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Urolithiasis has always been a fascinating disease, even more so in children. There are

many intriguing facets to this pathology. This article is a nonsystematic review to provide

an update on the surgical management of pediatric urolithiasis. It highlights the pros and

cons of various minimally invasive surgical options such as extracorporeal shockwave

lithotripsy (ESWL), retrograde intrarenal surgery (RIRS), percutaneous nephrolithotomy

(PCNL), laparoscopy, and robotics. This article also describes the various intracorporeal

disintegration technologies available to fragment the stone, including the newer

advancements in laser technology. It also emphasizes the cost considerations especially

with reference to the emerging economies. Thus, this manuscript guides how to select

the least-invasive option for an individual patient, considering age and gender; stone size,

location, and composition; and facilities and expertise available.
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INTRODUCTION

Urolithiasis is still intriguing due to its mysterious and complex nature, although being known to
mankind from before the Christian era. Urolithiasis presents in all age groups including children
from the neonatal period onward and may even be picked up on prenatal ultrasound (1). Apart
from a high prevalence of pediatric urolithiasis in endemic areas (2, 3), there is an increasing
incidence all over the world (4). Within the pediatric age group, clinical presentations are varied,
and evaluation, including imaging, and management have to be modified depending on whether
they are infants, preschool children, or pre- or post-pubertal teenagers (2, 5–7).

Pediatric patients carry a high probability of recurrence (8), and therefore, every effort should
be made to prevent stone recurrence by ensuring complete stone clearance (9). This is a greater
challenge with minimally invasive surgery (MIS) and limits the applicability of extracorporeal
lithotripsy. Risk factors need to be identified, and these may be anatomical or metabolic, which
require evaluation by dietary, urinary, and stone composition analyses (6, 10–14).

Historically, all stones are treated by open surgery (15–17). Currently, with the advent of MIS,
the majority of the stones are managed by MIS utilizing extracorporeal shockwave lithotripsy
(ESWL), percutaneous nephrolithotomy (PCNL), and ureteroscopy/retrograde intrarenal surgery
(URS/RIRS) (2, 18, 19). Undertaking MIS in small children is challenging (20), which to a certain
extent has been overcome by improvement in technology by the development of miniaturized
instruments, which are referred to appropriately as Miniperc or Microperc (21–28). Sophisticated
fine-caliber rigid and flexible ureteroscopes with improved optics are now available (29), which
together with the development of high-power laser disintegration technology (30–32) and fine
retrieval instruments such as nitinol baskets and graspers (33) have revolutionized MIS in children.
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There are many facets to urolithiasis. In this review article,
we will focus on the current status of the surgical management
options available and attempt to guide the reader how to
choose the best option considering the age, gender, stone
size, location, and composition; the available expertise and
facilities; considerations of cost; and both the surgeon’s and
patient’s preferences.

METHODS

For this nonsystematic review, a comprehensive search of the
PubMed database was performed. This literature review is a
survey focused on recent articles on surgical management of
pediatric urolithiasis, which included the following key words;
ESWL, PCNL, MiniPerc, MicroPerc, URS, RIRS, laparoscopy,
and robotics in pediatric urolithiasis. This will also include our
experience of surgical management of pediatric urolithiasis for
the last two decades.

EXTRACORPOREAL SHOCKWAVE
LITHOTRIPSY

Since 1986, when ESWL was first described, it remains the first-
line of treatment of renal stones in children (34). However, its
scope is now being challenged for the reasons that there have not
been any major improvements in ESWL technology to improve
the ESWL outcome of renal stone management, and it has largely
failed to keep pace and compete with the better outcomes now
being reported from the newer MIS developments such as RIRS
and mini/micro PCNL.

Technical Aspects of ESWL
The fundamental prerequisite for a successful ESWL is that
the shockwaves can pass into the body and hit the stone with
minimal loss of energy. In contrast to the pioneer lithotripter
HM3 (with water bath), the later lithotripters have a gap between
the shockwave source (therapy head) and the body that has
to be bridged with a liquid transmission medium (usually an
ultrasound gel) without any trapped air bubbles.

Devices using video cameras have been developed to check
if the transmission zone is free of air bubbles and coupling is
optimal (35). This equipment has been recently incorporated in
the therapy head of some lithotripters with obvious advantage.

Another improvement has been the improved identification of
the target and maintenance of an optimal position of the patient
throughout the procedure by the use of continuous fluoroscopy
or real-time ultrasound with lower radiation exposure (36).

ESWL in children are already being performed under general
anesthesia, and therefore, high-frequency shallow ventilation
may be used to reduce the range of respiratory movement and
consequently increase the hit rate.

The risks of tissue injuries and subsequent bleeding can
be reduced by inducing vasoconstriction by starting ESWL
treatment with a series of shockwaves at a low energy
level, followed by a pause or continuing with the low-power
shockwaves for a longer period but incorporating a stepwise

increase in the power. This treatment modality is termed as
ramping. Ramping hasmany other advantages such as identifying
the minimum energy level at which a stone starts to disintegrate,
maintaining an optimum energy level which overcomes the
attractive forces between the stone crystals, and avoiding
overtreatment in terms of the energy level deployed. Several
studies have shown that ramping results in better disintegration
than when power is rapidly increased to high levels or when a
high power level is used constantly during the treatment. High
energy levels result in larger stone fragments with higher chances
of ureteric obstruction, and low energy levels result in smaller
fragments which are easy to pass (37, 38).

ESWL may be performed at various frequencies ranging
from 30 to 120 shockwaves/min. On the basis of clinical and
experimental studies, the recommended shockwave frequency for
children is 60/min (1Hz) (35).

Complications of ESWL
Obstruction
The most frequent problem following ESWL is ureteric
obstruction caused by impacted stone fragments. Its frequency
increases with a large stone burden and when the stone
is disintegrated into larger fragments. Steinstrasse is the
commonest presentation where stone fragments accumulate in
the distal ureter and cause severe obstruction. The reported
incidence of abdominal colic is 6.29% and steinstrasse 6.0 and
8.5% (18, 39). This can be avoided by the placement of an internal
stent preoperatively.

Infection
Urinary tract infection is another common complication which
can occur secondary to infected urine or stone. This can be
avoided by the use of preoperative antibiotics according to
the culture and sensitivity reports and being insistent that
preoperative urine cultures are confirmed as sterile.

Subcapsular Hematoma and Collateral Injury
Particular attention must be paid to the, fortunately, rare risk
of renal subcapsular hematoma, renal parenchymal injuries, and
injuries to the surrounding structures. One case of significant
perirenal hematoma and one case of small asymptomatic
subcapsular hematoma and skin bruising have been reported
(40, 41). One of the major causes of subcapsular hematoma in
children is the use of an excessive number of shockwaves and/or
unnecessarily high energy levels in order to try to fragment the
stone in a single session. It is always better to stop and re-treat.
Successive ESWL sessions should have an interval of at least
10–14 days. Calcium channel blockers, various antioxidants, and
free-radical scavengers have been used to decrease these injuries
especially in retreatment cases (35).

To carry out lithotripsy in a safe and harmonious way, it is
appropriate to avoid excessive numbers of shockwaves and high-
risk energy levels. Considering these factors, repeated ESWL is
not considered a failure but a simple consequence of the physics
behind noninvasive stone disintegration (42–44). That may be
true for adults where ESWL is mostly performed without general
anesthesia and as an outpatient procedure. However, in children,
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there is the additional factor that most ESWL are performed
under general anesthesia (or sedoanalgesia in bigger children)
in order to avoid apprehension, pain, and movement and to
keep the stone under the shockwave target. In children, repeated
ESWL carry a bigger burden which needs to be factored into
the equation.

There is wide disparity in the stone free rates documented
in the literature for ESWL in children ranging from 33 to
95% with incomplete information about the number of sessions
(retreatment rates), residual fragments, and JJ stent placements.
The results are incomparable not just for lack of information
but also because of variability of the confounding factors like
age, gender, the stone burden, location, composition, the type
of lithotripter used, and the number of shockwaves in each
session. All these factors impact ESWL outcome especially in
children (39, 45–47).

Stone Burden
Although staghorn stones (>3 cm) have been treated with
ESWL, the retreatment rates are high, requiring up to
five sessions (48). The European Association of Urology
(EAU)/European Society for Paediatric Urology (ESPU) and
American Urological Association (AUA) guidelines continue to
recommend ESWL as the first line of treatment for renal stones
<2 cm, but the retreatment rates could still be high (49) and
nomograms reflecting this have been developed (50, 51). Our
recommendation is to restrict the use of ESWL for renal stones up
to 1.5 cm, except for lower calyceal stones when the upper limit
should be 1 cm.

In our study of pediatric ESWL, the results showed an increase
in the mean number of ESWL sessions with an increase in stone
burden. In the single stone group of 158 renal units with a
mean stone size of 10 ± 2.5mm, 76% (121 renal units) were
cleared in a single session, and 21 units were cleared in a second
session, giving an overall clearance rate of 89% in a mean of
1.14 sessions. In the second group of 58 renal units comprising
multiple stones having a mean size of 17 ± 5.3mm, 46% (27
units) were cleared in a single session, 32% (19 units) were
cleared in a second session, and 7% (4 units) cleared in a third
session, giving an overall clearance rate of 86% in a mean of 1.54
sessions (5).

Stone Location
Lower calyceal stones have a poorer clearance rate as compared
to renal pelvic, upper, and mid calyceal stones (52). Lower
calyceal stone clearance by ESWL is dependent on anatomical
factors such as lower calyceal infundibular width, length, and
infundibulopelvic angle (53, 54).

In our pediatric ESWL data, we reviewed the relationship
between stone location and clearance, which showed that the
best clearance rates following a single session of ESWL were for
the upper calyx (87%) and pelvis (84%), and the poorest for the
lower calyx (67%). The mean numbers of sessions required for
clearance in the upper calyx, pelvis, and middle calyx were 1.1,
1.2, and 1.3, respectively, as compared to the figure for the lower
calyx of 1.5(5).

Stone Composition
Cystine and calcium oxalate monohydrate (COM) stones are
hard, dense stones and difficult to fragment by ESWL, therefore
resulting in poor stone clearance. One of the methods for the
identification of the stone composition is by the attenuation value
[in Hounsfield units (HU)] (55) on a noncontrast computed
tomography scan (NCCT), which can easily differentiate between
calcium (HU > 1,000) and noncalcium stones (HU < 700).
However, it will require an NCCT in every patient and therefore
increased radiation hazards. A crude way of identifying a calcium
stone (COM) on an X-ray kidney, ureter, and bladder (KUB) is
a densely radiopaque stone, which matches with the density of
bone in a vertebral body, while the pure noncalcium stones (uric
acid; xanthine; 2,8-dihydroxyadenine) are nonopaque. These are
fragile and therefore easy to fragment with ESWL. A cystine stone
is faintly opaque with a ground glass appearance. Struvite stones
generally present as staghorn stones and are slightly less opaque.
Although struvite are soft stones which are easy to fragment with
ESWL, any residual fragment has a high affinity for rapid stone
regrowth and recurrence (56).

In a small study of 58 renal units, we assessed the relationship
between the stone densities in Hounsfield unit and the results
of treatment by ESWL. The outcome showed that a lower HU
is associated with better clearance for the same size of stone (5).
Similar observations had been documented by others (57).

ENDOSCOPIC INTRACORPOREAL
LITHOTRIPSY DISINTEGRATION
TECHNOLOGIES

The current technology of intracorporeal lithotripsy provides the
urologist with several effective options for stone disintegration
depending on the type of the endoscope used [ureterorenoscope
(URS) or nephroscope, rigid or flexible] and the location and
accessibility of the stone.

Four stone disintegration technologies are available for
intracorporeal lithotripsy during endoscopic management of
urolithiasis (58, 59). Each device has certain unique properties
that make it more suitable for a particular application.
Manufacturers’ claims may contain elements of bias, and
therefore, a thorough and impartial evaluation is important in
order to be able to select the most appropriate device in any
particular situation.

Electrohydraulic Lithotripsy
Although electrohydraulic lithotripsy (EHL) is the least costly
and can be used even with flexible ‘scopes, it is relatively the most
traumatic intracorporeal lithotripsy and is seldom used now.

Ballistic Lithotripsy (Pneumatic Lithoclast)
Ballistic lithotripsy provides a durable, reusable, safe, and cost-
effective means for stone fragmentation. It may be especially
advantageous when large and hard stones are encountered. It
can be used with scopes down to 10FG (Mini Perc) (21, 60, 61).
Disadvantages could be a higher rate of stone repulsion, and it
can only be used with rigid scopes.
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Ultrasonic Lithotripsy
It is safe, and although it may cause mucosal stripping, it does not
create deeper perforations. For effective stone disintegration, it
requires a relatively larger scope (>18FG) with a 4.5FG working
channel to accommodate the hollow probe. It works best with
standard PCNL for a large stone burden. It is less effective than
pneumatic lithoclast (PL) for hard stones.

Combination Devices
A PL combined with an ultrasonic beam aims to combine
the advantages of both technologies. The superior, fast,
coarse fragmentation ability of the pneumatic component is
complemented by the simultaneous fine fragmentation and
aspiration of the fragments via the hollow ultrasonic probe.
Each modality can be activated separately or in unison. There
are various types of the devices like Lithoclast Ultra (Boston
Scientific, Natick, MAJ) and Cyber Wand (Olympus Surgical,
Centre Valley, PA).

Holmium: YAG Laser
This has brought great versatility to endoscopic intracorporeal
lithotripsy (EIL) by introducing pulsed laser and allowing safe
and effective stone fragmentation in the entire urinary tract.
The laser output (power) can be adjusted by modulating the
laser characteristics of energy (PE) and frequency (Fr). There are
various generations of laser machines ranging from low power
(≤20W) to high power (120W). The later machines allow for
muchmore adjustment in PE and Fr, thus allowing the stone to be
disintegrated into fragments (high PE, low Fr) or converted into
dust/powder (low PE, high Fr). The fragments can be removed by
baskets, and dust/powder exits with the irrigation fluid without
the need for retrieval devices.

Some newer machines also have the ability to change the pulse
length and pulse duration or pulse width. In this way, the same
amount of power (PE × Fr) can be delivered in ultra-short pulse
(150ms) to extreme long pulse (800ms). It is being highlighted
that the ultra-short pulse has the advantage of more ablative
power, but the long pulse produces less fiber degradation and
less retropulsion and produces smaller residual fragments and
promotes a more dusting technique (30–32).

The new high-power (120W) machines have evolved with
some innovative integrated and modulated technological modes
such as the “Moses effect” and the “burst mode.” In the Moses
effect, the laser pulse is divided into two phases; the first part
divides the water between the laser fiber tip and stone, allowing
the second part of the pulse to hit the stone unobstructed, thus
being more ablative and less retropulsive (62). In the novel
burst lasertripsy, each burst consists of three individual laser
pulses having successively increasing pulse lengths, the first
pulse being more energy intense while the last one is the least
intense. It is suggested that the burst mode is significantly more
ablative at similar power energy settings than the usual single
pulse (63). Attempts are being made to incorporate a real-time
stone/tissue differentiation capability using autofluorescence,
thereby preventing the laser from firing against any structure
other than the stone surface (64). Similar efforts are being
made for the development of in vivo analysis of urinary stone

composition (65). The manufacturers are trying hard to make
a well-designed interface to make these holmium: YAG laser
(Ho-YAG) laser lithotripters user-friendly.

Thulium laser technology has evolved and is gaining attention
now that it is capable of pulsed emission. In comparison
to Ho-YAG lithotripsy, it is two to four times faster and
produces minimal or no retropulsion without any significant
heat production. Therefore, pulsed thulium laser appears to have
promising prospects (66).

RETROGRADE INTRARENAL SURGERY

Since the development of sophisticated, miniaturized, and
actively deflectable flexible ureterorenoscope (FLURS) with
excellent optics and Ho-YAG lasers, RIRS has become a popular
modality to treat upper ureteric and renal stones ≤2 cm (26,
67, 67, 68). FLURS with greater flexibility, maneuverability,
secondary deflection capability, and wide range of deflection
allows better treatment and access to lower pole urolithiasis
(69, 70). However, in some cases, especially in younger children,
it may be relatively difficult because of compromised deflection in
renal pelvis. Stones> 2 cm and staghorn stones confer a high risk
for treatment failure, illustrating that stone location and stone
burden are the most important risk factors for treatment failure
in RIRS as well.

A randomized trial comparing the outcomes of RIRS andmini
PCNL in pediatric patients with stones >2 cm revealed that the
success rate was significantly higher for mini PCNL with figures
of 71 and 95%, respectively (60).

One of the advantages of RIRS is that urologists are used to
performing procedures through the natural route of the urinary
tract, which results in a short learning curve. RIRS is less invasive
than PCNL and is therefore the most preferred approach to treat
renal calculi in patients with a bleeding diathesis.

However, there are certain limitations with RIRS, especially in
small children. The majority of the RIRS series, especially where
the results are compared with PCNL, are biased by the fact that
the children treated by RIRS are somewhat older and the stone
burden is generally less than the PCNL groups (61, 71–74). A
recent systematic review of children undergoing RIRS reported
an aggregated success rate of 87.5% and a complication rate of
10.5%. However, the younger children had a much higher risk
of complications (24%) compared with the older children (7%)
(75). This clearly indicates that RIRS should be recommended
with caution in younger children.

Children have narrow caliber ureters, and access is difficult or
impossible without active dilatation with a balloon or preferably
by inducing passive dilatation with prestenting. Concerns
about ureteral ischemia, perforation, stricture formation, and
vesicoureteric reflux as a result of dilating small caliber ureteric
orifice are well recognized (76, 77). Although some studies do
report access without prestenting in up to 60% of cases, active
ureteral dilatation with 8–10 coaxial dilators were used in 97%
of these cases. In the remaining 40% with failure to access, the
pediatric ureter remains narrow and inaccessible for the URS
at the ureteral orifice, the iliac vessels, or the uretereopelvic
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junction. Therefore, passive dilatation with prestenting was
undertaken (77). It is also documented that prestenting does
allow for more reliable access to the ureter and a shorter
operative time.

Active or passive ureteric dilatation is also needed for the
majority of the procedures, which required the placement of a
9/11FG ureteric access sheath (UAS). The UAS is placed to allow
the FLURS to be removed and reintroduced repeatedly, allowing
dust and fragments to clear and maintain good vision. The
UAS also allows irrigation fluid to flow easily and so maintains
a low intrarenal pressure, thereby decreasing the chances of
pyelovenous and pyelolymphatic backflow and reducing the
chances of developing sepsis.

UAS carries the risk of ureteric injury ranging fromminimum
mucosal damage to major lacerations, stricture, and avulsion
(76). Therefore, almost all cases require post RIRS JJ stent
placement for 2 weeks in order to allow the ureteric damage
to heal. The majority of the series of RIRS in children
which document the outcome from a single operative session
do not take into consideration the anesthesia required for
prestenting to provide passive ureteral dilatation. Similarly, since
the majority of cases require postoperative stenting, especially
where an UAS was used, they will require another anesthesia
session for stent removal. Therefore, the outcome of RIRS in
these patients is really that of a staged procedure requiring
two to three general anesthetics and is not really a genuine
single session.

Ureterorenoscopes
URS is the treatment of choice for calculi, particularly in the
distal andmid ureter and is more efficient than ESWL (78). Semi-
rigid URS of size 4.5/6, 6/7.5, and 8/9.8FG are used depending on
the age and anatomy of the patient and the size and location of
the stone, as well as considering the technical requirements. The
semirigid URS are more durable and have better visibility, faster
irrigation flow, and larger working channels than the fully flexible
models, and therefore, it is possible to access the whole ureter,
even as far as the pelvicalyceal system. However, the ability of the
‘scope to bend is limited, and, especially with large psoas muscles,
access to the upper ureter may be difficult in comparison with
flexible URS. Therefore, semirigidURSmay not be the first choice
for the proximal ureteric stone (79).

The deflectable tip of the flexible ‘scopes is more suitable for
a tortuous ureter and for upper ureteric stones, which often
migrate into the kidney. The flexible ‘scope can follow the stones,
and RIRS may be possible in the same session. The flexible
ureteroscope permits only lasertripsy; they are costly and fragile,
and therefore, the treatment with FLURS is muchmore expensive
than with semirigid ‘scopes.

Several studies have highlighted the fact that the flexible ‘scope
undergoes wear and tear and requires major repair after 14–
32 RIRS sessions. Even without apportioning the high initial
cost of the instrument, the maintenance and repair costs over
each session of RIRS still make it a highly expensive treatment
option (80, 81).

Lower ureteric stones are best managed by semirigid URSs
by employing the PL or Ho-YAG laser (LL). The outcome in

terms of stone clearance and complication rates is excellent and
comparable. Although PL has the advantage of being significantly
cheaper as compared to LL, PL can only be used through
6/7.5FG ‘scopes and above, while LL can be used with the small
‘scopes (4.5/6FG), which is an advantage for infants and small
children (2, 5, 79, 82, 83).

Our results in 554 children with lower ureteric stones
managed endoscopically using PL, low-power 30-watt Ho-YAG
laser, or high-power 80-watt Ho-YAG laser performed between
2009 and 2016 with a comparable demography and stone burden
showed excellent stone clearance rates of 91 vs. 89 vs. 95%,
respectively (p = 0.5), with the number of sessions required
showing no statistical difference between the three techniques.
There was no difference in complications, which were Clavien
I and II. However, it was recognized that the LL technique
was costly.

Despite the minimally invasive nature of RIRS/URS, they are
not without intraoperative and postoperative complications. A
systematic review of 34 studies from 1996 to 2016 comprised
of 2,758 children (2,994 procedures). A complication rate of
11.1% (327/2,994) was reported; 69% of these were Clavien grade
I, and 31% were grade II/III. There were no Clavien grade
IV and V complications (84). In another multicenter study of
642 children where semirigid ureterorenoscopy was performed
for ureteric stones, a total of 54 (8.4%) complications have
been documented where operative time was the only statistically
significant parameter affecting the complication rate (78).

PERCUTANEOUS NEPHROLITHOTOMY

Patient Positioning
Prone Position
Percutaneous Nephrolithotomywas conventionally performed in
the prone position for historical reasons, being more familiar to
the majority of urologists and for fear of splanchnic injury. It also
gives a wide operative field for manipulation of instruments and
the possibility of access through multiple calyces (85, 86). Prone
PCNL has certain limitations such as difficulty for the anesthetist
with regard to control of the endotracheal tube and freedom of
ventilation. Resuscitation is extremely difficult if an emergency
such as cardiac arrest occurs during the procedure (87).

Supine Position
The first supine PCNL was performed in an adult by Valdivia-
Uria in 1987 (88). Since then, many modifications of the supine
position have been introduced to widen the operative field
and increase maneuverability of the instruments, which were
limitations of the original Valdivia-Uria supine position. Apart
from that, most urologists were not familiar with the supine
PCNL position. In most cases, the only access site available is
the lower calyx, and there is hypermobility of the kidney, which
needs to be controlled. There are number of potential advantages
of supine pediatric PCNL. It is comfortable for the surgeon as
he is working in a sitting position and it counters the anesthetic
limitations inherent in the prone position.

In supine PCNL, the tract is horizontal or with a slight
upward inclination in relation to the operative table, which allows
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most irrigation fluid and stone fragments to fall away from the
patient, thus decreasing the risk of hypothermia and ensures
a low pressure in the pelvicalyceal system, which results in a
decreasing incidence of sepsis and better stone-free rates with
fewer residual fragments. The operative time is usually shorter as
time is saved by avoiding the need to change position following
induction and quick clearance of the stone fragments (85, 89). A
simultaneous endoscopic combined intrarenal surgery (ECIRS)
can be performed particularly when the stone fragments are
inaccessible with PCNL (90).

Lateral Position
Percutaneous Nephrolithotomy in a lateral position was first
performed in a morbidly obese patient in 1994. Later on, more
studies described the anesthetic advantages of lateral PCNL in
the morbidly obese or kyphotic patients and patients with severe
medical risk factors and comorbidities. They also describe the
advantage of being able to rotate the C-arm fluoroscope to
obtain an anteroposterior projection and perform nephroscopy
simultaneously. Lateral PCNL has also been performed with
ultrasound-guided renal access to reduce the radiation dose. The
effectiveness of stone clearance in lateral PCNL lies in good
ergonomics. The position of the pelvicalyceal system relative
to the calyx enables gravity-assisted migration of calculous
fragments from the calyces to the pelvis for easy removal.
Conversely, there is a higher likelihood of stone fragment
migration into the ureter, which may require preprocedural
stenting or postprocedure ureterorenoscopy to remove the
remaining ureteric stones. A number of other lateral PCNL
techniques have been proposed, including the split leg modified
lateral technique (85, 91). The operating time, stone clearance
rates, and safety of lateral PCNL are comparable to those of prone
and supine PCNL, but one of the disadvantages of lateral PCNL
is that synchronous bilateral PCNL is impossible (85, 91).

“Standard to Mini PCNL: How Small One
Should Go?”
Classical (standard) PCNL in children required a 30FG Amplatz
sheath and employed a 24FG nephroscope. The advantage of
such generous access was very high (>90%) stone clearance rates
in a single session but was not easily applicable in small children,
where there was the risk of renal damage or excessive bleeding
requiring blood transfusion.

The miniaturization of equipment for PCNL in pediatric
patients has facilitated its use in all age groups and has also
provided an opportunity to treat smaller stones that would
otherwise be candidates for ESWL or RIRS. PCNL remains the
gold standard treatment for large renal stone>2 cm and complex
stones (49, 74).

Retrospective comparative studies have indicated that mini
PCNL provides at least similar stone-free rate for moderate-
size stones in comparison to RIRS (61). ElSheemy et al. also
demonstrated superior results with mini PCNL (14FG) for renal
calculi of 10–25mm in preschool children in comparison to
ESWL with comparable complication rates but a longer hospital
stay (52).

In a large retrospective multi-institutional cohort including
1,205 pediatric renal units who underwent PCNL, the use
of a sheath size >20FG was an independent predictor of
complications and bleeding necessitating transfusion (92), and
the association between a larger tract and greater blood loss has
been confirmed in several other reports (25, 93, 94). Consistent
with these reports, it was demonstrated that PCNL with a smaller
tract <24FG results in lower blood loss without a decrease in
success rate (18).

Similarly, in our study of 1,135 renal units, we have also
observed that blood transfusion requirement was significantly
less in all age groups when <20FG sheath was used. Blood
transfusion rate was higher in children with larger stone burdens
and in younger children with lower allowable blood loss (2).

The other important factors to prevent bleeding are an
understanding of the pelvicalyceal and intrarenal vascular
anatomy and the skilled application of a proper technique.
The selection of the puncture site should be according to the
stone location. The puncture is performed through the fornix,
in the direction of the infundibulum to avoid trauma to the
blood vessels adjacent to the infundibulum. In addition, while
manipulating the nephroscope during stone fragmentation and
retrieval, it is important to avoid excessive torque and the
creation of false passages which traumatize the parenchyma.

There is still no strict standardized nomenclature for PCNL.
Various classifications have been proposed and published in the
literature, which include standard/conventional PCNL (22–30
FG), mini PCNL (11–22 FG), minimally invasive PCNL (MIP)
(9.5–26 FG), Chinese mini PCNL (14–20 FG), ultra mini PCNL
(11–13 FG), micro PCNL (4.8 FG), mini micro PCNL (8 FG), and
super mini PCNL (10–14 FG). The first documented mini PCNL
was by Jackman using an 11 FG peel away vascular access kit (95).
Since then with the growing diversity of the miniaturized PCNL,
the terminology mini PCNL has been loosely used for tract size
11–22 FG, and thus, mini PCNL is poorly defined (96–100).

We also initially started off with adult-sized nephroscopes
(27 and 24FG) and gradually reduced it to 20, 18, and 15FG.
Currently, we routinely use mini PCNL utilizing a 12FG
nephroscope with a straight channel and offset lens or a 9.8FG
cystoscope through a 16FGworking sheath inmost situations (2).

We occasionally employ rigid pediatric cystoscopes 6/7.5–
10.5FG through a 12FG Amplatz sheath. These may be called
an ultra mini PCNL. These scopes are readily available in most
pediatric urology units and are sturdy, rigid, and reusable and,
therefore, cost-effective. These ‘scopes have an added advantage
for use in the narrow and difficult anatomy of small children and
could be an economic compromise to microperc.

Microperc
The term microperc refers to a system in which the telescope,
working channel, and irrigation are combined in a needle, which
can be as small as 4.8FG and requires only a single puncture,
thereby avoiding the need for tract dilatation (101). The main
advantage of microperc in children is to minimalize bleeding.

The technique may only be used in very selected cases, but
it allows direct puncture into the relevant calyx via the all-
seeing needle and direct fragmentation/powdering of the stone
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in situ. With no need for tract dilatation, less radiation exposure,
and, consequently, less operating time, it should result in lower
complication rates.

There are certain limitations of the microperc; first, the vision
gets compromised more quickly with the slightest bleeding and
stone dust. The vision may not be as good as in mini PCNL
because the irrigation fluid is pushed intermittently, and there
is no regular outflow passage. Necessary precautions should be
taken to control the intrarenal pelvic pressure at every step of the
procedure by placing a large caliber ureteric catheter in the renal
pelvis, and saline irrigation should be carefully monitored during
the procedure. It has been demonstrated that the intrarenal
pressure is significantly higher in the micro PCNL compared to
the standard PCNL (102).

Secondly, if the stone fragments migrate into a different
calyx, it becomes impossible or difficult to access them. Thirdly,
microperc instruments are costly and meant to be disposable
(98), making their universal use in emerging economies, where
much of the stone burden in children lies, extremely difficult.

The use of very small tracts has to be individualized on the
basis of stone location and burden and balanced against the
limitation of low irrigation fluid flow, impaired visualization,
and limitation in the use of disintegration technology and
grasping forceps.

The complications of PCNL in children have been reported
from 9 to 27.7% (92, 97). Studies on micro PCNL (tract size
<10 FG) reported a complication rate of 9% with a higher
incidence of renal colic. Studies on ultra mini PCNL (tract size
10–14 FG) reported 14% complications with higher incidence
of hematuria, renal extravasation, or renal pelvic perforation. A
multi-institutional study of 1,157 children treated with PCNL
(nephroscope 17 FG to 26 FG and URS 9.5 FG) reported a
complication rate of 27.7%, where 7.7% were intraoperative
and 20% were postoperative complications. The majority of the
complications were Clavien grade I and II, and there were no
grade IV and V complications (92, 97). Most of the series have
limited numbers; therefore, risk factor analysis is difficult.

Overview
One of the approaches to PCNL may be to start with a small
caliber tract and, if needed, depending on the stone burden
and its response to disintegration, then under direct vision to
undertake progressive dilatation, keeping the risks of bleeding
as low as possible. Alternatively, two or multiple smaller tracts
may be established in order to achieve complete stone clearance
if the stones are in places which are difficult/impossible to
reach through the primary tract. In situations where the rigid
instruments fail, the flexible nephroscope can be deployed in
conjunction with lasertripsy.

The truism remains that one should try to keep the tract as
small as possible but make it as big as needed.

ENDOSCOPIC COMBINED INTRARENAL
SURGERY

This is a combined procedure where both RIRS and PCNL are
performed simultaneously by two surgeons working together. It

may be performed either in the supine or prone position, but
it is a situation where experience in supine PCNL clearly has
benefits. ECIRS is usually recommended for complete clearance
of a large stone bulk, such as a staghorn calculus and for multiple
stones located in difficult anatomical positions. Such complex
stones cannot be cleared either by RIRS or PCNL alone in a single
session. It also reduces the operating time. The most appropriate
renal puncture and the PCNL tract can be acquired easily with the
assistance of ureterorenoscopy and especially if combined with
ultrasound (103). There are still limited data on the outcomes of
ECIRS in children (22, 104).

LAPAROSCOPIC AND ROBOTIC SURGERY

Pyelolithotomy and Nephrolithotomy
With the advent of newer MIS modalities, the role of
open surgery for urolithiasis has been minimized. With the
increasing use of robotic surgery in pediatric urology, these
approaches are being revisited. Laparoscopic and robotic-
assisted pyelolithotomy (RPL) or nephrolithotomy (RPNL) or
ureterolithotomy should not be the initial treatment choice for
renal or ureteric stones. However, in selected patients, it can be
a reasonable and safe minimally invasive surgical option even in
children. Compared with a pure laparoscopic approach, robotic-
assisted laparoscopic surgery has the advantages of improved
dexterity for suturing and reconstruction (105, 106). It can
be performed retroperitoneally; however, the transperitoneal
approach is preferred by most surgeons. Compared to other
endourological options, it has certain advantages of complete
stone removal without fragmentation, thereby increasing the
chances for complete stone clearance up to 96% in one procedure,
especially when a single stone is present (107–110). It may
prove particularly relevant for larger stones where the chances
of residual fragments are high with other endoscopic procedures
such as PCNL or RIRS. It has a significantly lower rate of bleeding
and sepsis as has been shown in meta-analysis (111). Robotic
pyelolithotomy and nephrolithotomy may be recommended in
urolithiasis with concurrent pelvi-ureteric junction obstruction,
where simultaneous reconstruction and repair are required.
There are many unusual and difficult circumstances which may
also prove amenable to the robotic-assisted approach (112):

◦ A very large stone burden, such as complete or partial
staghorn calculi

◦ Stones containing gas
◦ A stone in a calyceal diverticulum
◦ Stones in ectopic kidneys
◦ Stones with complex urinary tracts with unfavorable
collecting systems

◦ Failed previous endourological procedures
◦ Complex stones (especially very hard stones which are difficult
to fragment) where multiple tracts for PCNL might otherwise
be needed.

In practice, the majority of cases that are managed by
pyelolithotomy are those having a single large stone in an
extrarenal pelvis, which may be removed completely without
transgressing the parenchyma with its attendant risks. Others
may be managed by extended pyelolithotomy or the use
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of pyeloscopy using a flexible nephroscope through one
of the abdominal ports and employing graspers or laser
dusting. For some patients, dissection of the renal pelvis
can be extremely challenging as the pelvis may be inflamed
with adherent fat, making demarcation of planes difficult
and bloody.

In cases of calyceal diverticulum and peripherally located
calyceal stones where access to the collecting system through
the renal pelvis is difficult, nephrolithotomy may be performed
directly in the thinnest part of the parenchyma with minimal
bleeding and without any vascular clamping. An intraoperative
ultrasound probe may be used to locate the stone and plan
the incision (113). At the moment, the use of robotic surgery
is determined by availability of the robotic armamentarium,
individual skills, logistics, and, especially, the cost constraints.
There is a lack of available data especially in pediatrics as
the majority of the experience to date is in adults and
retrospective. However, it is quite possible that future generations
will be more comfortable and have more access to robotic
surgery than is generally the case in most pediatric urology
units today.

VESICAL STONES

Most vesical stones can be managed endoscopically via the
urethra [perurethral cystolithotripsy (PUCL)] and percutaneous

cystolithotripsy [percutaneous (suprapubic) cystolithotripsy
(PCCL)] (114).

Perurethral Cystolithotripsy
The miniaturization of cystoscopes and URSs has made it
possible to manage bladder stones up to 2 cm transurethrally
with 100% clearance and minimum complications. Pneumatic
(mechanical) lithoclast is a cost-effective technology and
can safely be used through a 7 or 8 FG URS (115).
Lasers are costly and take longer to disintegrate the
same-sized stone; however, they can be used through
the fine caliber miniscope and can thus be very safely
used in babies <1 year of age. Postoperatively, relief of
symptoms, attainment of normal voiding, and a normal
pre- and post-void ultrasound of the bladder confirm a
successful outcome.

Percutaneous (Suprapubic)
Cystolithotripsy
PCCL has gained popularity as a quick and safe minimally
invasive procedure, especially for large stones between
2 and 3.5 cm, and even in smaller stones, PCCL is
applicable where there is limited or no urethral access
and management is difficult transurethrally with risks of
failure, long anesthesia and surgical time, and urethral
injury. PCCL has a low morbidity and complication

FIGURE 1 | Minimally invasive surgery for renal stone management algorithm.
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FIGURE 2 | Minimally invasive surgery for ureteric and vesical stone management algorithm.

rate, better cosmetic outcome, shorter hospital stay, and
postoperative urethral catheterization compared with open
cystolithotomy (116).

Note: Management algorithm for renal, ureteric, and vesical
stones are presented in Figures 1, 2.
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