that the

likelihood of selecting the null item is higher if the total

salience of the other items is low (i.e., the probability of no

replay increases when no items have been active recently). For

simplicity and with loss of any generality, SWS during each

night is simulated as a continuous block of SWOs for 50 s

with a dominant frequency of 1 Hz. This manifests as 50 UP

states per night, each with a duration of 0.5 s, to facilitate

memory consolidation.
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FIGURE 6

Typical experiment timings. Cue presentation times are

illustrated for training and recall during waking. Training cues are

presented for 2 s each in sequences, with 5 ms inter-stimulus

interval. Recall cues last 1.5 s each.

Salience and memory replays

To show how different sequential experiences can interfere

even when they do not share any items (Robertson, 2012) based

on differences in practice during wake, we trained two different

sequences (ABCDE and FGHIJ), 10 trials each on Day 1, and

then only ABCDE for 10 trials per day on Days 2, 3, and 4.

Each night, 50 replays were run during SWS using the salience

algorithm described above to select from the 10 items (along

with the null item) to cue for replay. Figure 7 shows simulations

of the last full replay for both sequences in each night, which

started with the pertinent first item in each sequence. The inset

histograms show the number of replays cued by each item in the

two sequences during each night.

Due to the extra daytime training on Day 2, the salience of

the items in the sequence ABCDE rises above that for items of

sequence FGHIJ, and so the sequence ABCDE is replayed more

on subsequent nights (74% on Night 2, 94% on Night 3, and 98%

on Night 4), and the activation spreads through the sequence

faster with each night. Recall time of the replays is assessed at

the end of the SWS period in each night by cueing with the

first item for either sequence. The two sequences do not directly

conflict in terms of sharing one or more constituent items, but

they compete indirectly with each other for replay opportunities

during SWS period in each night based on salience of the

individual items. Additional training is certainly responsible

for the increased number of replays for the sequence ABCDE

on subsequent nights. Since there was no practice on the

sequence FGHIJ after the first day, the salience of those items

monotonically decayed; thus, the more salient ABCDE items

were replayed more in the subsequent nights.

Hippocampal influence on cortical
replays

We use our model to explore the necessity of the

hippocampus for the long-term consolidation of sequential

experiences in the cortex using two simulation experiments.

The first experiment reveals how the baseline network of intact

hippocampus and cortex operates, and the second experiment

focuses on what happens if the feedback projections from the

hippocampus to the cortex are lesioned prior to the initial

encoding of a sequence. For both experiments, the network

was trained on the sequence ABCDE for 10 trials on Day 1,

followed bymemory assessment over the succeeding 4 days. This

included four nights with a SWS period at the start of each night

consisting of 50 UP state events where one item was chosen to

cue the replay using the salience algorithm described above.

The dynamics of hippocampal and cortical weights are

plotted in Figure 8 for the baseline case with both the

hippocampus and cortex intact. Here the hippocampal weights

grow to over 75% strength when trained on Day 1 and

then quickly decay, whereas the cortical weights rise to

<40%; however, the cortical weights suffer only imperceptible

decay. At the beginning of each night, the hippocampal

weights recover due to replays during SWS, and the cortical

weights rise as well. Replays occur in the hippocampus and

the cortex on each night because the hippocampal weights

are strong enough to propagate the activations through

the sequence within the hippocampus, as well as within

the cortex owing to item-to-item feedback projections from

the hippocampus. During these replays, cortical connections

become much stronger. Since there is no training after

Day 1, the differences in the dynamics of weight strengths

within each memory module over the subsequent days is

exclusively due to the random emergent replays during the

SWS period in each of the four nights; so, for example,

in the cortex the weight A → B does not get as strong

as the others because the fragment A → B within the

sequence ABCDE is the least likely to be reactivated, compared

to the other fragments, in response to saliency-based item

selection for cueing replays during the SWS periods. See

Supplementary Figures 1, 2 for replication of the baseline

networks with a higher recall threshold of 0.05, which is five

times greater than the default value, and with all weights

randomly initialized using a uniform distribution on the interval

[0, 0.05], respectively, to demonstrate the robustness of our

simulation of memory consolidation.

If the hippocampal projections to the cortex are lesioned

prior to Day 1, we find that cortical replays cannot occur

(Figure 9). Replays can still occur in hippocampus, but

connections between the items in the cortex are not strong

enough after the initial training to trigger replays on their own,

and the cortical weights do not grow (cf., Figure 8).

This is in agreement with the data on temporally graded

retrograde amnesia with hippocampal lesions (Squire and

Alvarez, 1995), where the longer the hippocampus is intact

after training (with intervening offline periods), the stronger

is the long-term consolidation in the cortex. The hippocampal

projections to the cortex are initially necessary to generate

replays in the cortex during sleep, and thereby consolidate

sequential memories in long-term storage.

Frontiers in SystemsNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnsys.2022.972235
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org


Howard et al. 10.3389/fnsys.2022.972235

FIGURE 7

Representative replays of two separate sequences during a four-day, four-night simulation. Sequences ABCDE and FGHIJ were trained for 10

trials each on Day 1, and then only ABCDE was trained for 10 trials per day on Days 2, 3, and 4. 50 cycles of 1 Hz SWO were run each night. The

last full replay for each of the four nights (cued by the first item in each sequence) within the respective 500 ms UP state is plotted here.

(A) ABCDE replay in the hippocampus each night. (B) ABCDE replay in the cortex with inset histogram of the number of replays cued by each

item during the night. (C) FGHIJ replay in the hippocampus each night. (D) FGHIJ replay in the cortex with inset histogram of the number of

replays of each item during the night. Due to lower salience, replays of FGHIJ die out after Day 2. Note the first item is activated by the replay

cue. The duration of replay is printed at the top of each plot, which is calculated only when all items in the sequence get activated.

Competing sequences

We now focus on the effects of competition among

sequential experiences for limited replay opportunities during

sleep onmemory recall. In this experiment (see Figure 10A), two

non-overlapping sequences ABCDE and FGHIJ were trained for

10 trials each on Day 1, followed by continued training for the

sequence FGHIJ only on subsequent Days 2–4 (10 trials per

day). This has the same design as the experiment reported in

Figure 7. Memory recall for the sequence ABCDE was assessed

on each of Days 1–5 to focus on the effect of the more practiced

sequence on the less practiced sequence. Just as the simulation

experiments reported above, there were 50 replay opportunities

at the start of each of the four intervening nights. On Nights

2–4, the items belonging to the sequence FGHIJ have a much

higher chance (compared to the items belonging to the sequence

ABCDE) of getting selected to cue the replays during the SWS

period, as they have higher salience due to the additional practice

on Days 2–4.

In Figure 10, it can be seen that the cortical and hippocampal

weights for the sequence ABCDE increased similar to Figure 8

on Day 1 and Night 1. But starting fromNight 2, the preferential

replays cued by items belong to the other sequence FGHIJ result

in the indirect suppression of consolidation of the sequence

ABCDE in the cortex. By Night 3, there were almost no replays

related to the sequence ABCDE. Consequently, the sequence

ABCDE is not recalled on Days 3–5 with expected minimum

recall accuracy and maximum default recall time.

We also performed another simulation experiment where

the model is exposed to two sequences that overlap in the

third item (namely, ABCDE and FGCIJ). Both sequences were

trained for 10 trials each on 4 consecutive days (Days 1–4).

And 50 cycles of 1 Hz SWO were run each of the four nights

(Nights 1–4). Memory recall tests were conducted at the end

of each day. Supplementary Figure 3 shows the waking recalls

for either sequence, cued by the respective first item, in the

hippocampus and cortex. We can observe that the model is

able to consolidate both sequences, but not without learning

associations between subsequences “C”-“D”-“E” and “C”-“I”-

“J.” Further model development would be needed to learn long-

range connections between non-adjacent items (e.g., “A” -> “C,”

“A” -> “D”) to enforce a more contextual recall as opposed to

item-based recall. For instance, when cued by item “A” and

following the recall of items “B” and “C,” the dynamic context of

the subsequence “A”-“B”-“C” should bias the succeeding recall

of item “D” over item “I.”
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FIGURE 8

Baseline network. (A) A sequence ABCDE was trained and tested on Day 1 as illustrated in the timeline. On the next four nights (highlighted with

cyan patches) there were 50 non-deterministic replays biased by salience, followed by morning tests (HC, hippocampus; CTX, cortex). The

middle row plots the two memory recall metrics based on each of the five waking tests: (B) Recall time, where 30 s is default for incomplete

recalls. (C) Recall accuracy. The bottom row plots the dynamics of weight strengths between items of the sequence ABCDE in the cortex and

hippocampus during the same period. (D) Weight strengths in CTX. (E) Weight strengths in HC.

Hippocampal learning disabled during
sleep

There is evidence that hippocampal plasticity is suppressed

during SWS (Leonard et al., 1987; Bramham and Srebro,

1989). This might serve the purpose of allowing transfer

to the cortex without further modifying the hippocampal

representation (Squire and Alvarez, 1995). We repeated the

experiment reported in Figure 8 with hippocampal learning

disabled during sleep (see Figure 11). During Day 1 training,

the hippocampus learned the sequence as evidenced by the

high weights, high recall accuracy, and low recall time.

Hippocampal replays occurred during Night 1, but without

learning in sleep. Unlike Figure 8E, the hippocampal weights

decayed continuously following the initial encoding except

for small bumps during daytime recall testing. The feedback

from hippocampus to cortex was still intact; so even as

the hippocampal weights decayed without the benefit of the

overnight replays, there was enough replay activity to strengthen

the cortical weights during SWS to the point that the cortical

representation became independent of the hippocampus.

Compare with Figure 9 to see the difference between lesioning

the hippocampal projections to the cortex vs. having an intact

hippocampus with learning disabled during sleep. We also

assessed the duration of offline replays in the hippocampus

across the four nights (see Supplementary Figure 4). The

hippocampal replays did not progressively become faster (cf.,

Figure 7) even as the process of memory consolidation in the

cortex continued. Overall, this simulation experiment shows

that while the hippocampal projections to the cortex are critical

for long-term consolidation, learning in the hippocampus

during SWS may not be critical.
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FIGURE 9

Lesions of hippocampal feedback projections before training. (A) With feedback from hippocampus to cortex turned o� before training, the

cortical representation cannot develop. Hippocampal connections are re-learned from replay activity during the SWS periods, but little growth is

seen in the cortical connections (HC, hippocampus; CTX, cortex). (B) Recall time, where 30 s is default for incomplete recalls. (C) Recall

accuracy. (D) Weight strengths in CTX. (E) Weight strengths in HC.

Discussion

We have presented a model of the cortico-hippocampal

system that quickly learns causal associations between items

in sequential experiences as a function of the overlap of their

dynamically changing activations for the short term, and over a

longer period of time develops a stable long-term representation.

The model produces memory consolidation due to emergent

replay activity during SWS periods (Zola-Morgan and Squire,

1990; Squire and Alvarez, 1995; Gais and Born, 2004; Born and

Wilhelm, 2012; see Figures 8, 11). As illustrated in Figure 1,

our model predicts the key role of the bi-directional cortico-

hippocampal dialogue to strengthen and consolidate sequential

memories for long-term storage in the cortex. Figure 8 shows

that with hippocampal learning intact during sleep if the

model doesn’t experience new episodes, the hippocampal

representation of a given sequence can sustain itself almost

indefinitely (or at least until the salience of the items belonging

to the sequence decays to an extremely low level). Figure 9

shows that if hippocampal projections to the cortex are lesioned,

the cortex is unable to develop a long-term representation. For

the case that the hippocampal projections to the cortex remain

intact, if there is increased competition from another sequence

(due to additional practice) for replay opportunities during SWS

periods before the cortical representation is developed, the less

practiced sequence is not replayed enough in the hippocampus

to facilitate consolidation (see Figure 10). On the other hand,

plasticity is suppressed in hippocampus during SWS (Leonard

et al., 1987; Bramham and Srebro, 1989), possibly to prevent

changing the hippocampal representation while its replays are

driving the transfer to the cortex. If the network remains

intact but hippocampal learning is turned off during sleep, the

cortical representation can develop even as the hippocampal

representation decays (see Figure 11).
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FIGURE 10

E�ects of competition for limited replay opportunities on memory recall. (A) This experiment is similar to Figure 8, but competition from the

more practiced sequence FGHIJ reduces and then eliminates replays of the sequence ABCDE (HC, hippocampus; CTX, cortex). There is a

growth of cortical connections in Night 1, but very little in Night 2 and beyond. (B) Recall time for the sequence ABCDE, where 30 s is default for

incomplete recalls. (C) Recall accuracy for the sequence ABCDE. (D) Weight strengths in CTX for the sequence ABCDE. (E) Weight strengths in

HC for the sequence ABCDE.

Replays and salience

Replays are primarily observed during the UP states of

SWOs during SWS (Nádasdy et al., 1999), which we have

simulated as shown in Figure 5. Replays have also been detected

during quiet waking (Diba and Buzsáki, 2007; Carr et al., 2011).

However, it has been observed that replays during SWS are

more effective for consolidation than waking replays (Barnes

and Wilson, 2014). This may be due to powerful bursts of

activation during sharp-wave ripples in the hippocampus during

SWS (Chrobak and Buzsáki, 1994), which speed up the dynamics

of the sleep replays as much as 20 times over the original

waking experiences (Nádasdy et al., 1999; Lee and Wilson, 2002;

Euston et al., 2007; Ji and Wilson, 2007; Rasch and Born, 2013).

In the brain, the temporal compression of replays means a

tighter overlap between the activations of the items leading

to more efficacious learning of the pertinent connections in

the cortex. It also allows longer range connections, so that

events that were too temporally separated during waking can

be associated during sleep (Buzsáki, 2005; Lerner and Gluck,

2019). Plasticity is suppressed in the hippocampus during

SWS (Leonard et al., 1987; Bramham and Srebro, 1989), but

not in the cortex, so replays during sleep give the slower

learning cortex more exposures to a memory at a higher effective

learning rate than during the original experience. Note that in

the experiment of Figure 11, even with hippocampal plasticity

disabled during sleep, the memory can still be transferred to

cortex successfully.

Do replays start at the beginning of a sequence, ormore often

in the middle due to random reactivation? Do they continue

reliably to completion? Existing physiology data (Wilson and

McNaughton, 1994; Nádasdy et al., 1999; Diba and Buzsáki,
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FIGURE 11

Intact network with hippocampal learning turned o� during sleep. (A) Hippocampal replays occur during sleep, but with learning turned o�, the

hippocampal weights do not benefit and decay continuously. However, su�cient weight strengths are built up in the cortex during Night 1 such

that the cortex is able to sustain replays through the subsequent nights. In this case, the cortex can still consolidate the sequence and become

independent of the hippocampus. (B) Recall time, where 30 s is default for incomplete recalls. (C) Recall accuracy. (D) Weight strengths in CTX.

(E) Weight strengths in HC.

2007; Ji and Wilson, 2007; Wikenheiser and Redish, 2013)

correlate neural spiking during replays with entire movement

sequences and can tell whether a waking experience was replayed

in the forward or reverse direction, but does not clarify whether

partial sequences were replayed. Our model simulates replays by

activating an item in memory with a probability proportional

to its salience metric (see Equation 6). If instead the items were

randomly chosen to cue replays and the activation always spread

in one direction to the end of the sequence, the weights of

the later links would grow stronger than the earlier links since

they are more likely to be adapted over the course of many

replays (Lerner et al., 2019).

Without the influence of salience, old and new memories

would all replay with equal frequency, reducing the

opportunities for a new memory to become consolidated.

The salience metric defined in Equation (6) makes it more

likely for newer memories to replay. In our model, the salience

of a memory is only updated during waking experience; if

salience were also updated during sleep replays, runaway

feedback would prevent new memories from competing for

consolidation. We know that salience is not a simple function of

recency and can be influenced by neuromodulators (Atherton

et al., 2015). It is possible that the likelihood of replays may be

reduced due to physiological factors during encoding such as

low attention or high fatigue, or increased by novelty (Cheng

and Frank, 2008), high emotional content (Yonelinas and

Ritchey, 2015), or immediate reward (Fuchs et al., 2006; Singer

and Frank, 2009). In this regard, McNamara et al. (2014)

showed that optogenetic stimulation of dopaminergic neurons

in rat ventral tegmental area (VTA) during spatial learning

improves offline hippocampal replay strength by ∼40%, in

terms of correlation between wake and sleep firing patterns
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of hippocampal cells coding novel spatial memories. Such

neuromodulation makes it possible for statistically infrequent

but task-relevant events to become preferentially consolidated

in the cortex.

Previous memory consolidation models

Several other computational models of memory

consolidation have been published. Alvarez and Squire

(1994) simulated memory transfer from short-term to long-

term storage using a cortical-hippocampal neural network

model with inter-areal projections but without intra-areal

projections. By lesioning the hippocampal layer after training,

they produced temporally graded retrograde amnesia in which

memories are impaired only to the extent that they had not

been consolidated before the lesion. McClelland and O’Reilly

(1995) simulated the phenomenon of memory consolidation

using a short-term hippocampal storage and long-term cortical

storage, which were implemented as variables of memory

strength. As a result of memory encoding, the hippocampal

memory strength is instantiated at a higher level than the

cortical memory strength. Further, the memory strength in

the hippocampus decays at a faster rate compared to that in

the cortex. Cortical memory strength is boosted during offline

periods by the phenomenon of reactivation in proportion to the

corresponding memory strength in the hippocampus. Memory

recall accuracy is modeled as a function of memory strengths in

both the hippocampus and the cortex. Káli and Dayan (2004)

simulated a multi-modal hierarchical associative network

with reciprocal projections in the slow-learning cortex and

a hippocampal buffer of novel patterns from the conjunctive

layer in the cortex. During offline periods, the hippocampus

reactivates its memories randomly in the cortical conjunctive

layer to facilitate more learning and thereby consolidation

in the cortex. Note that these models use only static patterns

or unitary variables to represent memories, do not consider

the temporal aspects of sequential episodes, do not model the

emergence of time-compressed replays that are coordinated

between the hippocampus and the cortex during offline

periods, and have not investigated the role of hippocampal

learning and the effect of limited replay opportunities during

offline periods.

Do hippocampal memory traces survive
long term?

Figures 8, 9 show a hippocampal representation that

survives through the course of the experiment (4 days) with

no sustained decay. However, in those experiments there is

no competition for limited replay opportunities during SWS

periods from other sequences. And although the hippocampal

memory traces decay rapidly each day (see Equation 5), they

are refreshed by replays each night due to hippocampal learning

that is enabled at all times. However, in the experiment

where the hippocampal learning is disabled during SWS,

the hippocampal representation does not survive for long

(see Figure 11) because the weights are passively decaying

at a high rate without any updates from the replays. Our

model supports a systems-level consolidation theory in which

a hippocampal representation is effectively transferred to

the cortex (Buzsáki, 1989; Zola-Morgan and Squire, 1990;

Marr et al., 1991; Alvarez and Squire, 1994; McClelland and

O’Reilly, 1995; Squire and Alvarez, 1995; Dudai, 2004; Gais and

Born, 2004; Káli and Dayan, 2004; Marshall and Born, 2007;

Born and Wilhelm, 2012). A related suggestion (Alvarez and

Squire, 1994; Paller and Voss, 2004) is that offline memory

consolidation serves to bind together multi-modal aspects of

an episode by developing cortical links between “cross-cortical

storage” fragments so that a distinct episodic memory can

be recalled.

It is generally accepted that cortical representations are

more semantic, more generalized (Jai et al., 2018). So it is

not clear how certain detailed remote episodic memories can

be recalled for many years if the hippocampal representation

decays completely. Multiple trace theory (MTT; Nadel et al.,

2000) suggests that a hippocampal representation survives

as long as the memory can be recalled, and is the source

of detailed episodic memories that cannot be provided by

the generalized cortical representations. The Kali and Dayan

model (Káli and Dayan, 2004) supports that theory by

demonstrating that if a hippocampal representation does persist,

it is possible for it to stay linked to the corresponding cortical

representation as it evolves over time. They speculate that the

purpose of replays is to maintain the hippocampal indices

by which the cortically stored memories can be retrieved.

Nadel et al. (2000) also present fMRI evidence in support of

MTT, which shows high hippocampal activation during recall

for not only recent memories (which are dependent on the

hippocampus) but also remote memories (which are presumably

not dependent on the hippocampus). In our model, cueing

the recall of a remote memory in the cortex would elicit

the reactivation of the corresponding items of the sequence

in the hippocampus due to projections from the cortex to

the hippocampus even though the underlying weights have

decayed significantly. In other words, just as hippocampal

replays of unconsolidated, recent memories drive the replays

in the cortex, the cortical recall of consolidated, remote

memories drive the reactivations in the hippocampus. We

suggest that the phenomenon of reconsolidation (Nader et al.,

2000; Dudai, 2006), wherein so-called consolidated memories

become temporarily labile following a recall and subject to

modification, is facilitated by the hippocampal re-encoding of

the recalled sequential experience in the cortex. If a remote

memory is recalled while other items become active, causal
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links will be formed between all active items (see Figure 3)

in the hippocampus. Hippocampal replays during subsequent

offline periods can then alter the cortical representation

via the mechanisms described in this paper and thereby

mediate reconsolidation.

Testable predictions

Based on the experiments reported in the Results section, we

can make several predictions: (1) If hippocampal projections to

cortex are disabled, no cortical replays of recent memories are

possible (see Figure 9). (2) The speed of replay of a particular

episode increases from one night to the next, even in the absence

of additional training, under certain conditions (see Figure 7);

namely, the presence of hippocampal learning during SWS and

the absence of other experiences during waking. With the rapid

passive decay of hippocampal weights, the hippocampal replays

tend to become slower with time. If learning is enabled in

the hippocampus during SWS, then any replay of the episode

would boost the corresponding hippocampal weights. With

enough replays (due to the absence of competition from other

experiences), the hippocampal weights might become stronger

than when the episode was experienced during waking. And

as the episode is consolidated in the cortex, the cortex can

generate the replays by itself and thereby further boost the

strength of the hippocampal replays and vice versa (owing to

the bi-directional projections between the hippocampus and

the cortex). (3) If there are no other experiences after the

exposure to an episode, the decay of the hippocampal memory

traces will be significantly slowed as they will be refreshed each

night by replays. (4) Recent, salient memories can dominate

offline consolidation via replays at the expense of older, less

salient memories. Figure 10 shows how an unconsolidated

sequence loses the benefit of overnight consolidation due to

competition for replays from a more recent experience, causing

the hippocampus representation to decay before the cortical

representation can develop. Figure 7 illustrates how the more

recent sequence comes to dominate the number of replays

during sleep.

Conclusion

In summary, we present a first-of-its-kind computational

model of the critical role of the bi-directional interactions

between the hippocampus and cortex during wake and sleep

for the systems-level consolidation of sequential experiences.

This model simulates time-compressed replays of sequences

during offline periods that are coordinated between the

hippocampus and cortex, and emerge dynamically in response

to the recency, frequency, and other saliency factors of the

constituent items in the various experiences. Simulation

experiments reveal that hippocampal learning during SWS

may not be critical for cortical memory consolidation, and

provide insights into how salience-driven competition for

limited replay opportunities during SWS can underlie the

interference among various experiences including those

that do not overlap in their content. Further, the model

provides an explanation in the context of systems-level

consolidation for the neurophysiological evidence that

has been argued in favor of the alternate multiple trace

theory, as well as for the phenomenon of reconsolidation of

remote memories.
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