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Experimental atopic dermatitis depends on IL-33R
signaling via MyD88 in dendritic cells

Changwei Li1,2, Isabelle Maillet1, Claire Mackowiak1, Camille Viala1, Franco Di Padova3, Mei Li4,5,6, Dieudonnée Togbe7,
Valérie Quesniaux1, Yuping Lai8 and Bernhard Ryffel*,1,9

Atopic dermatitis (AD) is a chronic Th2 type inflammatory skin disorder. Here we report that MyD88 signaling is crucial in the
pathogenesis of experimental AD induced by vitamin D3 analog MC903. The clinical signs and inflammation caused by MC903 are
drastically reduced in MyD88− /− mice with diminished eosinophil, neutrophil infiltration and Th2 cytokine expression. The
biological effect of interleukin-1 (IL-1) family members relies on MyD88 signaling. We observed a strong upregulation of IL-1 family
cytokine expression, including IL-1α, IL-1β, IL-33, IL-18, IL-36α, IL-36β, IL-36γ and IL-36Ra. Therefore, we asked which cytokine of
the IL-1 family would be essential for MC903-induced AD syndrome. We find a significant reduction of AD in IL-33− /− and IL-33R/
ST2− /− mice, only a minor reduction in double IL-1αβ− /− mice and no difference in IL-36R− /− and IL-36Ra− /− mice. IL-33 is
expressed in keratinocytes, and MyD88 signaling in dendritic cells (DCs) is crucial for AD development as inflammation was
drastically reduced in DC-specific MyD88− /− mice (CD11c-cre × MyD88-floxed). Taken together, the data demonstrate a critical
role of MyD88 in DCs and of IL-33 signaling via ST2 in MC903-induced AD. These data suggest that IL-33/IL-33R may be a
therapeutic target of AD.
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Atopic dermatitis (AD) is a chronic Th2 type inflammatory skin
disease associated with cutaneous hyperreactivity to environ-
mental triggers.1 It affects at least 15% of children and 3% of
adults.2 Patients suffer from relapsing eczematous and
occasionally generalized (erythroderma) lesions associated
with severe pruritus.3 Chronic AD results in the infiltration of
inflammatory dendritic cells (DCs), macrophages and eosino-
phils in the lesions.4,5 This skin disease is frequently
associated with other allergic disorders such as asthma,
rhinitis or conjunctivitis.6 Moreover, AD causing pruritus
affects the quality of life of patients and increases the
susceptibility to microbial colonization such as Staphylococ-
cus aureus infections.6,7 This is why AD remains a serious
health concern in many countries today. The diagnosis of AD
is based on the clinical signs of itching, facial and extensor
eczema in infants and children, flexural eczema in adults, and
chronicity of dermatitis.4 However, the underlying pathophy-
siological and genetic mechanisms leading to the manifesta-
tion of AD need further investigations.
The clinical phenotypes that characterize AD are skin

barrier dysfunction and immune dysregulation. Filaggrin gene
mutation leads to skin barrier dysfunction and transepidermal
water loss, resulting in an AD syndrome.8,9 The most cited
explanations for this allergic disease are an increase in serum
immunoglobulin E (IgE) as well as T helper-2 (Th2) immune

responses with increased interleukin-4 (IL-4), IL-5, IL-10 and
IL-13.6,7,10 These phenomena lead to increased allergens
exposure, which are picked up by Langerhans cells to lymph
nodes and stimulate naive CD4+ T cells (Th0) to differentiate
into Th2 cells. The associated cytokines, which are produced
such as IL-4 and IL-13, are known to stimulate the production
of IgE, whereas IL-5 is one of the most important cytokines for
generation of eosinophils. A well-established function of IgE is
its mediation in mast cells activation,11 which can induce the
expression of proinflammatory cytokines by keratinocytes as
well as migration of DCs. It has been reviewed that impaired
barrier functions could stimulate signaling cascades, enga-
ging an epidermal homeostatic response, as well as a type 2
inflammatory reaction.12

The IL-1 family is a group of cytokines that has a central
mediator of innate immunity and inflammation. It is constituted
by three subfamilies: IL-1 subfamily (IL-1α, IL-1β and IL-33),
IL-18 subfamily (IL-18 and IL-37) and IL-36 subfamily (IL-36α/
β/γ, IL-36Ra and IL-38).13 All IL-1 family members binding to
their specific receptors recruiting the shared adaptor protein
MyD88 and IL-1R-associated kinase IRAK, have a major
pathogenic role in autoinflammatory, autoimmune, infectious
and degenerative diseases.13–16 For the function of IL-1 family
cytokines in the pathogenesis of AD, recent data highlighted
increased IL-33 in skin of patients with AD and in ovalbumin-
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induced experimental AD.17 In addition, Konishi et al.18

revealed the skin specifically overexpressed IL-18 led to
spontaneous development of AD-like inflammatory skin
lesion. Furthermore, it has been reported that IL-1 enhances
AD development.18 The role of other members of the IL-1
family in AD induction, such as IL-36α/β/γ or its antagonist
IL-36Ra, is poorly understood. There is no report correlating
AD severity of inflammation between IL-33 and other IL-1
family member deficient mice.
The vitamin D3 analogMC903, used to treat patientswith skin

cancer, has been reported to induce an AD-like syndrome,
including Th2 type inflammation with eosinophilia and hyper-IgE
immunoglobulinemia.19–21 In order to understand the function of
IL-1 family cytokines in the pathogenesis of AD, we usedMC903
to induce AD inmice. First, we investigated the expression of the
different IL-1 members in MC903-induced AD and then
compared the severity of AD inflammation in BL6 and in gene-
deficient mice including IL-1αβ− /−, IL-1R1− /−, IL-36 R− /−,
IL-36Ra− /−, IL-33− /−, IL-33 receptor ST2− /−, MyD88− /−, DC-
specific MyD88− /− (CD11c-cre×MyD88-floxed) and T-cell-
specific MyD88− /− (CD4-cre×MyD88-floxed) mice. We uncov-
ered a critical role ofMyD88 inDCsand identified IL-33 signaling
via ST2/MyD88 to be critically involved in AD development.

Results

The vitamin D3 analog MC903 induces experimental
AD. In order to better understand the underlying pathophy-
siologic and genetic mechanisms of AD, we used the vitamin
D3 analog MC903 to induce AD in mice. The daily topical
administration of MC903 on the ear caused swelling, red-
dening and scaling of the skin (Figures 1a-c). Microscopic
investigation revealed a strong dermal inflammatory cell
infiltration with epidermal hyperplasia and hyperkeratosis
(Figure 1d). Abundant myeloid cell and lymphocyte infiltration
9 days after topical MC903 application as compared with
ethanol-treated control mice was identified by flow cytometry
analysis (Figure 1e). MC903-induced neutrophil recruitment
and activation as evidenced by increased myeloperoxidase
(MPO), lipocalin-2 (LCN-2) and metalloproteinase-9
(MMP-9), which are detectable at day 3 and reaching a
maximum at day 9 (Figures 1f-h). These results are consistent
with reports on chronic AD.4,5 As Th2 cytokines are considered
to be involved in the pathogenesis of AD, we found augmented
IL-4, IL-5 and IL-13 in the inflamed skin by ELISAwithin 3 days,
which increased up to day 12 (Figures 1i-k). Furthermore,
patients with AD displayed elevated blood eosinophil counts
and plasma levels of IL-5, which has an important role in
eosinophils development and survival.22 Consistent with this
report, we found increased expression of eotaxin-2 within
6 days, peaking at 9 days, indicating eosinophil activation
(Figure 1l). Furthermore, the expression of thymic stromal
lymphopoietin (TSLP), which is involved in MC903-induced AD
development,20,23 was also induced in a time-dependent
manner (Figures 1m and n). Therefore, MC903 induces a
robust AD-like allergic inflammatory response.

IL-33 is upregulated by epithelial cells in skin upon
MC903-induced AD. As IL-1 family cytokines function as a

central mediator of innate immunity and inflammation, we
investigated the expression of IL-1 family cytokines in skin,
and found a significant upregulation of IL-33 expression at
both gene and protein levels upon MC903 administration
(Figures 2a and b). Immunofluorescence analysis using
antibody to IL-33 revealed that IL-33 was strongly expressed
in the nucleus of epithelial cells in ethanol-treated controls,
which was drastically upregulated after 12 days of MC903
treatment. However, IL-33 was undetectable in MC903-
treated IL-33-deficient mice (data not shown). To determine
which cell types express IL-33 in AD, we used IL-33 citrine
reporter mice using flow cytometry. IL-33+ cells in the skin
were essentially epithelial cells, MC903 increased IL-33+

citrine expression in keratinocytes (Figure 2d), whereas only
a small number of myeloid cells expressed IL-33 (data not
shown). Furthermore, IL-33 was mainly expressed in Epcam+

epithelial cells, whereas neutrophils, macrophages and DCs
represented minor cell populations (Figure 2e). Finally,
besides IL-33, MC903 also induced IL-1α, IL-1β, IL-36α,
IL-36β, IL-36γ, IL-36Ra and IL-18 gene expression in a time-
dependent manner (Supplementary Figure S1). Therefore,
IL-33 expression was induced essentially in epithelial cells
of MC903-induced AD.

The development of AD by MC903 is dependent on IL-33
signaling. Given that MC903 induced high expression
of IL-1 family cytokines, we compared the AD severity of
inflammation in BL6, IL-1R1− /−, IL-1αβ − /−, IL-36 R− /−,
IL-36Ra− /−, IL-33− /− and IL-33 receptor ST2− /− mice. No
significant difference was found between BL6, IL-36 R− /− and
IL-36Ra− /− mice after 12 days of topical MC903 administration
either on inflammatory cell infiltration or the cytokine expres-
sion (Supplementary Figures S2 and S3). Only a minor
decrease of ear swelling and IL-13 expression in IL-1αβ− /−

mice and IL-4 expression in IL-1R1− /− mice was detected as
compared with BL6 mice (Supplementary Figure S4a), but no
difference was found on inflammatory cell infiltration and
clinical score between BL6, IL-1αβ− /− and IL-1R1− /−

(Supplementary Figures S4b-S4c and S5b-S5c) with a
nonsignificant decrease of MPO, MMP-9 and eotaxin-2
(Supplementary Figures S4e-S4h and S5e-S5h) in IL-1αβ− /−

and IL-1R1− /− as compared with BL6 mice.
By contrast, MC903-induced AD syndrome was markedly

decreased in IL-33− /− mice with diminished ear swelling
(Figure 3a), clinical score (Figure 3b), inflammatory cell
infiltration (Figure 3c), eosinophil activation-related protein
eotaxin-2 and Th2 cytokine expression (Figures 3d-g). In
conclusion, the data demonstrate that MC903 upregulated
IL-1 family cytokines, but only IL-33 appears to be essential for
MC903-induced AD syndrome.

IL-33 mediates MC903-induced AD via ST2-MyD88
signaling. Having identified IL-33 is essential for MC903-
induced AD syndrome, we explored the molecular mechan-
isms involved in the IL-33- dependent AD development.
First, we foundMC903-induced ADwasmarkedly decreased

in ST2− /− mice. Ear swelling (Figure 4a), clinical score
(Figure 4b) and inflammatory cell infiltration (Figure 4c) were
all reduced. The ELISA results confirmed that MC903-induced
leukocyte activation related protein MPO and MMP-9,
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Figure 1 Vitamin D3 analog MC903 induces AD. (a) Schematic of MC903 application. (b) Increase in ear thickness after daily MC903 treatment. (c and d) Photographs (c)
and H&E staining (d) of MC903- and ethanol-treated ears at day 12. Scale bar represents 50 μm. (e) The infiltrating CD11b+ and CD11b+ Ly6G+ cells in skin of AD lesions by
FACS. (f-n) The expression of MPO (f), LCN-2 (g), MMP-9 (h), IL-4 (i), IL-13 (j), IL-5 (k), eotaxin-2 (l) and TSLP (m and n) in the ear treated with ethanol or MC903. *Po0.05,
**Po0.01, ***Po0.001. P-values were analyzed by one-way ANOVA in b andm, two-tailed t-tests in e or two-way ANOVA in f-l and n. All data are representative of two to three
independent experiments with n= 5 per group and are means± S.E.M.
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eosinophil activation-related protein eotaxin-2 were all
decreased in ST2− /− mice compared with BL6 mice (Figures
4d-f), as well as the Th2 cytokines IL-4, IL-13 and IL-5 (Figures
4g-i).
Second, we evaluated whether the common IL-1R family

adaptor protein MyD88 would be involved in the development
of AD phenotype. Compared with BL6mice, ear thicknesswas
reduced in MyD88− /− mice 12 days after daily topical MC903
administration (Figure 5a). Clinical signs of skin inflammation
and inflammatory cell infiltration were drastically reduced in
the absence of MyD88 (Figures 5b and c). Neutrophil
recruitment and activation measured by MPO, LCN-2 and
MMP-9 aswell as eosinophil activation related protein eotaxin-
2 expression were all significantly decreased in MyD88− /−

mice as compared with BL6 mice (Figures 5d-g). Consistent
with reduced inflammation, the expression of Th2 cytokines
IL-4, IL-13 and IL-5 was diminished (Figures 5h-j). Therefore,
the data demonstrate that IL-33 mediates MC903-induced AD
via ST2-MyD88 pathway.

MyD88 signaling by DCs is critical for AD
development. IL-33 released by keratinocytes, endothelial
cells and other immune cells activates ST2, followed by the
activation of MyD88 and expression of factors implicated in
several inflammatory pathways.3,24–26 To define which cell
type is involved in AD development, we used cell-specific
MyD88-deficient mice using the cre-lox system27 and
found that MC903-induced AD syndrome was drastically
reduced in DC-specific MyD88 (CD11c-cre ×MyD88-floxed)
deficient mice. Flow cytometry revealed increased DC cells
infiltration in MC903-induced skin lesions in BL6 mice
(Figure 6a). Ear swelling, clinical score and inflam-
matory cell infiltration were significantly decreased in the
absence of MyD88 in DCs (Figures 6-d). The reduction of
skin inflammation was associated with decreased MPO,
MMP-9, LCN-2 and eotaxin-2, (Figures 6e-h), as well as
Th2 cytokines expression (Figures 6i-k). Therefore, MyD88
signaling in DCs is critical for MC903-induced AD
development.
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Figure 2 IL-33 is mainly expressed by epithelial cells and CD11b+ cells. (a and b) Quantification of IL-33 mRNA (a) and protein (b) expression in the BL6 mouse ears for
different times. (c) Immunofluorescence analysis of IL-33 in mouse ear skin after 12 days of MC903 treatment. This image is representative of five mice with abscess. Scale bar
represents 50 μm. (d and e) Expression of total and citrine Epcam+ cells assessed by flow cytometry of MC903 administrated BL6 and IL-33 citrine reporter mice at day 12.
*Po0.05, **Po0.01, ***Po0.001. P-values were analyzed by one-way ANOVA in a and e, two-way ANOVA in b. All data are representative of two independent experiments with
n= 3–5 per group and are means± S.E.M.
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Discussion
The IL-1 family cytokine IL-33 (IL-F11) is known to promote
Th2 responses and may have an important role in the initiation
of AD as the epidermal administration of IL-33 caused an
AD-like inflammation.28 However, the function of other IL-1
family cytokines, such as IL-1α, IL-1β, IL-36α/β/γ and IL-36Ra,

in the pathogenesis of MC903 AD was not explored before.
Here we investigated the pathway of MC903-induced AD in
BL6, IL-33− /−, IL-33 receptor ST2− /−, IL-36 R− /−, IL-36Ra− /−,
IL-1αβ− /−, IL-1R1− /− and MyD88− /−mice. We report a critical
role of IL-33/ST2 signaling as experimental AD in IL-33- and
ST2− /− mice was drastically reduced with only minor

Figure 3 IL-33 is essential for MC903-induced AD. (a) Ear thickness of BL6 and IL-33− /− mice after daily MC903 treatment. (b and c) Clinical score of the ear redness and
scaling (b) and H&E staining (c) of the ear and of BL6 and IL-33− /− mice treated with ethanol or MC903 at day 12. Scale bar represents 50 μm. (d-g) The protein expression of
eotaxin-2 (d), IL-4(e), IL-5 (f) and IL-13 (g) in the ear of BL6 and IL-33− /−mice treated with ethanol or MC903 at day 12. *Po0.05, **Po0.01, ***Po0.001. P-values were analyzed
by two-way ANOVA in a and one-way ANOVA in b-g. All data are representative of two to three independent experiments with n= 4–8 per group and are means±S.E.M.
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reduction in IL-1αβ− /− mice, but no difference in IL-36 R− /−

and IL-36Ra− /− mice. As most IL-1 family members signal
through MyD88, we used MyD88− /− and DC-specific
MyD88− /− (CD11c-cre ×MyD88-floxed) deficient mice. We
report that MC903-induced inflammatory response is reduced
in MyD88− /− mice and largely DC dependent as the AD is
reduced in DC-specific MyD88-deficient mice. Therefore, we
identified a critical role of IL-33 signaling via ST2 and
uncovered the pivotal function of MyD88 in DCs in MC903-
induced AD-like skin inflammation.
The IL-1 and IL-1 R families have grown impressively in

size, complexity and division of labor. The discovery of innate

lymphoid cells (ILCs) and the dissection of pathways of T-cell
differentiation have revealed essential and distinctive func-
tions for IL-1, IL-36, IL-33.13 IL-1α and IL-1β are encoded by
distinct genes, signaling through the same receptor complex
(IL-1R1 and IL-1RAcP), and have similar biological properties.
IL-1 promotes T-cell responses with a key role for the
differentiation of Th17 cells mediating autoimmune and
chronic inflammatory diseases, such as psoriasis.29 Despite
no much significant difference in inflammation, the expression
of MMP-9, eotaxin-2, IL-4 and IL-13 was reduced in IL-1αβ− /−

and IL-1R1− /− mice compared with BL6 after 12 days of
MC903 application, which indicated IL-1R1 has minor role in

Figure 4 IL-33 mediates MC903-induced AD via ST2 pathway. (a-c) The increase in ear thickness (a), clinical score of the ear redness and scaling (b) and H&E staining of
the ear (c) of BL6 and ST2− /− mice after 12 days of MC903 treatment. Scale bar represents 50 μm. (d-i) The protein expression of MPO (d), MMP-9 (e), eotaxin-2 (f), IL-4 (g),
IL-13 (h) and IL-5 (i) in the ear of BL6 and ST2− /− mice treated with ethanol or MC903 at day 12. *Po0.05, **Po0.01, ***Po0.001. P-values were analyzed by one-way
ANOVA. All data are representative of two to three independent experiments with n= 4–8 per group and are means± S.E.M.
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MC903-induced AD. These results are consistent with the
report that IL-1 may have a promoting role in the development
of the atopic changes.18

IL-36 family members IL-36α (IL-1F6), IL-36β (IL-1F8) and
IL-36γ (IL-1F9) bind to IL-1Rrp2 and use IL-1RAcP as a
co-receptor. IL-36Ra (IL-1F5), which shares 450%
homology with IL-1Ra, is a receptor antagonist.13 IL-36 is
produced by innate immune cells and lymphocytes inducing
the production of proinflammatory cytokines, chemokines
and costimulatory molecules, thus promoting Th1 and Th17
cell polarization.30,31 There is evidence that IL-36 is involved in

pathological conditions including psoriasis32 and A. fumigatus
infection,33 but little is known about the function of IL-36 in Th2
type skin diseases. Unlike to the data in experimental
psoriasis, IL-36 is not essential for MC903-induced
experimental AD.
IL-33 signals through the ST2 receptor, which associates

with IL-1RAcP to induce MyD88-dependent signaling. IL-33 is
a cytokine mainly involved in type 2 immunity and inflamma-
tion. Its main effects on innate and adaptive cells, including
ILC2, Th2 cells and alternatively activated M2 polarized
macrophages, are consistent with this general function.13,34

Figure 5 IL-33 mediates MC903-induced AD via MyD88 pathway. (a) The ear thickness of BL6 and MyD88− /−mice after daily MC903 treatment. (b and c) Clinical score (b)
and H&E staining of the ears (c) of BL6 and MyD88− /− mice treated with ethanol or MC903 at day 12. Scale bar represents 50 μm. (d-j) The protein expression of MPO (d),
LCN-2 (e), MMP-9 (f), eotaxin-2 (g), IL-4 (h), IL-13 (i) and IL-5 (j) in the ear of BL6 and MyD88− /− mice treated with ethanol or MC903 at day 12 *Po0.05, **Po0.01,
***Po0.001. P-values were analyzed by two-way ANOVA in a and one-way ANOVA in b-j. All data are representative of two to three independent experiments with n= 4–7 per
group and are means± S.E.M.
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Figure 6 IL-33-MyD88 signaling in DCs is required for AD development. (a) DC infiltration in skin lesions. (b–d) The ear thickness (b), clinical score (c) and H&E staining of
the ear (d) of BL6 and MyD88-floxed × CD11c-cre mice after 12 days of MC903 treatment. Scale bar represents 50 μm. (e-i). The protein expression of MPO (e), MMP-9 (f),
LCN-2 (g), eotaxin-2 (h), IL-4 (i), IL-5 (j) and IL-13 (k) in the ear of BL6 and MyD88-floxed × CD11c-cre mice treated with ethanol or MC903 at day 12. *Po0.05, **Po0.01,
***Po0.001. P-values were analyzed by two-tailed t-tests in a and one-way ANOVA in b-k. All data are representative of two to three independent experiments with n= 7-8 per
group and are means±S.E.M.
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Furthermore, IL-25 and IL-33 drive type 2 ILCs in AD.35

We reported before that DCs respond to IL-33 and contribute
to Th2 differentiation in the lung.36 Our data demonstrated
that the IL-1 family member IL-33 may be a key factor in
MC903-induced experimental AD, and activate DCs favoring
Th2 responses in the pathogenesis of this allergic skin
disease.
DCs are highly specialized professional antigen-presenting

cells and are usually located at surveillance interfaces of the
human body such as the skin or mucosa, and are thought to
have an important role in the initiation and regulation of
immune responses, including in AD.37–39 Here we observed
MC903-induced AD was reduced in DC-specific MyD88-
deficient mice compared with BL6 mice, suggesting that
MyD88 signaling in DCs is critical for AD development.
Interaction between antigen-loaded DCs and antigen-
specific T cells leads to T-cell proliferation and differentiation
and generation of Th1, Th2, Th17 or Treg cells.2 In AD, there is
an increased expression of Th2 cytokines, serum IgE levels
and eosinophilia.40 Furthermore, allergen-specific T cells are
increased producing IL-4, IL-5 and IL-13, but little IFN-γ in the
peripheral blood of patients with AD.40–42 We found MC903-
induced experimental AD was only slightly reduced in mice
deficient of MyD88 signaling in T cells (MyD88-floxed ×CD4-
cre mice) as compared with BL6 mice (data not shown). Our
data suggest that IL-33 acts through MyD88 signaling via DCs
with a minor contribution by T cells during AD development.
For the mechanism of IL-33 in influencing the ability of DCs to
polarize T cells, we have shown before that IL-33 activated
myeloid DCs to produce IL-6, IL-1β, TNF, CCL17 and to
express high levels of CD40, CD80, OX40L and CCR7.
Moreover, IL-33-activated DCs prime naive lymphocytes to
produce the Th2 cytokines.36

ILCs are a family of developmentally related cells that are
involved in immunity and in tissue development and
remodeling.43 Three distinct members of this family have
been identified on the basis of their differential developmental
requirements and expression of effector cytokines.44 Among
these, type 2 ILC2 produce the Th2-associated cytokines to
induce lung inflammation in certain models of allergic
asthma.43 Moreover, ILC2 are enriched in the lesional skin
of patients with AD44 and skin-specific expression of IL-33
developed a spontaneous AD-like skin inflammation, which is
associated with ILC2 infiltration.45 In this study, we found both
TSLP and IL-33 were significantly upregulated in MC903-
induced AD-like skin inflammatory responses. The increased
inflammatory responses, including Th2 cytokine expression
were significantly suppressed in IL-33− /− or ST2− /− mice,
which means that IL-33 and its receptor ST2 are essential for
MC903-induced Th2 cytokine expression. However, whether
IL-33-mediated Th2 response is dependent on ILC2 needs
further investigation.
In contrast to the present results and the previous findings

that IL-33 was crucial for the development of AD-like
inflammation in mice,35,45 Kim et al.44 revealed that TSLP
elicits IL-33-independent ILC2 responses to promote skin
inflammation in AD model. The reasons for the discrepancy
between our results and the findings from Kim et al. may be
due to a higher dose of MC903 and earlier time point for the
microscopic analysis. Importantly, TSLP expression was

significantly increased at early stage (detectable even earlier
than day 3 and reaching a maximum at day 6 and declined
rapidly) in response to MC903, whereas IL-33 and Th2
cytokines, as well as neutrophil recruitment and activation-
related mediators, such as MPO, LCN-2 and MMP-9 expres-
sion, were detectable at days 3 or 6 and reaching a maximum
at day 12. Therefore, we speculate that TSLP may have a
pivotal function for MC903-induced AD-like syndrome at the
early stage, whereas IL-33 is essential for sustained inflam-
mation with amplification at a later stage. Consistent with the
previous report,35 we found that ear thicknesswas only slightly
reduced in IL-33− /− mice when compared with WT controls
after 4 days of application, but continuous MC903 application
augmented the ear thickness to a greater extent in WT mice
than in IL-33− /− mice.
Keratinocyte-derived TSLP is essential for vitamin D3- and

analog-induced AD-like inflammatory responses.20,23 Our
results showed that the vitamin D3 analog MC903-induced
gene and protein expression levels of TSLP in a time-
dependent manner (Figures 1m and n). By inducing AD
model in BL6 and TSLPR− /− mice, we found MC903-induced
AD was markedly decreased in TSLPR− /− mice20 as
compared with BL6 mice, including the inflammatory cell
infiltration and Th2 cytokine expression, suggesting that TSLP
is essential for MC903-induced AD, and IL-33 has a
complementary function. For the mechanisms of TSLP
expression, it has been demonstrated that the RXR vitamin
D receptor and RXR retinoic acid receptor heterodimers and
their ligand autonomously control the expression of TSLP in
epidermal keratinocytes.20 We found time-dependent expres-
sion of IL-33 in both gene and protein after MC903 treatment.
The expression of IL-33 is primarily localized to non-
hematopoietic cells, particularly keratinocytes,46 and this
upregulated IL-33 is essential for mucosal and systemic
innate, rather than acquired immune responses.47 Consistent
with the reports before, the immunofluorescence analysis
showed the basal level expression of IL-33 was mainly in
epidermal cells in the ethanol group, however, after 12 days of
MC903 treatment, IL-33 expression was upregulated in
epidermal cells and to a lesser extent in infiltrating dermal
myeloid cells.
In conclusion, we found that IL-33 is largely produced by

keratinocytes upon repeated cutaneous MC903 administra-
tion and AD is dependent on IL-33/ST2 signaling. Further, we
uncovered a critical role of MyD88 in DCs for IL-33 signaling
via ST2 in AD development. The data suggest that IL-33/ST2
may represent a therapeutic target for this chronic inflamma-
tory disease of the skin.

Materials and Methods
Mice. C57BL/6 mice and age-matched IL-33− /−47, ST2− /−48, IL-36R− /−/
IL-36Ra− /−31, IL-1αβ− /−49/IL-1R1− /−50, MyD88− /−51, MyD88-floxed × CD11c-
cre and MyD88-floxed × CD4-cre27 and IL-33 citrine reporter52 mice
(7–9 weeks old) were housed in our specific pathogen-free animal facility at
CNRS (UPS 44, Transgenose Institute, Orleans, France). Mice were maintained in a
temperature-controlled facility with a strict 12-h light/dark cycles and were given free
access to food and water.

Ethics statement. All animal experimental protocols complied with the French
ethical and animal experiments regulations (see Charte Nationale, Code Rural R
214-122, 214-124 and European Union Directive 86/609/EEC) and were approved
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by the 'Ethics Committee for Animal Experimentation of CNRS Campus Orleans'
(CCO), registered (N°3) by the French National Committee of Ethical Reflexion for
Animal Experimentation (CLE CCO 2012-042).

MC903-induced AD model. To induce AD lesion, 1 nmol of MC903 in 10 μl
ethanol or ethanol (vehicle) was painted on both ears daily for 12 days.20,35 Twenty-
four hours after last challenge, mice were killed, the ear thickness was measured
using a digital caliper (Decimal Caliper, Asa Dental spa, Lucca, Italy), images of the
ear were taken daily and clinical score was evaluated as none (0), mild (1),
moderate (2) or severe (3) according to the ear redness and scaling.

Histology. Paraffin-embedded ear sections were used by haematoxylin–eosin
staining for the histopathological diagnosis, and the clinical histology score was
evaluated as none (0), mild (1), moderate (2) or severe (3) according to the dermal
cell infiltration, epidermal hyperplasia and scurf production, the analysis was
performed using conventional optical microscopy (Leica, Wetzlar, Germany).

Real-time quantitative RT-PCR. Total RNA was prepared using Trizol
Reagent (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s instructions.
RNA was quantified by Thermo NANODROP 2000 spectrophotometer (Thermo
Fisher Scientific, Waltham, MA), total RNA (1 μg) was reverse transcribed using
GoScript Reverse Transcription System (Promega, Madison, WI, USA, cat: A5001)
according to the manufacturer’s instructions. Q-PCR were performed on Mx3005P
(Stratagene, La Jolla, CA, USA) using GoTaq q-PCR Master Mix (Promega, cat:
A6001/2). The following gene expression assays were purchased from Qiagen
(Hilden, Germany): GAPDH (NM_001289726.1; cat: QT01658692), IL-33
(NM_133775.2; cat: QT00135170), IL-1α (NM_010554.4; cat: QT00113505), IL-1β
(NM_008361.4; cat: QT01048355), IL-36α (NM_019450.3; cat: QT00136745), IL-36γ
(NM_153511.3; cat: QT00146734), IL-36Ra (cat: QT00252931). The primer for
IL-36β_(NM_027163.4) is purchased from Sigma-Aldrich (St. Louis, MO, USA) with
the sequence: 5ʹ-ACAAAAAGCCTTTCTGTTCT-3ʹ (forward) and 5ʹ-CCATGT
TGGATTTACTTCTC-3ʹ (reverse). Quantification of gene expression was determined
by the comparative 2ΔΔCT method. The relative expression levels were determined by
normalizing expression to glyceraldehyde 3-phosphate dehydrogenase (GAPDH). All
the assays were performed in triplicate and repeated at least two times.

FACS analysis. In order to characterize the cells recruited in MC903-induced
AD model, ears and lymph nodes of four BL6 mice treated with ethanol or MC903
were collected and digested in 3 ml of reagent (RPMI) containing 2 mg/ml
collagenase type IV and 1 mg/ml DNase (Sigma) for 60 min at 37 °C. The
suspension was then passed through a cell strainer (100 μm) and washed with
FACS buffer. Finally, a preparation about 106 cells was prepared and stained with
antibodies against mouse CD8 APC (53-6.7), CD4 V500 (RM4-5), CD11b Percp
(M1/70), CD11c V450 (HL3) and Ly6G FITC (1A8) (all BD Biosciences, San Jose,
CA, USA). Cells were washed with PBS EDTA, 7-AAD (BD Biosciences) was added
5 min before analysis for dead cell exclusion and analyzed using an FACS Canto II
machine (BD Biosciences). FACS data were analyzed using the FlowJo Software
(TreeStar, Ashland, OR, USA).

Protein detection in the ear. Ear samples were homogenized in 1 ml PBS
using Ultra Turrax (IKA-Werke, Staufen, Germany), the supernatant was harvested
and assayed for cytokine content using commercially available enzyme-linked
immunosorbent assay reagents for MPO, MMP-9, LCN-2, eotaxin-2, IL-33, IL-10,
IL-1γ, IL-4, IL-13 and IL-5. (Duoset R&D Systems, Abingdon, UK).

Cell culture and stimulation. Neonatal human epidermal keratinocytes
(Cascade Biologics, Portland, OR, USA) were cultured in serum-free EpiLife
medium (Cascade Biologics) containing 0.6 mM Ca2+, 1 × Epilife defined growth
supplement, 50 U/ml penicillin and 50 μg/ml streptomycin under standard culture
conditions. Murine primary keratinocytes were isolated from newborn skin as using
dispase II and cultured in 154CF medium supplemented with HKGS, 0.2 mM CaCl2
(Invitrogen) and Pen Strep (100 units/ml penicillin and 100ug/ml sreptomycin)
(Invitrogen). Primary dermal fibroblasts were isolated from newborn mice using
dispase _ S. Following skin digestion, isolated cells were centrifuged after filtering
and plated with DMEM (GIBCO, Carlsbad, CA, USA) containing 10% FBS and 1%
penicillin/streptomycin. Primary peritoneal neutrophils were isolated from six BL6
mice by i.p. injection of 3 ml thioglycolate medium (Sigma). Cells were harvested
4 h later by peritoneal lavage with cold PBS, followed by washing with RPMI1640
medium (GIBCO). Bone marrow-derived macrophages and DCs from four BL6 mice

were cultured as previously reported.27,36 RAW264.7 cells and human fibroblast cell
lines (MEF) (Chinese Academy of Sciences, Shanghai, China) were cultured in
DMEM (Invitrogen) medium containing 10% FBS (GIBCO), 50 U/ml penicillin and
50 ug/ml streptomycin (GIBCO) under standard culture conditions. For all cell
stimulation experiments, 2 × 10 5 cells were seeded in each well of 24-well or
8 × 105 cells were seeded in each well of 6-well plates. When cells were grown to
80% confluence, the indicated doses of MC903 were used to stimulate cells for
different times. After treatment, cells were harvested in Trizol for RNA extraction and
cell lysates were harvested in RIPA buffer for western analysis.

Immunofluorescent staining. Skin from MC903-treated mice was frozen,
cut at 7 μm on a cryotome, mounted on glass slides, fixed in 4% PFA for 10 min
and subsequent pretreated with antigen retrieval solution for 10 min at 95 °C. The
sections were then stained with goat anti-mouse IL-33 antibody (cat: AF3626, R&D
Systems), incubated at 4 °C overnight. The sections were incubated with FITC-
conjugated donkey anti-goat antibody (R&D Systems) for 1 h at RT and then
mounted in ProLong Gold antifade reagent with DAPI (Invitrogen) and visualized
them by the microscope (Leica). For the IL-33 protein detection in the skin of IL-33
citrine reporter mice was done according to our previous report.52

Statistical analysis. All data are present as mean±S.E.M. We used
two-tailed t-tests to determine significances between two groups. We did analyses
of multiple groups by one-way or two-way ANOVA with Bonferroni post test of
GraphPad prism version 5 (Graphpad Software, La Jolla, CA, USA). For all
statistical tests, we considered P-value o0.05 to be statistically significant.
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