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Abstract

Background: Perilipin A (PeriA) exclusively locates on adipocyte lipid droplets and is essential for lipid storage and lipolysis.
Previously, we reported that adipocyte specific overexpression of PeriA caused resistance to diet-induced obesity and
resulted in improved insulin sensitivity. In order to better understand the biological basis for this observed phenotype, we
performed additional studies in this transgenic mouse model.

Methodology and Principal Findings: When compared to control animals, whole body energy expenditure was increased
in the transgenic mice. Subsequently, we performed DNA microarray analysis and real-time PCR on white adipose tissue.
Consistent with the metabolic chamber data, we observed increased expression of genes associated with fatty acid b-
oxidation and heat production, and a decrease in the genes associated with lipid synthesis. Gene expression of Pgc1a, a
regulator of fatty acid oxidation and Ucp1, a brown adipocyte specific protein, was increased in the white adipose tissue of
the transgenic mice. This observation was subsequently verified by both Western blotting and histological examination.
Expression of RIP140, a regulator of white adipocyte differentiation, and the lipid droplet protein FSP27 was decreased in
the transgenic mice. Importantly, FSP27 has been shown to control gene expression of these crucial metabolic regulators.
Overexpression of PeriA in 3T3-L1 adipocytes also reduced FSP27 expression and diminished lipid droplet size.

Conclusions: These findings demonstrate that overexpression of PeriA in white adipocytes reduces lipid droplet size by
decreasing FSP27 expression and thereby inducing a brown adipose tissue-like phenotype. Our data suggest that
modulation of lipid droplet proteins in white adipocytes is a potential therapeutic strategy for the treatment of obesity and
its related disorders.
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Introduction

The metabolic syndrome is an accumulation of risk factors of

cerebrovascular and cardiovascular disease such as diabetes,

dyslipidemia and hypertension [1]. Increased visceral fat and

elevated lipolysis cause dysfunction of various organs and

abnormal production of adipokines [2]. Therefore, when consid-

ering the pathophysiology of the metabolic syndrome, it is

extremely important to understand the mechanisms of lipid

storage and release (lipolysis) in adipocytes. Within adipocytes,

triglyceride is predominately stored within lipid droplets that are

surrounded by a phospholipid monolayer containing various lipid

droplet proteins. These proteins belong to the PAT family which

contains Perilipin, ADRP/adipophilin, TIP47, MLDP (OXPAT/

LSD5) and S3-12 which all have homology in their N-terminal

sequence [3]. Perilipin (Peri) is the predominant protein present on

the surface of lipid droplets in fat cells of white/brown adipose

tissue and steroid producing cells [4]. Perilipin A (PeriA) is the

most abundant adipocyte lipid phosphoprotein, which is activated

by protein kinase A (PKA) and is considered to play a central role

in regulating lipid metabolism in adipocytes by controlling various

proteins [5]. Ablation of PeriA from white adipose tissue (WAT)

causes dysregulation of adipocyte lipid storage characterized by

increased basal lipolysis and decreased PKA-stimulated lipolysis

and results in a dramatic reduction in WAT mass [6,7]. The role

of PeriA in WAT is to suppress lipolysis in the absence of PKA

stimulation, and enhance lipolysis (,100 fold) with PKA

stimulation [8,9].

Recently, fat specific protein 27 (FSP27 or Cidec) was identified

as a protein which localizes on the surface of lipid droplets in white
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adipocytes and contributes to energy storage by promoting the

formation of unilocular lipid droplets [10,11]. FSP27 deficiency

dramatically reduced WAT mass and induced a brown adipocyte-

like morphology in the WAT via reducing the factors inhibiting

brown adipocyte differentiation such as receptor interacting

protein 140 (RIP140) and increasing brown adipocyte-specific

genes or key metabolic controlling factors such as PPAR

coactivator 1a (PGC1a[1112].

Previously, we generated transgenic mice which overexpressed

either human or mouse PeriA specifically in adipocytes and

studied these mice in the context of obesity and lipid/glucose

metabolism [13]. When challenged with a high fat diet (HFD),

both human and mouse PeriA Tg mice gained less weight, and

had reduced WAT mass, though their food intake was similar to

that of wild type (WT) mice. In this manuscript, we performed

further studies in this human PeriA Tg mouse model to investigate

the mechanisms of obesity-resistance and metabolic changes.

Results

Increased oxygen consumption and energy expenditure
in PeriA Tg mice

Consistent with our previous study [13], body weight and

subcutaneous and gonadal WAT mass were reduced in HFD-fed

Tg mice as compared to HFD-fed WT mice (data not shown).

With regard to energy metabolism, whole-body oxygen consump-

tion rate (VO2) in HFD-fed human PeriA Tg mice was markedly

higher than that of WT controls (Figure 1A). Twenty-four-hour

oxygen consumption and energy expenditure were significantly

increased in Tg mice maintained on a HFD and this difference

was maintained after correction for differences in fat pad mass

compared with the corresponding values for WT mice (Figure 1B,

C). Furthermore, we measured oxygen consumption of white

adipocytes isolated from PeriA Tg and wild-type mice to examine

their mitochondrial function. Consistent with our metabolic

chamber data in vivo, both basal and norepinephrine (NE)

stimulated oxygen consumption tended to be increased in white

adipocytes isolated from PeriA Tg mice (Figure S1).

Up-regulation of brown fat associated transcriptional
factors, and down-regulation of lipid synthesis genes in
WAT of Tg mice

Subsequently we employed DNA microarray analysis on WAT

from Tg and WT mice. We observed increased expression of genes

associated with fatty acid b-oxidation and heat production, and a

decrease in the genes involved in lipid synthesis (Table 1, Figure 2).

To validate these microarray data, we next performed real-time

PCR on selected gene targets. Consistent with the metabolic

chamber data, we confirmed significant increases in the expression

of Cpt1 (WT 1.0060.15 vs. Tg 2.1360.81, p = 0.049) and Mcd (WT

1.0060.18 vs. Tg 1.8760.26, p = 0.021) that are involved in fatty

acid b-oxidation and energy expenditure (Figure 3A). On the

other hand, we observed significant decreases in the expression of

the lipogenic genes Scd1 (WT 1.0060.33 vs. Tg 0.1060.06,

p = 0.014), Dgat1 (WT 1.0060.59 vs. Tg 0.1560.07, p = 0.018), Lpl

(WT 1.0060.24 vs. Tg 0.2560.02, p = 0.002) and Fas (WT

1.0060.46 vs. Tg 0.0860.04, p = 0.016). Similarly, the expression

of Scd2, Dgat2, Srebp1c and Acc tended to be decreased (Figure 3B).

Notably, expression of Rip140 which is involved in the differen-

tiation of white adipocytes was remarkably decreased (WT

1.0060.43 vs. Tg 0.0260.01, p = 0.002), while Pgc1a, a regulator

of mitochondrial biogenesis, was significantly increased (WT

1.0060.42 vs. Tg 16.5968.66, p = 0.003) (Figure 3C).

Ectopic expression of UCP1, a brown adipose tissue
specific protein, in white adipose tissue of PeriA Tg mice

Uncoupling protein-1 (UCP1) functions to uncouple oxidative

phosphorylation and converts the proton gradient energy to heat

to maintain body temperature. It is thought to be expressed

exclusively in brown adipocytes, and is considered a specific

marker of brown adipocytes [14]. We confirmed the ectopic

expression of Ucp1 in the WAT of Tg mice by microarray and

real-time PCR (Table 1, Figure 4A). UCP1 protein expression in

the WAT of Tg mice was subsequently verified by both western

blotting (Figure 4B) and histological immunostaining (Figure 4C).

However, despite being increased, the UCP1 expression in WAT

of Tg mice was much less than was present in brown adipose tissue

(Figure S2). Histological analysis revealed that UCP1 was

expressed in the smaller adipocytes in the WAT of Tg mice, but

not in the WAT of WT mice. In addition, the previously reported

increase in CPT1 gene expression (Figure 3A) in WAT of Tg mice

was also confirmed by Western blotting (Figure 4B).

The abundance of the lipid droplet protein FSP27 is
reduced in the WAT of PeriA Tg mice

The mRNA expression of the lipid droplet protein Fsp27 was

significantly decreased in the WAT of PeriA Tg mice compared

Figure 1. Oxygen consumption and energy expenditure. (A)
Whole-body oxygen consumption rate during a 12-hour dark/12-hour
light cycle for 30-week-old mice fed a high fat diet (n = 7 for WT; n = 7
for Tg). (B) The average value during the 24-hour period. (C) Energy
expenditure during 24-hour period in the experiment. FCBW: fat-
corrected body weight = body weight2(mass of subcutaneous and
perigonadal white adipose tissue). Data are mean 6 SEM. *, p,0.05.
doi:10.1371/journal.pone.0014006.g001

BAT-Like WAT in PeriA Tg Mice
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Figure 2. DNA microarray analysis. Metabolic pathways altered in WAT of Tg mice: cell differentiation, lipid synthesis, fatty acid oxidation, and
thermogenesis. Fold changes in transcript levels are noted beneath the gene symbols. Atp5g1: ATP synthase, H+ transporting, F1 gamma 1, Bmp:
bone morphogenic protein, Cac: carnitine/acylcarnitine translocase, Cox: cytochrome c oxidase, Cpt: carnitine palmitoyl transferase, Dgat:
diacylglycerol acyltransferase, Kat: 3-ketoacyl-CoA thiolase, Pgc1a: peroxisome proliferator activated receptor gamma coactivator-1 alpha, Prdm16:
PRD1-BF1-RIZ1 homologous domain containing 16, Scd: stearoyl-CoA desaturase.
doi:10.1371/journal.pone.0014006.g002

Table 1. Gene expression of WAT in microarray analysis.

Gene/protein name (symbol) UniGene ID Fold change

Adipokines

Adiponectin receptor 2 (Adipor2) Mm.291826 1.52

Adiponectin receptor 1 (Adipor1) Mm.259976 1.15

Adiponectin (Adipoq) Mm.3969 1.00

Lipoprotein lipase (Lpl) Mm.1514 21.07

Monocyte chemotactic protein-1; chemokine (C-C motif) ligand 2 (Ccl2) Mm.290320 21.23

Leptin (Lep) Mm.277072 21.52

Adipocyte differentiation

PRD1-BF1-RIZ1 homologous domain containing 16 (Prdm16) Mm.257785 1.41

Peroxisome proliferator activated receptor gamma, coactivator 1 alpha (Pgargc1a) Mm.259072 1.23

Fatty acid oxidation and thermogenesis

Uncoupling protein 1 (Ucp1) Mm.4177 64.00

Carnitine parmitoyltransferase 1 (Cpt1) Mm.34881 3.25

Carnitine/acylcarnitine translocase (Cac) Mm.29666 1.23

3-Ketoacyl-CoA thiolase B (Kat) Mm.30417 1.15

Lipid synthesis

Stearoyl-CoA desaturase 1 (Scd1) Mm.267377 21.32

Diacylglycerol acyltransferase 2 (Dgat2) Mm.180189 21.74

Stearoyl-CoA desaturase 2 (Scd2) Mm.193096 21.87

Electron transport chain

cytochrome c oxidase, subunit VIIa 1 (Cox7a1) Mm.12907 3.03

cytochrome c oxidase, subunit VIIIb (Cox8b) Mm.3841 2.64

ATP synthase, H+ transporting, F1 gamma 1 (Atp5g1) Mm.258 1.07

doi:10.1371/journal.pone.0014006.t001

BAT-Like WAT in PeriA Tg Mice
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with WT mice (WT 1.0060.22 vs. Tg 0.1860.05, p = 0.0007)

(Figure 5A). Similarly, protein expression of FSP27 and RIP140

were decreased in Tg mice (Figure 5B). As would be expected, the

protein content of PeriA was clearly increased in the WAT of Tg

mice when compared to control (Figure 5B).

Expression of FSP27 was directly attenuated by PeriA
overexpression in vitro

To further study the relationship between the expression of PeriA

and FSP27 in adipocytes, we used an adenoviral system to

overexpress human PeriA in cultured 3T3-L1 adipocytes. Overex-

pression of PeriA resulted in a dramatic reduction in lipid droplet

size in cultured 3T3-L1 adipocytes (Figure 6A). This reduction in

lipid droplet size was accompanied by a decrease in FSP27 protein

expression (Figure 6B). These observations are consistent with our in

vivo data from the WAT of the PeriA Tg mice. FSP27 locates on the

surface of lipid droplets much like PeriA and functions to promote

the formation of unilocular lipid droplet in white adipocytes [11].

Interestingly, our western blot data reveal that there is an inverse

relationship between expression of PeriA and FSP27 (Figure 6B).

Furthermore, we analyzed the mRNA expression level for genes

involved in adipocyte differentiation, lipid synthesis, and fatty acid

b-oxidation in PeriA-overexpressed 3T3-L1 samples. Consistent

with our observations in the WAT of Tg mice, we observed down-

regulation of Rip140 and up-regulation of Pgc1a. Also, we observed

increased expression of genes associated with fatty acid oxidation

and mitochondrial biogenesis, and a decrease in the genes

associated with lipid synthesis (Figure 6C).

Figure 3. Quantitative PCR. Quantitative real-time PCR analysis of the expression of genes in WAT of 30-week-old WT and Tg mice fed a high fat
diet, related to (A) fatty acid oxidation and thermogenesis, (B) lipid synthesis, and (C) cell differentiation to white/brown adipocytes. Data were
normalized by the amount of 36B4 mRNA and expressed relative to the corresponding value for WAT of WT mice; Data are mean 6 SEM (n = 9).
*, p,0.05; **, p,0.01. Acc: acetyl-CoA carboxylase, Adrb3: beta-3 adrenergic receptor, Fas: fatty acid synthease, Lpl: lipoprotein lipase, Mcd: malonyl-
CoA decarboxylase, Srebp1c: sterol regulatory element binding protein 1c.
doi:10.1371/journal.pone.0014006.g003

BAT-Like WAT in PeriA Tg Mice
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Discussion

It has been previously reported that Peri knockout mice lack the

ability to store lipid due to a chronic low level of lipolysis, and

therefore have diminished adipose depots and are obesity-resistant

[6,7]. We initially hypothesized that overexpression of PeriA in Tg

mice would cause increased storage of lipid in adipose tissue and

promote an obese phenotype. However, our original character-

ization of the PeriA Tg mice revealed that these animals had less

adipose tissue and were resistant to diet-induced obesity [13]. We

suggested that one mechanism underlying the resistance to HFD-

induced obesity in PeriA Tg mice was an upregulation of oxidative

genes in brown adipose tissue (BAT) [13]. In the current study, we

further analyzed various metabolism-related proteins in WAT,

and confirmed that the expression of genes related to b-oxidation

and thermogenesis were increased in WAT as well as BAT. We

performed a microarray to expand these initial findings. Our DNA

microarray and RT-PCR data revealed an upregulation of Ucp1, a

brown adipocyte specific protein, in WAT of Tg mice. This

increase was also confirmed by Western blot analysis. Histological

analysis of the WAT demonstrated the robust expression of UCP1

protein within small adipocytes that were located between larger

white adipocytes. These small adipocytes are not observed in the

WAT of WT mice and appear to have a morphology more similar

to brown adipocytes. While only a small number of adipocytes

appear to adopt this brown-like phenotype within the WAT of Tg

mice, it has recently been reported that these ‘‘brite’’ (brown-in-

white) adipocytes are metabolically significant as they can

counteract obesity by contributing to thermogenesis [15]. The

observed reduction in lipid droplet size and decreased mRNA

expression of lipogenic genes in WAT of Tg mice might be a

secondary change caused by increased fatty acid oxidation.

Figure 4. Ectopic expression of UCP1. Ectopic expression of UCP1 in WAT of 30-week-old PeriATg mice fed a chow diet. (A) Quantitative real-
time PCR analysis of Ucp1 mRNA expression in WAT of WT and Tg mice. Data are mean 6 SEM (n = 7). **, p,0.01. (B) Western blot analysis showing
UCP1 or CPT1 protein expression in WT and Tg mice. (C) Innunohistochemistry of PeriA or UCP1 in WAT of WT and Tg mice. Original magnification,
6400.
doi:10.1371/journal.pone.0014006.g004

BAT-Like WAT in PeriA Tg Mice
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However, it is possible that overexpression of PeriA results in a

direct reduction in lipid droplet size and expression of lipogenic

genes as we observed a reduction in lipid droplet size when PeriA

was overexpressed in culture.

In recent reports about development and differentiation of

adipocytes, it is recognized that the adipoblasts, which are derived

from mesenchymal stem cells and exist around capillaries in adipose

tissue, will be differentiated to brown adipocytes by factors such as

PRDM16, BMP7, or PGC1a [16–19]. In contrast, when RIP140, a

co-repressor of many nuclear receptors is present, the adipoblasts

will be differentiated into white adipocytes [16,20]. RIP140 is also

reported to interact directly with PGC1a and suppress its activity

[21]. These facts suggest the possibility that progenitor adipocytes

could develop into brown adipocytes by changing the gene

expression of these key metabolic controlling factors. In this study

we observed a remarkable decrease of Rip140 mRNA and increase

of Pgc1a mRNA. These data suggest a potential mechanism for the

observed increase in UCP1 expression with PeriA overexperssion.

We hypothesize that PeriA overexpression alters the expression of

these key regulators of differentiation in adipoblasts which are

present in WAT and causes these progenitor adipocytes to

differentiate into brown adipocytes.

Overexpression of PeriA in vivo causes a reduction in FSP27

protein expression. Consistent with this observation, we demon-

strated in vitro an inverse relationship exists between FSP27 protein

expression and PeriA expression. This phenomenon is likely due to

a simple competition theory because both proteins preferentially

locate to lipid droplets. Recently, FSP27 knockout mice have been

described to have a phenotype of obesity-resistance, elevated

oxygen consumption, extremely reduced WAT mass and smaller

white adipocytes with multilocular lipid droplets [11,12]. In

addition, genes related to fatty acid b-oxidation and mitochondrial

biosynthesis were significantly increased in FSP27 knockout mice

[11,12]. These data are very similar to the data presented in this

manuscript where we report that PeriA overexpression causes a

significant reduction in FSP27 which is associated with decreased

adipocyte size, upregulation of genes involved in fatty acid

oxidation and a decrease in lipogenic genes. Our data suggest

that the attenuation of FSP27 by overexpression of PeriA was the

trigger for the down-regulation of RIP140 and up-regulation of

PGC1a, which caused progenitor adipocytes to differentiate into

brown adipocytes rather than white adipocytes. This increase in

brown adipocyte-like metabolic activity resulted in an increase in

energy expenditure. Although FSP27 acts as a regulator to control

gene expression of crucial metabolic regulators [12], the

mechanism of how the lipid droplet related structural protein

FSP27 reduces the expression of transcriptional factor RIP140 has

not been clarified and requires further investigation. We

hypothesize that a change of intracellular environment in the

adipocyte itself such as ‘‘the size of the lipid droplets’’ or ‘‘the

composition of the lipid droplet proteins’’, can alter the

characteristics of the adipocyte.

We revealed that PeriA overexpression results in resistance to

diet-induced obesity, increased energy expenditure and reduced

lipid synthesis in vivo, and that the basis for these effects was the

induction of a a BAT-like phenotype in WAT due to a decrease in

FSP27 expression. Our data suggest that modulation of lipid

droplet proteins in white adipocytes is a potential therapeutic

strategy for the treatment of obesity and its related disorders.

Materials and Methods

Ethics Statement
All animal care and experimental procedures in this study were

approved by Hokkaido University Animal Experiment Committee

(approval number: 08-0358) and carried out according to

guidelines for animal experimentation of Hokkaido University.

Antibodies
Polyclonal anti-perilipin antibody was generated as previously

described [22]. Anti-UCP1 antiboby was a kind gift from Prof.

Teruo Kawada (University of Kyoto, Kyoto, Japan) [23], and anti-

FSP27 antibody was generated by Dr. Yoshikazu Tamori, et al

(Kobe University, Kobe, Japan) [11]. Anti-RIP140 antibody was

purchased from Abcam plc (Cambridge, UK). Anti-actin antibody,

anti-CPT1 antibody, and horseradish peroxidase-conjugated anti-

goat IgG were purchased from Santa Cruz Biotechnology Inc

(Santa Cruz, CA). Horseradish peroxidase-conjugated anti-rabbit

IgG was purchased from BIO-RAD Laboratories (Hercules, CA).

Animal experiments
We generated transgenic mice that overexpressed human PeriA

using the adipocyte specific aP2 promoter/enhancer [13]. All

PeriA Tg mice used for the study were female, and heterozygous

for the transgene. Littermates that lacked the transgene were used

as controls (WT). Relative to WT littermates, PeriA protein levels

were increased 2-fold in WAT and 5-fold in BAT of Tg mice.

Mice were housed in a pathogen-free barrier facility at the

Institute for Animal Experimentation at Hokkaido University. All

mice were housed at room temperature, maintained on a 12 h

light/dark cycle, given free access to water, and fed a standard

chow diet (5.3% calories from fat; Oriental Yeast Co., ltd. MF,

Tokyo, Japan) or a HFD (60% calories from fat; Research Diets

#D12492, New Brunswick, NJ) for 25 weeks (from the age of 5

weeks to 30 weeks). Food intake and body weight were monitored

weekly. On the day prior to tissue harvest at 30 weeks, food was

removed at 21:00 h for an overnight fast. After the anesthetization

with isoflurane (Abbott Japan, Tokyo, Japan), WAT from visceral

(perigonadal) and subcutaneous depots were rapidly dissected out

and processed for subsequent analysis.

Measurement of oxygen consumption of HFD-fed Tg
mice

Oxygen consumption of 30-week-old mice in the fed condition

was measured with an open-circuit-type metabolic chamber

Figure 5. FSP27 expression in vivo. Alteration in the expression of
lipid droplet proteins in vivo. (A) Quantitative real-time PCR analysis of
Fsp27 mRNA expression in WAT of WT and Tg mice. Data are mean 6
SEM (n = 7). ***, p,0.001. (B) Western blot analysis for FSP27, RIP140
and PeriA in WAT of WT and Tg mice.
doi:10.1371/journal.pone.0014006.g005

BAT-Like WAT in PeriA Tg Mice
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(MM202R; Muromachi Kikai, Tokyo, Japan) every 3 minutes for

48 hours (12-hour dark/12-hour light cycle) at 25uC. Data were

normalized to fat-corrected body weight (BW – the mass of

subcutaneous and perigonadal white adipose tissue). Energy

expenditure was calculated using the following formula: ([1.076
respiratory quotient +3.98]6 VO2 64.2660/body weight of a

mouse). Measurement of oxygen consumption in isolated white

adipocytes was performed as previously described [11].

DNA microarray analysis
Total RNA extraction was performed by using Ribopure Kit

(Ambion, Austin, TX), according to the manufacturer’s instruc-

tions. To minimize individual variation as a source of gene-

expression variance, RNA samples were pooled, one pool

representing the three HFD-fed Tg mice (4mg from each sample)

and one representing the three HFD-fed WT mice (4mg from each

sample). RNA (2mg from each pool) was reverse transcribed to

cDNA and tagged with biotin with one-cycle target labeling and

hybridized according to the standard protocol using Mouse

Genome 430 2.0 array (Affymetrix), which was then washed,

stained, and scanned. The results obtained from these samples

were analyzed with the GeneChip Operating Software ver1.4.

The detection algorithm uses probe pair (includes perfect-match

(PM) and mismatch (MM)) intensities to generate a detection p-

value and assign a Present, Marginal, or Absent call. A two-step

procedure determines the detection p-value for a given probe set:

the first step calculates the discrimination score R for each probe

pair, by a formula R = (PM2MM)/(PM+MM). The second step

tests the discrimination scores against the user-definable threshold

Tau. The One-Sided Wilcoxon’s Signed Rank test is the statistical

method employed to generate the detection p-value. It assigns each

probe pair a rank based on how far the probe pair discrimination

score is from Tau. The detection p-value cut-offs, Alpha 1 (a1) and

Alpha 2 (a2), provide boundaries for defining Present, Marginal, or

Absent calls. Any p-value that falls below a1 is assigned a ‘Present’

call, and above a2 is assigned an ‘Absent’ call. Marginal calls are

Figure 6. In vitro experiments. Change of lipid droplet size and protein expression in vitro. (A) Microscopic images of 3T3-L1 adipocytes
transfected human PeriA or GFP (control) using adenoviral system plus lipofection methods. (B) Western blot analysis for lipid droplet surface proteins
(PeriA and FSP27) and Actin (as an internal control) in 30mg of lysates of day10 3T3-L1 cells treated with adenovirus PeriA (Ad PeriA). PeriA protein
content increased dose-dependently with increasing PeriA viral titer in 3T3-L1 cells. Signs in a figure ((2), (+) and (++)) mean the amount of
transfected adenovirus (none, single and double quantity). (C) Quantitative real-time PCR analysis of mRNA expression in cultured 3T3-L1 cells (white
bar, Ad PeriA(2): black bar, Ad PeriA(++); Data are mean 6 SEM (n = 6). *, p,0.05; **, p,0.01; ***, p,0.001). mtTFA: mitochondrial transcription factor
A, Nrf1: nuclear respiratory factor 1, Vlcad: very long-chain acyl-CoA dehydrogenase, Lcad: long-chain acyl-CoA dehydrogenase, Mcad: medium-chain
acyl-CoA dehydrogenase.
doi:10.1371/journal.pone.0014006.g006

BAT-Like WAT in PeriA Tg Mice
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given to probe sets which have p-values between a1 and a2. The

settings of quantitation parameters were: a1 = 0.05, a2 = 0.065,

Tau = 0.015. The genes detected to be ‘Present’ in the data from

the microarray were passed to further analysis. Signal is a

quantitative metric calculated for each probe set, which represents

the relative level of expression of a transcript. The signal log ratio

estimates the magnitude and direction of change of a transcript,

which is calculated by log2 (Signal of Tg/Signal of WT).

Differentially expressed probe sets were selected based on filtering

by signal log ratio under 20.3 or over 0.3. The microarray data

files have been submitted to the Gene Expression Omnibus (GEO)

and the accession number is GSE21754.

Quantitative PCR
For each gene that was determined to have expression

differences in the DNA microarray, we evaluated actual

differences by real-time PCR. cDNA was synthesized from 0.5mg

of total RNA (High Capacity RNA-to-cDNA kit, Applied

Biosystems, Warrington, UK). Real-time PCR was performed in

triplicate on a 7500 Fast Real Time PCR system in 20ml total

volume reactions using SYBRH Green PCR Master Mix (Applied

Biosystems, Warrington, UK). Primers were designed using Primer

Express. Data were analyzed by comparative critical threshold (Ct)

method [24] and normalized to an endogenous control gene

(36B4: acidic ribosomal phosphoprotein P0). Percent difference

was calculated by 22ddCt. The primers (sense and antisense,

respectively) were as follows: 36B4, 59- GAG GAA TCA GAT

GAG GAT ATG GGA-39 and 59- AAG CAG GCT GAC TTG

GTT GC-39; Scd1, 59- GAG GCC TGT ACG GGA TCA TA-39,

59- CAG CCG AGC CTT GTA AGT TC-39; Scd2, 59- TGT

CGC TGA GGT CTG AAG C-39, 59- TGT GGT GGT GGC

TGA GTA AG-39; Dgat1, 59- ACG GAT CAT TGA GCG TCT

CT-39, 59- TAG AAC TCG CGG TCT CCA A-39; Dgat2, 59-

AGG CCC TAT TTG GCT ACG TT-39, 59- CAT CAG GTA

CTC GCG AAG C-39; Srebp1c, 59- ATC TCC TAG AGC GAG

CGT TG-39, 59- TAT TTA GCA ACT GCA GAT ATC CAA

G-39; Lpl, 59- AGT AGA CTG GTT GTA TCG GG-39, 59- AGC

GTC ATC AGG AGA AAG G-39; Acc, 59- AAC ATC CCC ACG

CTA AAC AG-39, 59- CTG ACA AGG TGG CGT GAA G-39;

Fas, 59- CCC TTG ATG AAG AGG GAT CA-39, 59- GAA CAA

GGC GTT AGG GTT GA-39; Rip140, 59- ATG GGT GTT

GTC CCT TCC TC-39, 59- AAC TGC TCG CTC TCT CGT

TC-39; Pgc1a, 59- ATG TGT CGC CTT CTT GCT CT-39, 59-

CAC GAC CTG TGT CGA GAA AA-39; Prdm16, 59- CAG CAC

GGT GAA GCC ATT C-39, 59- GCG TGC ATC CGC TTG

TG-39; Bmp7, 59- CCT GTC CAT CTT AGG GTT GC-39, 59-

GCC TTG TAG GGG TAG GAG AAG-39; Cpt1, 59- CCA ATC

ATC TGG GTG CTG G-39, 59- AAG AGA CCC CGT AGC

CAT CA-39; Mcd, 59- TCC CTG GAT TCA CCA AGT GG-39,

59- TTC CTC CCA TGC TCC TTC C-39; Adrb3, 59-GCT GAC

TTG GTA GTG GGA CTC-39, 59- TAG AAG GAG ACG GAG

GAG GAG-39; Kat, 59- TGG CAC TCT CTG GGT TGT G-39,

59- GCA GGT TGT CAC GCT ACT CA-39; Ucp1, 59- GAT

GGT GAA CCC GAC AAC TT-39, 59- CTG AAA CTC CGG

CTG AGA AG-39; mtTFA, 59- AGT TCC CAC GCT GGT AGT

GT-39, 59- GCG CAC ATC TCG ACC C-39; Nrf1, 59- CAG

CAA CCC TGA TGG CAC CGT GTC G-39, 59- GGC CTC

TGA TGC TTG CGT CGT CTG G-39; Vlcad, 59- GAA TGA

CCC TGC CAA GAA CGA-39, 59- ATG CCC ACA ATC TCT

GCC AAG-39; Lcad, 59- GGA CTC CGG TTC TGC TTC CA-

39, 59- TGC AAT CGG GTA CTC CCA CA-39; Mcad, 59- CAA

CAC TCG AAA GCG GCT CA-39, 59- ACT TGC GGG CAG

TTG CTT G-39; Fsp27, 59- GCC CAG TTC CTT CCT TTC

TG-39, 59- AAC ACT CTC TCG CAC ACC TC-39.

Immunoblot analysis
Frozen subcutaneous WAT was homogenized in a Tris-EDTA

buffer containing 10mM Tris/HCl (pH7.4) and 1mM EDTA,

centrifuged for 10 minutes at 4uC, 800g and collected middle layer

[25]. Equal amounts (30mg) of proteins were separated on 10%

SDS-polyacrylamide gel and transferred to a nitrocellulose

membrane. Primary antibodies used were UCP1 (1:3000), CPT1

(1:1000), FSP27 (1:500), RIP140 (1:1000), PeriA (1:2000), and

Actin (1:2000). Actin was used as a loading control. Secondary

antibodies were horseradish peroxidase-conjugated anti-rabbit

IgG (UCP1, FSP27, RIP140 and PeriA) or anti-goat IgG (CPT1

and Actin). Western blot analysis was performed using Amersham

ECL Advance Western Blotting Detection Kit (GE Healthcare,

Little Chalfont, UK) and detection was made using a CCD-

camera system LAS-4000UVmini (Fujifilm, Tokyo, Japan).

Immunohistochemistry
Subcutaneous WAT were dissected, fixed, embedded in

paraffin, and sectioned. Sections were deparaffinized, treated with

1% H2O2 methanol, pre-incubated with 10% goat serum and

exposed to primary antibodies: UCP1 (1:1000), perilipin as

positive controls (1:100). Sections were then incubated with

Biotin-conjugated anti-rabbit IgG, treated with peroxidase-conju-

gated streptavidin, and stained with DAB substrate kit (Nichirei

Bioscience, Tokyo, Japan).

Cell culture and transfection
3T3-L1 preadipocytes were grown in Dulbecco’s modified

Eagle’s medium (DMEM) containing 10% fetal calf serum (FCS)

and seeded on 12-well plates. After reaching confluence, cells were

differentiated using 10mg/ml insulin, 0.5mM 3-isobutyl-1-methyl-

xanthine, 1mM dexamethasone in DMEM containing 10% fetal

bovine serum (FBS). Following 48 h of incubation, medium was

replaced with DMEM only containing 10% FBS, and recombi-

nant adenovirus expressing the construct of PeriA was transduced

into the cultured cells with LipofectAMINE PlusTM (Invitrogen,

Carlsbad, CA) which protocols were previously described

[9,26,27]. The human PeriA vector was generated and verified

as previously described [13], and various amounts of the vector

was transfected to investigate relationships between expressional

levels of PeriA and FSP27, and size of lipid droplets [28]. 5 days

after transfection, cells were fixed for histology or harvested for

immunoblot analysis or quantitative PCR as described above.

Statistical analysis
Data were analyzed using two-sided Student’s t-test and

significance was set a p,0.05. Results are presented as mean

values 6 SEM.

Supporting Information

Figure S1 Oxygen consumption of adipocytes isolated from

inguinal WAT of wild-type and PeriA Tg mice. An arrow indicates

the addition of 10mM norepinephrine (NE). Data are mean 6

SEM of values from three independent experiments. (177KB TIF)

Figure S2 Western blot analysis showing UCP1 protein

expression in both BAT and inguinal WAT of WT and Tg mice

fed a chow diet. Equal amount (30mg) of proteins was electro-

phoresed. Actin was used as a loading control. (511KB TIF)
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