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A B S T R A C T   

Extensive studies have been conducted on the impact of foreign language reading anxiety on 
reading, primarily focusing on pedagogy and behavior but lacking electrophysiological evidence. 
The current study aimed to investigate the influence of foreign language reading anxiety on 
reading and its underlying mechanisms. The results revealed a negative correlation between 
foreign language reading anxiety and foreign language reading performance, irrespective of the 
native language. Adults with low levels of foreign language reading anxiety (LFLRA) demon-
strated a significant difference in early lexical component N170 amplitude between foreign and 
native languages. However, this effect was not observed in adults with high levels of foreign 
language reading anxiety (HFLRA). In terms of N170 latency, HFLRA showed a longer N170 for 
the foreign language compared to the native language. Furthermore, the N170 effects were 
predominantly localized over the left occipitotemporal electrodes. Regarding N400 latency, a 
significant difference was found in LFLRA individuals between foreign and native language 
processing, while HFLRA individuals did not exhibit this difference. These findings suggest that 
HFLRA individuals experience inefficient lexical processing (such as orthography or semantics) 
during reading in foreign language.   

1. Introduction 

Fluent reading in a second language has become a fundamental ability for successful academic and social life. However, a sig-
nificant number of individuals experience reading anxiety, commonly known as foreign language reading anxiety (FLRA). FLRA refers 
to the perceptions of apprehension, discomfort, or unease that individuals experience when reading foreign language (FL) texts ([1], 
p.1362). FLRA has a relatively high prevalence [2]; [3], affecting approximately one-third of Chinese-English bilinguals [4]; [5]; [6]. 
Converging evidence indicates that FLRA has a detrimental impact on reading performance [7]; [8,9], with higher levels of anxiety 
associated with decreased reading accuracy and slower reading speed [10–12]. 
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FLRA has often been conceptualized as anxiety specifically related to the non-native language [13]; [3]; [14]; [6,15]. Liu [16] 
observed that participants with high FL anxiety demonstrated poorer performance in the FL verb-noun naming task and exhibited a 
higher heart rate compared to those with low FL anxiety, while there was no difference between the two groups in the native language 
(NL) naming task. MacIntyne & Gardener (1991) also shed light on the specific nature of foreign language anxiety. The correlation 
results indicated that the anxious individuals’ feelings were significantly associated with FL reading performance but not with NL 
reading performance [17]. 

In bilingual studies, foreign and native languages share common neurophysiological mechanisms for reading. The word quality 
framework [18,19] suggests that word reading involves the explicit representation (identification of lexical features) and integration of 
these lexical features (conceptual representation). Fluent reading requires the ability to rapidly and accurately identify words, which 
can be even faster than auditory recognition. Hence, researchers often employ event-related potential (ERP) techniques known for the 
excellent temporal resolution [20] to investigate lexical reading. In lexical decision tasks, two ERP components are typically associated 
with different sub-processes of reading. The first component is the occipitotemporal N170, which is consistently elicited by visual 
words, peaking around 200 ms after stimulus onset [21–25]. The N170 reflects early stages of lexical or sub-lexical orthographic 
processing during word reading [26]; [27]; [24] and is typically left-lateralized [23]. The second reading-related component is the 
centro-parietal N400 [28,29], which reflects semantic processing and peaks around 400 ms after stimulus onset. The N400 is sensitive 
to lexical properties, particularly semantic relatedness [30,31,32], and indicates the integration of semantic information during 
reading. Reading-related N170 and N400 components can be observed across languages [33]; [34]; [35]; [27]. Both foreign and native 
languages can evoke N170 and N400 responses when visual words or word-related information is detected [15,27,36]. 

Indeed, both foreign and native languages rely on certain neural substrates such as N170 and N400. However, the activation of 
different writing systems often leads to varying degrees of dependence and performance in orthographic and semantic processing 
activities during word recognition [37,38]; [39,40]. For instance, Chinese reading is associated with a bilateralized or even 
right-lateralized N170 while English reading shows a more left-lateralized N170 [41,42]. The lateralized N170 could be attributed to 
the distinct orthographic information across languages [43]; [44]. As for the N400 component, English exhibits a weaker and/or 
longer N400 compared to Chinese [33,45]. Chinese-English bilinguals, compared to English monolinguals, demonstrate a reduced 
N400 response for English word pairs that shared a character in their Chinese translation [46]. As previously noted, FLRA exclusively 
affect foreign language reading performance, with no significant impact on native language [17]. In our current study, we hypoth-
esized that this exclusionary effect on foreign language may step from FLRA’s influence on reading-related neural components that 
exhibit language differences, such as N170 and N400. Otherwise, both languages could potentially be affected. 

Taken together, this study aimed to examine whether and how FLRA affects the neurophysiological processes involved in bilingual 
reading. To achieve this, we conducted lexical decision tasks to compare N170s and N400s in response to native and foreign languages 
between HFLRA and LFLRA. We recruited Chinese-English adults with various levels of FLRA and assessed their behavioral and 
electrophysiological responses during the Chinese character and English word recognition tasks. Behaviorally, we anticipated that 
HFLRA would exhibit slower and less accurate retrieval of FL words compared to LFLRA. Electrophysiologically, HFLRA individuals 
may demonstrate distinct temporal brain wave patterns associated with lexical representation when compared to LFLRA individuals. 
By analyzing the N170s and N400s in response to NL and FL, we would be able to investigate the specific characteristics of these ERP 
components in individuals with HFLRA. 

2. Materials and methods 

2.1. Participants 

Sixty-eight Chinese-English bilinguals (34 females; mean age = 20.9, standard deviation [SD] = 2.17) participated in the current 
study. The screening procedure included two stages: 1) 201 undergraduates participated in the online tests for the first stage. All the 
participants were Chinese-English bilinguals and had been learning English for more than 7 years. They were tested by three reading 
anxiety scales (detailed information about these tests were in the following section). We summed up the z-scores of each scale and 
arranged the scores in ascending order. Participants scoring in the top 25 % and the last 25 % were defined as individuals with high 
(HFLRA) and low levels of reading anxiety (LFLRA) respectively. We adopted the 25 % cut-off point based on the criteria for screening 
State-Trait anxiety, which has been previously used [47–49]. 

2) On the second stage, one exclusion criterion was used. To control for the potential influence of reading anxiety from the native 
language (e.g., Chinese), we excluded the participants scoring out of one SD in the Chinese Reading Anxiety Scale (CRAS). Finally, 34 
participants in HFLRA and 34 participants in LFLRA were recruited in the current study. 

All participants were right-handed as assessed by the Chinese version of the Handedness Questionnaire. They had normal or 
corrected-to-normal vision and had no history of neurological abnormalities or language impairments. This experiment was approved 
by the Local Ethics Committee at Shenzhen University and all participants provided informed consent before the experiment. They 
were compensated for their participation. 

2.2. Reading anxiety tests 

To measure foreign language reading anxiety, three widely used FLRA scales have been employed, including the Foreign Language 
Reading Anxiety Scales (FLRAS, [50]), English as a Foreign Language Reading Anxiety (EFLRA [51,52]), and Reading Anxiety Source 
Questionnaire (RASQ [53]). FLRAS primarily focuses on anxiety caused by the content of reading materials itself, such as anxiety 
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related to unfamiliar writing systems and unfamiliar cultures (Cronbach’s alpha = 0.86). EFLRAI specifically targets English as a 
foreign language (EFL) learners, and it expands on FLRAS by including two additional factors beyond the reading itself, namely anxiety 
associated with the readers themselves (e.g., language proficiency) and that caused by teachers (e.g., teaching methods; Cronbach’s 
alpha = 0.93, [54]; [6]; [55]). Lastly, the RASQ also targets EFL learners, but it emphasizes reading processes, such as time constraints 
during reading, and a lack of reading skills [53]. To comprehensively represent the level of FLRA, the participants were screened by the 
three scales. 

To measure native language reading anxiety, the Chinese Reading Anxiety Scale (CRAS) was utilized. Adapted from FLRAS [50], 
the CRAS replaced the term “foreign language” with “native language” in the scale items, specifically targeting Chinese-English bi-
linguals. For example, the statement “When reading English, I get nervous and confused when I don’t understand every word” was 
modified to “When reading Chinese, I get nervous and confused when I don’t understand every character”. Cronbach’s alpha is utilized 
to assess the reliability of the questionnaire, providing an index ranging between zero (α = 0) and one (α = 1). A Cronbach’s alpha 
value of 0.7 or higher is considered good for instruments comprising ten or more items. In the case of the CRAS questionnaire, the 
reliability analysis yielded a Cronbach’s alpha score of 0.72. 

2.3. General anxiety tests 

To distinguish between general anxiety and FLRA, participants also completed the State-Trait Anxiety Inventory (STAI [56]). STAI 
(Cronbach’s alpha = 0.85) consists of State Anxiety Inventory (SAI) and Trait Anxiety Inventory (TAI). A higher total score on the scale 
indicates a higher level of anxiety. 

2.4. Reading-related tasks 

To measure word reading efficiency in both languages, participants were required to complete five reading-related tasks. We 
utilized the Rapid Automatized Naming (RAN, [57,58]) task and the Woodcock Reading Mastery Tests (WRMT, [59]) for English. The 
RAN task consists of two parts, with each part containing 40 different letters. Participants were instructed to read the letters as 
accurately and quickly as possible. The final score was determined by averaging the scores obtained from completing two versions of 
this task. Additionally, WRMT includes Word Identification (WI, real word reading test) and Word Attack (WA, pseudowords reading 
test). The number of correctly pronounced words was regarded as an index for reading performance. 

For Chinese, the Chinese Character Recognition (CCR) test and the Chinese Reading Efficiency (CRE) test [60,61] were utilized. In 
the CCR test, participants were presented with 150 Chinese characters selected from 3500 less frequently used characters. These 
characters were ordered in increasing difficulty (i.e., decreasing word frequency). Participants were required to read the characters 
one by one until they were unable to correctly read 15 consecutive characters. In the CRE test, participants were given the task of 
reading as many as possible of 200 Chinese characters within 1 min [60,61]. This task was performed twice and the score was 
determined by calculating the average number of characters accurately read across the two times. 

2.5. Stimuli 

The stimuli consisted of 120 high-frequency Chinese disyllabic words sourced from the Chinese Lexical Database (CLD; [62]) and 
120 high-frequency English disyllabic words with six-to-seven letters obtained from Intelligent Web-base Corpus (iWeb). To assess the 
familiarity of the stimuli, we enlisted the help of 60 independent participants who were not English majors. These participants were 
asked to rate the familiarity of all the stimuli on a seven-point scale, ranging from never (1) to frequent (7). A Paired-sample t-test 
revealed no significant difference in familiarity between the Chinese and English words (mean familiarity: 5.01 vs. 5.01; t = 1.544, p =
0.125), as outlined in the Appendix. For half of the words in each stimulus type, we created pronounceable pseudo-words by modifying 
the configuration of the real words by the orthographic rules of Chinese and English. All stimuli were presented in lowercase letters of 
the ‘Times New Roman’ font, with a font size of ‘48′, in white ink on a black background at the center of the screen. The stimuli were 
carefully adjusted for luminance and root mean square contrast using Adobe Photoshop. The visual distance was approximately 100 
cm in front of a computer screen. 

2.6. Procedure 

Participants were instructed to engage in a lexical decision task. Each trial commenced with the presentation of a white fixation 
cross (+) for 1000 ms. Following a stimulus duration of 2000 ms, participants were required to determine whether the visual stimulus 
presented was a real word or a pseudo-word by pressing the ‘F’ or ‘J’ key, respectively. They were encouraged to respond with both 
speed and accuracy (‘F’ for real words with the left index finger and ‘J’ for pseudo-words with the right index finger, which were 
counterbalanced across participants). Once participants made their responses, the stimulus disappeared from the screen. The exper-
imental procedure encompassed a total of 240 trials, presented in a pseudo-randomized order to ensure that stimuli of the same type 
did not appear consecutively. Each stimulus was presented once throughout the experiment. Regular breaks were provided to par-
ticipants after every 30 trials to allow for rest. The duration of the task was approximately 20 min. Before commencing the actual 
experiment, participants completed 8 practice trials to familiarize themselves with the task requirements and response keys. The 
presentation of stimuli was controlled using E-Prime 3.0 software (Psychology Software Tools, Inc., Pittsburgh, PA). 
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2.7. EEG recordings 

The electroencephalogram (EEG) data were continuously recorded from 64 cap-mounted Ag/Ag–Cl electrodes (Brain Products, 
Munich, Germany) mounted on an elastic cap that was located in the Standard International 10–20 System. To monitor eye movements 
and blinks, an additional electrode was positioned below the right eye to record the electrooculogram (EOG). The data acquisition was 
performed at a sampling rate of 1000 Hz. The reference electrode was located at FCz and the impedance of all electrodes was 
maintained below 5 kΩ. 

2.8. Data analysis 

We conducted a mixed repeated-measures ANOVA with Group Type (HFLRA/LFLRA) as the between-subject factor and Language 
Type (English/Chinese) as the within-subject factor. Considering the significant effects of gender and language proficiency on the 
groups, gender and language proficiency were conducted as covariates in the analysis. 

The behavioral data were analyzed for accuracy and reaction time (RTs) from the stimulus onset. RTs from the incorrect answers 
and RTs that were implausibly long or short (i.e., 200 ms below or above the mean reaction time of 1500 ms) were excluded from the 
analysis. 

Off-line processing of EEG data was collected using EEGLAB [63] toolboxes in Matlab. The data underwent offline high-pass and 
low-pass filtering between 0.1 Hz and 30 Hz. Channels identified as problematic through visual inspection were removed and the data 
were re-referenced to an average reference. ERPs were calculated for each participant within an epoch spanning from 200 ms before to 
2000 ms after the onset of the stimuli. Baseline correction was applied relative to the − 200 to 0 ms pre-stimulus time. Following 
manual removal of any remaining artifacts, independent component analysis (ICA) using the Infomax Restricted algorithm was 
employed to identify and remove ICA component artifacts related to eye movements, muscle artifacts, or other artifacts [63,64]. Only 
trials with correct responses were included in the analysis and valid trials were required to have a minimum of 120 trials. Epochs 
containing artifacts exceeding a threshold of ±100 μV during the recording period were excluded from the analysis. Finally, the 
artifact-free EEG data were segmented into epochs ranging from 200 ms (for the baseline correction) to 1000 ms. 

We conducted an analysis of peak amplitudes and latencies for the occipitotemporal N170 and central-parietal N400 components. 
The ERPs were averaged based on waveform patterns observed across different sets of electrodes, guided by grand-mean topographies 
and relevant literature [65,66,67]. The N170 peaks were identified within the time window of 160–220 ms after stimuli onset and the 
electrode sites of P7, PO7, O1, P8, PO8, and O2 were examined to analyze the effects of orthographic processing. On the other hand, 
the N400 peak was observed within the time window of 300–500 ms, and the electrode sites of Fz, FCz, Cz, CPz, and Pz were analyzed 
to investigate the effect of semantic processing (see Fig. 1). 

3. Results 

3.1. Behavioral data 

First, a chi-square test was conducted to examine the gender differences between HFLRA and LFLRA, yielding a significant result 
(χ2 = 5.882, p < 0.05). However, no significant differences were found between the two groups in terms of age, STAI, and CRAS (see 
Fig. 2 in the Appendix). 

Regarding reading performance outside the scanner, we observed significant group differences in RAN, WRMT, and CCT test, but 
not in the CRE test (see Table 1). 

Concerning the high correlation between English and Chinese tests (r = 0.443, p < 0.001), we included the language proficiency 

Fig. 1. Channel locations. The posterior occipitotemporal electrodes were clustered on the left and right hemispheres together, while the centro- 
parietal electrodes were clustered in the central region. ERPs analysis was applied over these electrode sites. 
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test as a covariate to account for the interaction of the two languages. The results revealed that after controlling for English reading 
ability, the previously observed significant group differences in Chinese proficiency tests became non-significant (ps > 0.5). However, 
when each Chinese proficiency test was taken as a covariate, thce group differences in English tests remained significant (ps < 0.01). 
This suggests that there were indeed significant differences in English tests between HFLRA and LFLRA, while the group differences in 
Chinese tests may be influenced by the high correlation between Chinese and English achievement. 

For accuracy, we observed a significant main effect of Language (F (1,66) = 280.931, p < 0.001,η2
p = 0.810). Participants 

demonstrated higher accuracy in Chinese (97.62 % ± 2.69 %) compared to English (80.47 % ± 9.58 %). Additionally, a significant 
main effect for Group was found (F (1,66) = 12.059, p < 0.01,η2

p = 0.154). Furthermore, a significant interaction between Group and 
Language was observed (F (1,66) = 16.156, p < 0.001,η2

p = 0.197). Follow-up simple effect tests showed that participants with HFLRA 
exhibited relatively lower accuracy in English (76.38 % ± 8.27 %, t (66) = − 3.892, p < 0.001, Cohen’s d = 0.953) compared to LFLRA 
(84.59 % ± 9.11 %). However, no significant group effect was observed in Chinese (97.62 % ± 2.26 % vs. 97.62 % ± 3.09 %, p =
1.000, the figure in the Appendix). 

Concerning the reaction time, the main effect of Language was significant (F (1,66) = 579.760, p < 0.001,η2
p = 0.898). Participants 

exhibited faster reaction times for Chinese characters (685.510 ms ± 77.795 ms) compared to English words (912.011 ms ± 125.647 
ms). However, neither the significant interaction between the Group and Language (F (1,66) = 0.033, p = 0.856) nor a main effect of 
the Group was observed (F (1,66) = 0.264, p = 0.609, see Fig. 2). 

Considering the significant group effect observed in gender, Chinese tests, and English tests, we conducted an additional analysis 
using these factors as covariates separately. Remarkably, even after controlling for gender and language abilities, all the main effects of 
Language and Group, as well as the interaction between Language and Group, remained significant. These findings indicated that the 
observed results were robust and not affected by gender or language abilities. 

3.2. N170 measurement 

An apparent N170 component was observed across electrodes and languages in both groups, peaking at approximately 200 ms after 
stimulus onset. The ERP wave forms and topographic plots for each condition were illustrated in Fig. 3. 

3.2.1. Amplitude analysis 
For the peak amplitude of N170, we found a significant main effect of Language (F (1,66) = 6.722, p < 0.05,η2

p = 0.092). Par-
ticipants exhibited less negative amplitudes for Chinese (− 8.320 ± 5.169) compared to English (− 9.050 ± 4.980). Moreover, a sig-
nificant interaction effect (F (1,66) = 5.424, p < 0.05,η2

p = 0.076) was observed over the left hemisphere. Follow-up simple effect tests 
revealed that for each language task, there were no significant differences between HFLRA and LFLRA. For LFLRA, a significant effect 
was observed for different languages (Chinese: 8.422 ± 4.764 vs. English: 9.807 ± 4.866, p < 0.01, Cohen’s d = 0.287), whereas no 
significant effect of Language Type for HFLRA (Chinese: 8.218 ± 5.616 vs. English: 8.293 ± 5.050, p = 0.853). 

Additionally, over the right hemispheres, we observed only a significant main effect of Language (F (1,66) = 19.686, p < 0.001,η2
p 

= 0.230). The overall N170 amplitude for English words (− 8.277 ± 5.085) was relatively more negative compared to Chinese 
characters (− 7.179 ± 4.940). However, the main effect of Group (F (1,66) = 1.750, p = 0.190) and the interaction did not reach a 
significant level (F (1,66) = 0.557, p = 0.458, see Fig. 4). 

3.2.2. Latency analysis 
For peak latency of N170, we found a significant main effect of Language Type (F (1,66) = 5.032, p < 0.05,η2

p = 0.071), revealing 
that the N170 latency for Chinese characters (190.926 ± 15.441) was earlier compared to English words (193.647 ± 12.127). 
Additionally, we observed a significant two-way interaction effect between Language and Group (F (1,66) = 5.629, p < 0.05,η2

p =

0.079) over left occipital-temporal sites. Simple effect tests revealed that there was a significant group difference in processing Chinese 
characters (HFLRA: 187.235 ± 15.849 vs. LFLRA: 194.617 ± 14.310, t (66) = − 2.016, p < 0.05, Cohen’s d = 0.489) but no significant 

Table 1 
Average performance on cognitive and demographic tasks of HFLRA and LFLRA and group differences (t-test).   

HFLRA (n = 34) LFLRA (n = 34) t-value 

M SD M SD  

Age 20.79 1.99 21.09 2.35 − 0.55 
Sex (female/male) 12/22 22/12  
Chinese tests 
Chinese Character Recognition test − 0.15 1.04 0.15 0.94 − 1.27 
Chinese Reading Efficiency test − 0.23 1.12 0.23 0.80 − 2.00b 

English tests 
Rapid Automatized Naming 0.41 1.05 − 0.41 0.75 3.71a 

Word Identification − 0.49 1.07 0.49 0.61 − 4.70a 

Word Attack − 0.42 0.84 0.42 0.97 − 3.83a 

Note. 
a p < 0.001. 
b p < 0.05. 
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Fig. 2. Behavioral performance (mean accuracy and response time) in different languages (Chinese and English) and groups (HFLRA, the high 
foreign language reading anxiety group; LFLRA, the low foreign language reading anxiety group). Note: **p < 0.01. 

Fig. 3. The N170 component time-locked to Chinese characters and English words averaged in HFLRA and LFLRA groups. ERPs were calculated by 
averaging data at the left occipitotemporal electrodes of P7, PO7, and O1, and the right occipitotemporal electrodes of P8, PO8, and O2 separately. 
The y-axis is in μV with negative plotted up. The x-axis is in ms. Topographic plots of N170 effects collapsed across tasks in HFLRA and LFLRA 
groups in the 160–220 ms time windows. 

Fig. 4. Illustrations of the peak amplitude and latency of N170 of the averaged ERPs over the left and right occipitotemporal cortex under Chinese 
and English conditions for two groups. Note: **p < 0.01; *p < 0.05. 
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group difference in processing English words (HFLRA: 192.833 ± 14.241 vs. LFLRA: 194.460 ± 9.717, p = 0.584). We observed a 
significant language difference in the HFLRA group (Chinese: 187.235 ± 15.849 vs. English: 192.833 ± 14.241, p < 0.01, Cohen’s d =
0.372) but not in the LFLRA group (Chinese: 194.617 ± 14.310 vs. English: 194.460 ± 9.717, p = 0.927). No significant effects were 
observed over the corresponding right sites (see Fig. 5). 

Similarly, when gender, Chinese tests, and English tests were added as covariates, most of the significant interaction effects be-
tween Language and Group Type for N170 amplitude remained significant, and only one interaction effect became marginally sig-
nificant (p = 0.055) when using Chinese tests as a covariate. As for N170 latency, the overall interaction over the left hemisphere 
remained significant, except when using English tests as the covariates. 

3.3. N400 measurement 

The N400 component was observed across electrodes and language in both groups at approximately 400 ms after stimulus onset. 
The ERP wave forms illustrating each condition can be seen in Fig. 5. 

For the peak amplitude of N400, we only observed a significant main effect of Language Type (F (1,66) = 15.899, p < 0.001,η2
p =

0.194). The amplitude was found to be negative for Chinese (− 1.748 ± 1.802) but positive for English (1.280 ± 1.703). Concerning 
peak latency, we also found a significant main effect of Language Type (F (1,66) = 5.292, p < 0.05,η2

p = 0.074), revealing that the 
latency for Chinese (374.262 ± 32.465) was longer than that for English (366.412 ± 33.25). Furthermore, there was a significant 
effect between Language and Group Type (F (1,66) = 6.417, p < 0.05,η2

p = 0.089). A simple effect analysis was conducted, which 
revealed no significant difference between the groups for both FL and NL tasks. For HFLRA, there was no significant effect of Language 
Type on latency (Chinese: 369.988 ± 35.822 vs. English: 370.782 ± 34.433, p = 0.870). However, for LFLRA, there was a significant 
effect of Language Type (Chinese: 378.535 ± 28.619 vs. English: 362.041 ± 31.932, p < 0.01, Cohen’s d = 0.544), with the longer 
latency for Chinese compared to English (see Fig. 6). 

4. Discussion 

The present study aimed to investigate the impact of FLRA on reading performance from a neurobiological perspective. The study 
utilized lexical decision tasks to compare the reading-related electrophysiological markers (N170 and N400) during bilingual reading 
between individuals with HFLRA and LFLRA. At the behavioral level, HFLRA exhibited poorer reading performance in the foreign 
language compared to LFLRA. Neurobiologically, significant language differences between HFLRA and LFLRA were observed in the 
early stage of orthographic processing, as reflected by N170 amplitude and latency over the left hemisphere. Additionally, LFLRA 
demonstrated a significant difference in N400 latency between foreign and native language processing, which was not observed in 
HFLRA. These findings indicated that HFLRA can influence different stages of lexical representation such as orthographic or semantic 
processing. 

4.1. A lower accuracy in HFLRA in foreign lexical processing 

As expected, a significant group difference in accuracy was observed during English lexical processing. Specifically, HFLRA 
exhibited significantly lower accuracy in identifying English words compared to LFLRA, while they showed similar levels of accuracy 
in identifying Chinese characters. This finding provided strong evidence for the notion that the high level of FLRA may specifically 
contribute to poorer reading performance in FL lexical processing. Furthermore, we observed that LFLRA and HFLRA also did not show 
significant remarkable differences in general anxiety tests, i.e., state anxiety test and trait anxiety test. Prior literature suggests that 
anxiety encompasses numerous sub-types including state anxiety, trait anxiety, and anxiety specific to a certain situation (such as fear 
of a specific object, e.g. math anxiety; [11,12]). Accordingly, FLRA could be a sub-type of anxiety symptom specific to foreign language 

Fig. 5. The N400 component time-locked to Chinese characters and English words averaged in HFLRA and LFLRA groups in a 300–500 ms time 
window. Event-related potentials (ERPs) were calculated by averaging data at the centro-parietal electrodes of Fz, FCz, Cz, CPz, and Pz. The y-axis is 
in μV with negative plotted up. The x-axis is in ms. 
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reading situation, and is distinct from general anxiety. Hence, it is crucial to differentiate between various sub-types in future studies 
examining the influence of anxiety on behavioral performance, especially in academic contexts. 

Interestingly, no significant group differences were found regarding response time during English word processing in the current 
study. In terms of reaction time, previous studies reported mixed group effects. For example, a recent study found that individuals with 
high social anxiety had a significantly faster speed of information processing than individuals with low social anxiety [68]. On the 
contrary, other studies reported longer reaction times in individuals with high anxiety [69,70][71]. In the case of foreign language 
anxiety, Liu [16] found no significant group differences in response time during the FL verb-noun naming task. The inconsistency 
between studies could be attributed to the differences in experimental design. The tasks varied across studies, including emotion 
recognition [68,72], muscular activities in response to auditory stimuli [69], verbal naming [16], as well as pre- and post-match 
performance comparisons in sports studies [70]. In contrast to these studies, our study employed a classic lexical decision task. 
This task presented challenges in both visual and semantic recognition, compared to the more commonly used facial emotion 
recognition tasks. Consequently, the participants in the current study may focus on the accuracy of word identification, potentially 
prioritizing the process of decoding lexical information over reading speed. In this way, group effect could be only manifested in 
accuracy but not in response time. Alternatively, lower accuracy coupled with comparable response time may reflect a speed-accuracy 
trade-off. Individuals with HFLRA are as fast as those with LFLRA, resulting in more errors given their general lower language pro-
ficiency. This, in turn, reinforces a self-fullfilling prophecy. Instead of slowing down to compensate, they attempt to maintain pace with 
LFLRA, which leads to increased errors and potentially further heightening their anxiety levels. Further research is needed to explore 
which of these two interpretations is more suitable. 

4.2. Impaired orthographic processing reflected by N170 in HFLRA 

For N170 peak amplitude, a significant interaction effect between language and anxiety was observed. LFLRA demonstrated 
significantly lower amplitude in NL compared to FL over the left occipitotemporal cortex, whereas this effect was not observed in 
HFLRA. This result was in line with previous research which reported a stronger N170 in response to FL in bilinguals or multilingual 
individuals [24], [36]. The occipitotemporal N170 component reflects lexical/sub-lexical processing across languages [73,74]. Pre-
vious research has shown that lexicon from different languages can initiate activation at the same time point [75] but with varying 
intensities depending on language proficiency [76–78]; [79]; [80–82]. Since FL proficiency is typically lower than native language in 
unbalanced bilinguals, more cognitive resources are required to activate FL, resulting in stronger neural activity [40,78]. Additionally, 
for bilinguals recruited in the current study, foreign language (i.e., English) is less frequently used compared to native language (i.e., 
Chinese), which may also result in greater neural response when it is processed. This may also explain the language difference observed 
in LFLRA in terms of N170 amplitude. The current result consolidates the asymmetry and parallel activation of visual lexical processing 
between the native and non-native languages. 

In contrast to LFLRA, HFLRA did not show a significant language difference in N170 peak amplitude. However, a significant 
language effect was reflected in the latency, with a longer N170 latency for the foreign language. Similar results have been observed in 
individuals with reading difficulties, where no orthographic effects were manifested in N170 amplitude but a significant latency delay 
in latency was observed [80], indicating less efficient and slower processing of orthographic information in individuals with dyslexia 
[79,81]. In the current study, we also observed a prolonged N170 latency for FL in HFLRA, suggesting that HFLRA might also have 
difficulties in orthographic processing. With a high anxiety level, HFLRA may allocate more neural resources for emotional processing, 
consequently leading to sub-optimal performance in orthographic processing of the foreign language. 

Interestingly, the significant N170 differences between NL and FL found in HFLRA and LFLRA were only observed in the left 
occipitotemporal electrode sites. N170 in responses to words has been known to be typically left-lateralized [22,23], supposedly due to 
the visual word form area within the left occipitotemporal cortex which is sensitive to words while literacy [83]; [84,85]; [86]. 
Neuroimaging studies have consistently shown that the left occipitotemporal cortex plays a critical role in visual word recognition and 
the analysis of letters and orthography [87]; [88,89]. According to the phonological mapping hypothesis, left-lateralized N170 has 
been suggested to reflect automatic spelling-to-sound mapping (for review see [83]). The significant differences of left-lateralized 

Fig. 6. Illustrations of the peak amplitude and latency of the averaged N400 over the centro-parietal cortex under Chinese and English conditions 
for two groups. Note: **p < 0.01. 
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N170 observed in our study indicated that FLRA primarily affected the automatic visual analysis of lexical processing, especially the 
area related to orthography processing rather than general visual processing. 

4.3. A shorter N400 latency during foreign language processing in LFLRA 

For N400, no significant interaction effect was observed in its amplitude. Instead, a significant language difference in N400 latency 
was observed in LFLRA. Specifically, LFLRA showed a longer N400 for the native language compared to the foreign language. 
Similarly, this difference was also absent in HFLRA. The N400 component has been known to reflect later stages of lexical-semantic 
processing [90] and is associated with the integration of word and/or semantic-level information [91]. It has also been used as a 
biomarker to assess the severity of comprehension deficits in adults with aphasia and children with language impairments [92,93]. A 
longer N400 latency suggests a slower rate of semantic processing and limited integration with mental representation [94]. Unex-
pectedly, this finding is contrary to our initial expectations of the shorter latency for the native language compared to the foreign 
language, which demonstrated native language superiority [38]; [45,95]. The occurrence of this unexpected result may be related to 
language inhibition. Inhibitory control theory proposes that the target language actively suppresses the activation of the non-target 
language [75,82,96,97]. As individuals become more proficient in their native language, the inhibition of native language during 
FL processing may be stronger than the inhibition of the foreign language during NL processing [82,97]. Consequently, when switching 
from FL to NL, slower responses may be observed, as indicated by a longer N400 latency [98]; [99]. However, when anxiety is present, 
the level of inhibition of the native language during FL processing may be reduced due to limited cognitive resources. Hence, there was 
no clear distinction in inhibition control between the native and foreign language, as demonstrated by the absence of a language 
difference in N400 latency in HFLRA. This finding aligned with the observations made in the N170 component, where a shorter latency 
was noted in HFLRA compared to LFLRA during NL reading. Under conditions of high anxiety, individuals experience fewer switching 
costs compared to those with low anxiety, resulting in accelerating native language processing. The results observed in N400 showed 
that HFLRA exhibited language control deficits during the process of semantic information. 

Results of the N170 and N400 components indicated that FLRA influenced both the early and late stages of word recognition in 
foreign language. In the early stages of lexical acquisition, such as visual orthographic processing, HFLRA individuals demonstrated a 
longer N170 latency to FL. This result suggested a reduction in neural resources for FL processing, leading to difficulties in FL 
orthographic processing. In the late stages of lexical processing, HFLRA individuals exhibited reduced inhibition strength for NL during 
FL processing, leading to a decreased switching cost for the native language, which affects semantic-related neural components, i.e., 
N400. 

4.4. Implications of the current study 

This study makes several notable contributions to the existing body of literature. First, it extends previous studies by providing 
electrophysiological evidence for the influence of FLRA on the lexical processing of foreign language. Previous studies on foreign 
language reading anxiety predominantly focused on behavioral aspects, with little knowledge about its neural basis in the brain and 
the specific time window of cognitive processing. To address this gap, our study utilized ERP technology with a high temporal res-
olution to provide a deeper insight into the cognitive and neural mechanisms underlying FLRA. Second, this study investigated the 
influence of affective factors on foreign language processing. While research on foreign language reading has primarily examined the 
impact of impaired cognitive processes, such as orthographic processing (potentially reflected by the N170 component) or semantic 
processing (associated with the N400 component), there is growing recognition of the significance of affective factors [100]; [101, 
102]; [71]. Our study aimed to bridge this gap by exploring the effects of reading anxiety on foreign language processing and 
contributing to shedding light on the intricate interplay between cognitive and affective factors. These insights have implications for 
the development of effective strategies to address language processing difficulties and enhance language learning experiences. Third, 
this study demonstrated that reading anxiety may affect different stages of lexical processing. It is well-established that anxiety exerts a 
significant influence on cognitive control, necessitating the allocation of substantial neural resources [40,78]. In our investigation, we 
observed that reading anxiety can impact various stages of lexical processing, including both the early automatic orthographic pro-
cessing stages (reflected by N170) and the subsequent semantic processing stages (reflected by N400). These findings contribute to a 
deeper understanding of how reading anxiety influences language processing. Fourth, this study further evidences that foreign lan-
guage reading anxiety is specifically associated with the impairment of orthography processing in foreign language, but not in native 
language. Additionally, it verifies that FLRA is different from general anxiety, affecting the linguistic related processing rather than 
general visual processing. 

Finally, some limitations should be mentioned. Firstly, our sample consisted of college students. To further enhance the gener-
alizability of the current study, it would be beneficial to include individuals of different age groups, especially those who are beginning 
readers and are in the early stages of foreign language acquisition. This extension would provide additional insights into the effects of 
FLRA. Secondly, this study primarily focused on lexical processing. Future investigations are required to investigate the impact of 
foreign language reading anxiety on sentence-level reading comprehension and processing. 

5. Conclusion 

The current study provides important electrophysiological evidence for the modulation of foreign language reading anxiety on 
bilingual reading performance which has been seldom investigated in the previous studies. Our findings shed light on the detrimental 
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effects of FLRA at different stages of word recognition (orthographic and semantic processing), providing further evidence of the 
language-specific modulation. This study on the contributions of affective factors such as foreign language reading anxiety provided 
valuable insights into the mechanisms of bilingual word reading and foreign language reading anxiety. 
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Fig. 2. Results of the reading anxiety tests and general anxiety tests. Reading anxiety tests included foreign language anxiety scales (FLRAS, EFLRA, 
RASQ) and Chinese Reading Anxiety Scale (CRAS), while general anxiety tests included State and Trait Anxiety Inventory (SAI, TAI). There were 
significant group differences in these three foreign language anxiety scales, while no group differences in CRAS, SAI, or TAI. Note: FLRAS, Foreign 
Language Reading Anxiety Scale; EFLRA, English as a Foreign Language Reading Anxiety; RASQ, Reading Anxiety Source Questionnaire; CRAS, 
Chinese Reading Anxiety Scale; SAI, State Anxiety Inventory; TAI, Trait Anxiety Inventory; HFLRA, high foreign language reading anxiety; LFLRA, 
low foreign language reading anxiety. The error bars represent the standard error of the mean. *** depicts significance p < 0.001. 

Materials in bilingual lexical decision tasks.   

Original Words for Pseudo Stimuli 

No. Chinese Familiarity No. English Familiarity 

1 部分 6.28 1 balance 6.32 
2 政府 6.26 2 degree 6.31 
3 标志 6.16 3 purpose 6.29 
4 特色 6.07 4 design 6.18 
5 词汇 5.97 5 record 6.06 
6 烹饪 5.84 6 survey 5.98 
7 认知 5.82 7 signal 5.84 
8 国旗 5.82 8 figure 5.82 
9 案件 5.72 9 witness 5.81 
10 野外 5.7 10 theory 5.69 
11 原则 5.67 11 comment 5.68 
12 近邻 5.62 12 journal 5.63 
13 新品 5.62 13 release 5.61 
14 供应 5.52 14 bicycle 5.61 
15 加法 5.51 15 pattern 5.53 
16 烤箱 5.41 16 reward 5.42 
17 曾孙 5.41 17 debate 5.4 
18 黎明 5.34 18 credit 5.34 
19 评析 5.34 19 status 5.32 
20 绿地 5.31 20 courage 5.31 
21 边境 5.3 21 quarter 5.29 
22 群落 5.26 22 profit 5.27 
23 背影 5.25 23 guitar 5.24 
24 牧场 5.25 24 reserve 5.27 
25 冰袋 5.23 25 region 5.18 
26 食粮 5.23 26 chapter 5.16 
27 叮嘱 5.18 27 symptom 5.15 
28 监控 5.15 28 tablet 5.15 
29 探视 5.15 29 button 5.11 
30 默契 5.11 30 justice 5.1 
31 议员 5.11 31 climate 5.1 
32 音响 5.08 32 decline 5.08 
33 远洋 5.07 33 stomach 5.06 
34 冥想 5.05 34 contest 5.03 
35 情报 5 35 target 4.97 
36 现货 5 36 carbon 4.97 
37 实战 4.98 37 contract 4.92 
38 猎枪 4.98 38 routine 4.92 
39 错字 4.87 39 captain 4.89 
40 韧性 4.85 40 garbage 4.89 
41 药铺 4.84 41 monster 4.87 
42 概略 4.8 42 blanket 4.82 
43 幼体 4.8 43 border 4.76 
44 彩礼 4.8 44 divorce 4.76 
45 基数 4.77 45 closet 4.74 
46 繁育 4.74 46 bullet 4.71 
47 别针 4.72 47 genius 4.71 
48 钓钩 4.72 48 turkey 4.69 
49 滑坡 4.69 49 legend 4.68 
50 财税 4.69 50 costume 4.68 
51 前锋 4.67 51 protest 4.66 
52 话机 4.15 52 finance 4.65 
53 苯酚 4.13 53 virtue 4.16 
54 麦芒 4.1 54 filter 4.15 
55 清规 4.1 55 tunnel 4.11 
56 律诗 4.38 56 warrior 4.11 
57 海葵 4.05 57 column 4.29 

(continued on next page) 
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(continued ) 

Original Words for Pseudo Stimuli 

No. Chinese Familiarity No. English Familiarity 

58 笔调 3.98 58 suburb 4.1 
59 宅第 3.89 59 council 4.06 
60 窗棂 3.79 60 gallon 3.79 

Word Stimuli 

No. Chinese Familiarity No. English Familiarity 

61 世界 6.31 61 program 6.31 
62 主意 6.31 62 service 6.31 
63 艺术 6.26 63 message 6.24 
64 参与 6.21 64 process 6.21 
65 力量 6.08 65 promise 6.11 
66 手臂 5.97 66 disease 6.1 
67 耳机 5.85 67 measure 5.98 
68 考生 5.69 68 general 5.9 
69 出游 5.59 69 bottom 5.65 
70 金牌 5.46 70 victim 5.63 
71 班会 5.43 71 planet 5.58 
72 宝石 5.39 72 demand 5.48 
73 柜子 5.38 73 uspect 5.42 
74 头衔 5.31 74 defeat 5.42 
75 海龟 5.05 75 plastic 5.39 
76 羔羊 5.02 76 budget 5.37 
77 毛驴 5.02 77 studio 5.31 
78 豪气 5.02 78 license 5.16 
79 月底 4.89 79 balloon 5.1 
80 皮蛋 4.82 80 fellow 5.08 
81 门徒 4.8 81 butter 5.05 
82 天梯 4.79 82 campus 5.02 
83 主创 4.72 83 stadium 4.98 
84 威望 4.72 84 diamond 4.98 
85 重组 5.21 85 pursuit 4.97 
86 痛觉 5.1 86 gender 4.9 
87 国货 5 87 critic 4.9 
88 生姜 4.64 88 silver 4.87 
89 七窍 4.46 89 valley 4.87 
90 鬼魅 4.44 90 defense 4.84 
91 团练 4.44 91 motive 4.76 
92 民意 5.08 92 welfare 4.74 
93 远虑 4.69 93 bucket 4.69 
94 司仪 4.77 94 romance 4.69 
95 域名 4.7 95 fortune 4.68 
96 盘古 4.64 96 protein 4.68 
97 禅房 4.54 97 summit 4.65 
98 御医 4.52 98 curtain 4.65 
99 雄威 4.38 99 shelter 4.65 
100 豆科 4.33 100 default 4.61 
101 散步 6.13 101 terror 4.6 
102 姑父 5.41 102 barrier 4.56 
103 京剧 5.1 103 patent 4.55 
104 黑洞 4.97 104 profile 4.55 
105 缘分 4.85 105 parade 4.53 
106 剑客 4.62 106 format 4.53 
107 蟠桃 4.57 107 crisis 4.52 
108 封条 4.57 108 resort 4.5 
109 建树 4.57 109 particle 4.5 
110 汗腺 4.56 110 volume 4.45 
111 钢板 4.52 111 tissue 4.45 
112 政纲 4.49 112 1consent 4.42 
113 矿藏 4.49 113 sponsor 4.42 
114 脑炎 4.46 114 powder 4.39 
115 胶鞋 4.44 115 twitter 4.37 
116 唇裂 4.44 116 dispute 4.37 
117 端倪 4.41 117 venture 4.35 
118 缆绳 4.41 118 pillow 4.34 
119 祭坛 4.38 119 murder 4.23 
120 黄铜 4.34 120 weapon 4.19 

A Paired-sample t-test showed no significant difference in the familiarity between these Chinese and English words (Mean familiarity: 5.01 
vs. 5.01, t = 1.544, p = 0.125). 
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