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Abstract

While mortality from malaria continues to decline globally, incidence rates in many countries

are rising. Within countries, spatial and temporal patterns of malaria vary across communi-

ties due to many different physical and social environmental factors. To identify those areas

most suitable for malaria elimination or targeted control interventions, we used Bayesian

models to estimate the spatiotemporal variation of malaria risk, rates, and trends to deter-

mine areas of high or low malaria burden compared to their geographical neighbours. We

present a methodology using Bayesian hierarchical models with a Markov Chain Monte

Carlo (MCMC) based inference to fit a generalised linear mixed model with a conditional

autoregressive structure. We modelled clusters of similar spatiotemporal trends in malaria

risk, using trend functions with constrained shapes and visualised high and low burden dis-

tricts using a multi-criterion index derived by combining spatiotemporal risk, rates and trends

of districts in Zambia. Our results indicate that over 3 million people in Zambia live in high-

burden districts with either high mortality burden or high incidence burden coupled with an

increasing trend over 16 years (2000 to 2015) for all age, under-five and over-five cohorts.

Approximately 1.6 million people live in high-incidence burden areas alone. Using our

method, we have developed a platform that can enable malaria programs in countries like

Zambia to target those high-burden areas with intensive control measures while at the same

time pursue malaria elimination efforts in all other areas. Our method enhances conven-

tional approaches and measures to identify those districts which had higher rates and

increasing trends and risk. This study provides a method and a means that can help policy

makers evaluate intervention impact over time and adopt appropriate geographically tar-

geted strategies that address the issues of both high-burden areas, through intensive con-

trol approaches, and low-burden areas, via specific elimination programs.
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Author summary

The WHO Global Technical Strategy for malaria has set an ambitious goal to achieve a

global reduction in malaria incidence and mortality rates by 90% and attain elimination

in at least 35 countries by the year 2030. Malaria intervention choices and strategies for

control and elimination still largely depend on the clear identification and understanding

of prevailing variations in local malaria transmission levels. Having reliable and robust

methods of selecting and classifying areas as either high or low burden is critical in deter-

mining the basis for, and evaluation of, optimal malaria control and elimination strategies

at national and sub-national levels. Our study presents a novel statistical method for

modelling a combination of malaria risk, rates and trends over time (2000–2015) and

space (sub-national level). This approach can be used in malaria endemic countries to

help policy makers design, implement and evaluate cost-effective, geographically targeted

intervention programmes. These programmes include intensive malaria control

approaches in high-burden areas and leveraging malaria elimination strategies in low-

burden areas.

Introduction

Malaria transmission trends and risk of infection are usually heterogeneous in time and space.

The ability to detect common spatial and temporal variations of malaria burden in sub-

national settings is of great interest and a considerable challenge to malariologists and public

health experts in endemic countries.

The global decline of malaria incidence rates has stalled, or the rate of reduction slowed in

some countries, particularly sub-Saharan Africa [1]. The 2017 and 2018 World Malaria

Reports highlight this stagnation [1–3] and have led to the World Health Organisation’s

(WHO) launch of a new country-focused approach known as the “high-burden to high-impact”
malaria response. They also call for the development of novel methods to address the problem

[4,5].

Despite the continued fight against high malaria endemicity for the last half-century, Zam-

bia is among those sub-Saharan countries affected by the reported stagnation in malaria prog-

ress [6,7]. With a massive scale-up in interventions [7–10] in the last decade, Zambia achieved

considerable progress, resulting in a move away from control targets to elimination aspirations

[11]. Zambia embraced the currently renewed global interest for malaria elimination, and stra-

tegically positioned itself within a regional and global malaria eradication context.

However, Zambia’s geographical location complicates its malaria control status vis-à-vis its

elimination aims. For example, the country’s northern and south-eastern neighbours (Angola,

Congo DR, Tanzania, Malawi, and Mozambique) are often among the WHO’s list of highest-
burden countries [1,2]. In contrast, some of its southern neighbours are regional frontline tar-

get countries in the E-2020 malaria elimination programme [12]. Similarly, this northern vs

southern epidemiological contrast is manifest sub-nationally as, generally, Zambia’s northern

regions have high malaria infections while the southern regions experience the opposite

[13,14]. Uncertainty in progress both regionally [12] and nationally [15] has not prevented

Zambia from moving forward with its aim to eliminate malaria.

In the past, countries have generally embarked on nationwide elimination efforts or intensi-

fying control in low-burden and high burden areas, respectively. Traditionally delineating

these areas was logically based on incidence alone. As elimination and control are becoming a
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focal problem of subnational importance, malaria programs now have to deal with the chal-

lenge of accurately delineating areas to pursue elimination and those in which to intensify con-

trol strategies, over and above the challenges posed by border areas.

In order to ascertain the robustness of methods used for selecting these areas of a high or low

burden to inform optimal control or elimination strategies, and as a measure of progress towards

country elimination targets, scholars have started thinking of better or more robust alternatives.

Kitojo et al. recently compared multiple data sources such as the use of malaria tests from antena-

tal care against population-wide prevalence surveys in children under five years of age to evaluate

them as a measure for malaria trends and progress towards Tanzania’s elimination at subnational

levels [16]. Routlege et al. used individual-level malaria cases for geostatistical estimates of spatio-

temporal transmission to predict the timeline to elimination or the imminent risk of resurgence

in China [17], while Amratia et al. used a combination of serology data, case tracing, and case

reports in Haiti [18] to comprehensively capture the transmission landscape.

These studies cite the inadequacy of incidence or prevalence as a single metric, and their

methods provide alternatives for multi-metric approaches using multiple data sources besides

routine data. However, most endemic countries like Zambia have sufficient routinely collected

data but limited population-based survey alternatives. We thus provide an alternative multi-

metric approach using a single data source by combining three different measures to better

understand and guide the classification of malaria burden and help monitor progress towards

malaria control and elimination goals.

While malaria incidence or prevalence rate is a good indicator of how many people need

treatment, it only offers a snapshot of infections at a given time point, while missing other

important underlying factors such as asymptomatic malaria, and differences in care seeking

behaviour. Travel and human movement remain key to malaria elimination, especially in low

transmission settings, and any local reductions in prevalence are unlikely to persist if sur-

rounding areas maintain much higher prevalence. Similarly, targeting interventions towards

outliers with unusually high levels of malaria burden surrounded by low transmission areas,

even after accounting for spatial trends, are likely to be more sustainable in the longer term.

While the logic and justification for targeting high burden areas using incidence alone is

sound and deep-rooted in decades of use, the challenge is that low-incidence areas with

increasing malaria may still be ignored if incidence is the only defining measure. Ignoring

such areas with low but increasing malaria incidence (as a low priority) can compound prob-

lems later if these areas progress to moderate or even high incidence status. Considering the

trend, however, captures not only the stability in spatial and temporal patterns but also gives

an additional perspective in areas where elimination efforts may be ongoing or planned.

In Zambia’s approach, elimination is targeted explicitly in subnational areas where the dis-

ease exhibits low incidence while control measures are maintained and implemented in the rest

of the country [14]. With insufficient levels of funding for malaria control, the “High burden to
high impact” approach could help reinvigorate the fight against malaria [4] through the more

focused and strategic use of evidence-based decision making that can deploy the most effective

malaria control tools in areas where they can have maximum impact. The approach presented

in this paper supports the identification and targeting of high-burden areas. It also facilitates the

optimisation and prioritisation of locally owned country-led health strategies and priorities to

achieve their impact maximisation. We add to the literature advocating that, while accepting

disease incidence as the primary basis for making decisions on the choice of areas for control or

intervention measures, decision making on this basis alone can be optimised and enhanced

without incurring any additional data collection costs. We also highlight the ability of our

method to define and measure high or low burden areas in line with the high-burden high-
impact strategy in order to optimise the delivery of control interventions and tools [4].
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Identifying the precise quantity and location of the highest-burden areas could help pro-

grams focus their limited resources by targeting such areas for further investigations, treat-

ment, prevention efforts, and relevant media campaigns. For example, cost-prohibitive

strategies such as mass drug administration (MDA) become feasible for every individual in a

small-targeted community hotspot but are not feasible for population-wide application. For

instance, Zambia has mostly used targeted indoor residual spray (IRS) to enhance and supple-

ment universal insecticide-treated bed net (ITN) coverage [7]; hence accurate classification is

essential in order to ensure the correct application of interventions in true areas of need. Tar-

geting intervention efforts to those places with the highest disease burden relative to surround-

ing areas is essential because most malaria hot spots are in themselves risks and a source of

malaria infections for surrounding areas. Targeting these would help generate a ripple effect

that can significantly reduce transmission rates and risk across the recipient areas.

In this study, we investigated the spatiotemporal malaria risk, rate, and trends of all 72 dis-

tricts in Zambia between 2000 and 2015 using the following process: i) estimate the relative

risk and rates of malaria for each district for all ages, under-fives and over-fives, ii) model over-

all spatial clustering and any related temporal trends and iii) apply a rigorous, but reasonably

straightforward, matrix to identify and visualise high burden malaria districts to help inform

and support national control and elimination targets. This approach supports and addresses

the call for the targeted control or elimination of malaria based on delineated sub-national

zones defined by high-burden clusters of risk, rate, and trend.

Methodology

Ethics Statement

The National Health Research Authority authorised the study. Study protocols and data

requested was reviewed and approved by Ulster University Research Governance (Ref: 17/

0049) and the Zambian ERES Converge Institutional Review Board (Ref: 2017-Sept-011).

Study area

Zambia is a landlocked country in South Central Africa, neighbouring eight other malaria-

endemic countries [7,19], three of which, represent the frontline region-specific Elimination8

(E8) and E-2020 malaria elimination countries [20]. Zambia’s geographic location creates a

heterogeneous and complex malaria transmission landscape that is suitable for tailored micro-

geographic intervention approaches.

Box 1. Nomenclature for equations used

f Random effects D = dtj Temporal neighbourhood matrix

rs; rT Dependence parameters T 2QðW;rsÞ� 1 Variance

T 2

t
Temporary-varying variance parameter rT Temporal autoregressive parameter

δ Overall temporal trend fs(t|γs) Spatial trend

W Adjacency matrix k Spatial unit

ωkj Spatial closeness of areal units ωκ Binary indicator where ωκs = 1

ψ Latent component λ Region-wide probability

t Timepoint α Priori distribution

https://doi.org/10.1371/journal.pcbi.1008669.t001
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Spatial, population, and malaria data

District populations in the period from 2000 to 2015, were estimated using intercensal and

postcensal exponential population growth model information from the Central Statistics

Office (CSO) reports from 2000 and 2010 [21]. Post census population estimates and age

groups of under-five and over-five-year-olds were obtained from the 2013 CSO report [19].

The derived estimates formed the basis for calculations of malariometric indices such as mor-

tality and morbidity rates by age groups.

The inclusion of two age groups (<5 and�5) in this study was influenced by two main fac-

tors. Firstly, the data was primarily made available in the three age categories of<1, 1–4, and

�5 years. We grouped the first two categories into one 0–4 years to be consistent with the

national and global malaria priorities and reporting. Secondly, due to the high susceptibility

risk, vulnerability, and severity of exposure to malaria infection or disease among under-five

children, it has been a focus and priority in the last decade to track progress in under 5 chil-

dren malaria mortality and incidence. This has since defined the subsequent focus on the

under-fives as reported in all Malaria Indicator Surveys (MIS), Demographic Health Surveys

(DHS), and World Malaria Reports (WMRs) [22,23].

We obtained malaria epidemiological data through the Ministry of Health (MoH). Clinical

and microscopy-confirmed malaria deaths and cases disaggregated by age groups were reported

quarterly before 2008. With the countrywide introduction of rapid diagnostic tests (RDTs)

between 2008 and 2011 [9,10,24–27], clinical and confirmed cases were reported separately and

monthly [28]. In order to retain the usability of the full dataset from 2000 to 2015, we analysed

our data annually and maintained the 72 original districts, using a combination of both con-

firmed cases and unconfirmed malaria cases. We computed malaria standardised incidence

ratios (SIR) per 1000, and standardised mortality ratios (SMR) per 10,000 people using a simple

formula: SIR = (Observed Cases/Expected Cases) & SMR = (Observed deaths/Expected deaths).

The data’s completeness reporting between 2000 and 2008 was not available at district or

health facility level. Instead, national averages were used from WHO’s WMR reports which

were consistently high over that period, with a median = 87%, mode = 87%, mean = 88.3%,

and SD = 2.97%. Completeness data, however, was available at health facility-level and was uti-

lised to more accurately adjust the district-level data between 2009 and 2015. Information on

the missingness of data was only available at the district level. Thus, although missingness was

dealt with at the district level, it is highly likely that any variations at the facility level will not

be detected. However, missingness at district level stood at 3.4% in deaths among those aged 5

years and over, 2.7% in under 5 deaths, and only 0.1% for reported morbidity.

Among the suspected causes of missingness include a lack of adequate training for the per-

son reporting, understaffing, disease burden, levels of education or simply human error in the

collection and aggregation of data. An important consideration in this study was the possibility

of spatial bias in completeness/missingness of data. We used the Getis-Ord Gi� Spatial Statistic

to test for spatial bias in data incompleteness (as a proxy for missingness) and found that

incompleteness was random with a Z-score = 0.049 and p-value = 0.96. On this basis, we

assumed that any missingness was completely at random (MCAR).

We used Random Forest to impute the 5% of missing values in the data. From missing val-

ues among malaria deaths alone, the normalised mean squared error (NMSE) often used to

represent error derived from imputing missing values was 0.22 (22%), while it was 0.072 (7%)

for missing case values and 0.094 (9%) overall for the whole dataset.

We, however, did not adjust them for confirmation rates by use of Test Positivity Rate (TPR)

because TPR was neither available nor collected between 2000 and 2008. In most instances, infor-

mation on testing was not available at facility or district-level between 2009 and 2015 either.
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Spatio-temporal modelling

We used a Conditional Autoregressive (CAR) prior method. The CAR method incorporates

spatiotemporal generalised linear mixed models for unique areas with inference in a Bayesian

environment using Markov Chain Monte Carlo (MCMC) simulations [29–32]. Our model

choice is based on its robustness and capability to estimate the effects of risk factors on response

variables such as incidence and mortality [33]. We used the models for identifying clusters of

neighbouring districts [34] that display a repeated high risk [35] of malaria compared with

other adjacent areas. These models account for spatiotemporal variations within the same envi-

ronment, mainly when using the CARBayesST R package [33,36,37]. Malaria data counts are

observed within districts with an assumption that the data has an independent distribution

using a Poison model. The model hierarchy defined and specified within its prior distributions

would accommodate for any spatial correlations within the data. (See S1 Appendix).
The two main models performed in this study included generalised linear mixed models of

various forms. The first generates spatiotemporal patterns in the mean response with a general

temporal effect but separate independent spatial effects for each year [38]. This model is

defined by Equation (1):

c ¼ �kt þ dt;

where

�ktj�� kt;W � N
rs;
PK

j¼1
okj�jt

r
PK

j¼1
okj þ 1 � r

;
T 2

t

r
PK

j¼1
okj þ 1 � rs

 !

;

dtjδ� t;D � N
rt;
PN

j¼1
dtjdj

rt
PN

j¼1
dtj þ 1 � rt

;
T 2

t

rt
PN

j¼1
dtj þ 1 � rt

 !

; ð1Þ

T 2

1
; . . . ; T 2

N ; T
2

T;� Inverse � Gammaða; bÞ;

rs; rT � Uniformð0; 1Þ:

We used this model to show the common overall spatial effects for all periods, a common

temporal trend, and independent space-time interactions.

The second model is used for districts based on their temporal trends in the risk of malaria

infection or death, with trend functions optimised by fixed parametric forms or constrained

shapes [35]. We used the model’s effects to follow a multivariate autoregressive process with

order 1, using the Equation [2]:

c ¼ �kt þ
PS

s¼1
oks fsðtjgsÞ; ð2Þ

�kj�� k � N
r
PK

j¼1
okj�j

r
PK

j¼1
okj þ 1 � r

;
T 2

r
PK

j¼1
okj þ 1 � r

 !

;

T 2
� Inverse � Gammaða; bÞ;
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rs; rT � Uniformð0; 1Þ:

ok ¼ ðok1; . . . ;okSÞ � Multinomialð1; λÞ;

λ ¼ ðl1; . . . ; lSÞ � Dirichletðα ¼ ða1; . . . ; aSÞÞ;

Where �� k ¼ ð�1; . . . ; �k� 1; �kþ1; . . . ; �KÞ:

Our model was implemented with 4 MCMC chains and 20000 samples obtained by gener-

ating 220 000 samples and removing the first 20 000 as burn-in. We applied thinning on the

remaining 200 000 by 10 to reduce the autocorrelation. The outputs from this model include a

spatial visualisation (map) with credible intervals, a trend classification probability, a slope of

trend change and summaries of the trend outcomes and parameters. However, although we

use all these for our interpretation, we do not discuss any of these in the text except the trend

visualisation.

Finally, we classified and visualised districts as high-burden or low-burden based on a

matrix score using the combined values of relative RIsk, RAtes, and risk Trend (RIRAT)

implemented in ArcGIS 10.5 (See also S1 Appendix).

Results

The spatiotemporal trend of malaria mortality and incidence rates from

2000 to 2015

Preliminary analysis of results show temporal progress in the reduction of malaria mortality;

however, the trend of malaria incidence remains high. Fig 1A shows a significant decline of

about 80% in overall malaria mortality from over 11 500 deaths in 2000 down to near 2300 in

2015. Mortality rates among under-five children showed the most significant decline from 28

down to only 3.3 per 10 000 population at a 95% confidence interval, representing a circa 90%

decline. Mortality among the over five population also declined from about 5.9 to 0.58 per 10

000 population.

Fig 1B shows a reduction in incidence rates among under-five children from 1457 to 680

(95% CI) per 1000 population with an average reduction of 44 cases annually. Meanwhile,

there was a 14% increase in malaria incidence among the over-fives from 224 to 255 per 1000

population (95% CI).

Fig 2 shows the spatiotemporal trends of malaria mortality (2A and 2B) and incidence (2C

and 2D) for all ages. Fig 2B and 2D shows temporal trends highlighted by the posterior

national median (red) and 95% credible intervals (black) for (i) countrywide mean mortality

rates and (ii) the level of spatial standard deviation in mortality and incidence trends. The blue

dots are mortality and incidence rates for each district by year. The figures confirm that mor-

tality has declined steadily over the study period with a significant decrease in spatial variance

across the 72 districts resulting in a homogenously low risk across the whole country by 2015.

In contrast, incidence rates have been unstable with a noticeable increase since 2008, along

with an increase in spatial variance across the 72 districts.

Although the change in testing and treatment guidelines around 2008/9, with the introduc-

tion of RDTs, could have affected some of the observed declines or no change in trends due to

expected decreases in diagnosis of malaria, the observed increases in malaria trends should be

deemed independent of this effect because the introduction of RDTs would have eliminated

PLOS COMPUTATIONAL BIOLOGY Modelling of malaria risk, rates, and trends: Stratifying high and low burden areas

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008669 March 1, 2021 7 / 23

https://doi.org/10.1371/journal.pcbi.1008669


most of the excess non-malaria fever cases. This is because malaria case counts pre-2008 were

primarily overestimations (comprised of true malaria as well as non-malaria fevers) [25].

Besides, the results presented here still conform to those reported by Zambia’s microscopy

slide-based malaria indicator surveys (MIS) from 2006, 2008, 2010, 2012, and 2015, which

show a decline in malaria between 2006 and 2008, but a speedy rise from 2008 to 2015. MISs

are independent household surveys undertaken to collect national and subnational data from

representative samples of respondents. They assess, among other things, the coverage of key

malaria interventions, measure malaria-related burden using prevalence testing of parasites,

anaemia, case management, and knowledge and community empowerment among children

under five years old.

Results from MISs also confirm the inherent consistency in the trend captured in the rou-

tinely collected data. This is further validated by the improving quality of HMIS data observed

from the declining portion of unconfirmed malaria reported in the HMIS from 55% in 2011 to

only 20% in 2015 (see S1 Appendix and S3 Fig). However, these observed spatial variances may

be a result of factors such as staggered interventions, especially IRS, which is not applied con-

sistently in specific districts but rather targeted to supplement LLINs in very high transmission

areas. This means that the chances of having areas sprayed in one year and not another

depending on the preceding year’s transmission levels were high. RDT stock-outs [26,39–45]

Fig 1. A) Comparative temporal trends in malaria mortality among under 5 and over 5 populations. B) Comparative

temporal trends in malaria incidence among under 5 and over 5 populations.

https://doi.org/10.1371/journal.pcbi.1008669.g001
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(recorded at� 20% in 2015) or any differences in the adoption of RDT usage by clinicians

could just as well cause such spatial variations. We also further observed that the decline of

2008 predates RDTs by 2 years and comes on the backdrop of the removal of health facility

user fees that instead should have increased the cases captured and promote a rise rather than

a decline.

It would still be fair to assume that RDT adoption or stock could be an issue due to com-

modity distribution inefficiencies following this RDT implementation, especially for districts

further away from the initial national/central hub. Massive stock-outs especially in further off

rural districts, were common before the optimisation of the supply chain as summarised in

Vledder [45]. Flaws in the medical supply chain management of commodities and equipment,

however, have also been acknowledged in many other studies and reports [26,39–44]. None-

theless, these persistent stock-outs have significantly reduced in number although they may

still have random spatio-temporal effects across the period. Despite the challenges highlighted

above, it is worth noting that the documented variability in the availability and application of

RDTs and control measures across districts was not consistent through time or space, and

therefore cannot explain the long term trends discussed here. The spatial patterns for both

mortality and incidence rates can be seen in Fig 3A and 3B.

Fig 2. Box plots vs spatio-temporal trends and deviations in transmission. (a & c) are box plots showing temporal mean and inter-quartile ranges of all age malaria

mortality and incidence from 2000–2015. (b&d) show the temporal and spatial standard deviations in mortality and incidence rates (Posterior median (red); 95%

credible interval (black); each blue dot representing the mortality/incidence rate for each district and year). Temporal mortality decline is associated with increasing

spatial homogeneity (a & b), while the incidence trend is more temporally and spatially heterogeneous over the same period. (c & d).

https://doi.org/10.1371/journal.pcbi.1008669.g002
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Spatial patterns of malaria risk from 2000 to 2015

Fig 4 shows the district level relative standardised mortality risk (SMR) and standardised inci-

dence risk (SIR) for all age, under 5 and over 5 categories. The interpretation of the risk scores

is that an SMR/SIR of 1.5 corresponds to a 50% higher risk compared with the countrywide

average while an SMR/SIR of 0.9 denotes a 10% lower risk. Based on the calculated SMR, few

districts indicate a higher risk of mortality among under-five populations. Notably, some dis-

tricts in the Eastern and Northern provinces have more than a 250% higher risk of malaria

mortality for the under-five age group above the national average, and generally, the Eastern

province had the highest risk across the country. The figures also support the temporal trends

observed earlier in that the under-fives have a higher risk compared to the over-five age-

group. The risk of infections also shows the similar but less extreme variance in spatial patterns

with concentrations of low-risk areas in the south and parts of the Central and Northern

provinces.

Spatial Clustering of areas exhibiting similar malaria trends

Fig 5 shows the distribution of district clusters exhibiting similar temporal malaria risk trends.

Districts were categorised as having either an increasing trend (red), a constant/no change

trend (black) or a decreasing trend (blue) with the darker/deeper the shading, the higher the

posterior probability for that trend and vice versa. There was very little to no posterior uncer-

tainty in the under-five mortality and incidence risk classifications assigned to each of the

three trends (increasing, constant/no-change, and decreasing). In contrast, minimal uncertain-

ties (probability = 0.5–0.75) are visualised in the increasing over-five mortality clusters and no-
change in all-age clusters.

With regard to mortality trends, in those districts with either a constant or decreasing

trend, the pattern of change in trend over time has levelled-off and currently remains steady.

However, in those districts where the mortality trend has been increasing (i.e. 7% of districts

for under-fives and 32% districts for over fives) the pattern of increase during the 16 year

study period has been rising. This would indicate that there is a worsening situation in malaria

mortality in those areas, creating a real potential to negatively influence national mortality fig-

ures if this situation continues (See S1 Fig).

Fig 3. Spatial patterns of malaria mortality and incidence rates, 2000 to 2015. (A) and (B) show the mean spatial pattern of both mortality

and incidence rates between the years 2000 and 2015.

https://doi.org/10.1371/journal.pcbi.1008669.g003
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Progress in reducing under-five mortality over the 16-year study period is consistent and

evident across risk, rates, and trends while incidence across the three age categories is less con-

sistent and more varied. Only 3% (2) of districts showed an increasing trend in under-five

mortality while 71% and 26% experienced a decreasing trend or no-change, respectively

Fig 4. Relative risk of malaria mortality (SMR) and incidence (SIR) among under-fives, five and over and all ages, 2000–2015. (A) =

Under-fives, (B) = five and over (C) = all ages.

https://doi.org/10.1371/journal.pcbi.1008669.g004
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(Table 1). For incidence risk in the under-fives, however, there was an increase in 10% of dis-

tricts (mainly around the northern half and easternmost border region), a decrease in 20% of

districts around southernmost areas. In comparison, 45% remain unchanged (clustered mainly

around the middle half of the country). The mortality trend among the over-fives is more var-

ied (Table 1) with 3%, 69% & 28% of districts either increasing, decreasing or no-change,

respectively with a model classification certainty of 75–100% (Fig 5A [ii]).

A large cluster of districts in the southern region has a decreasing trend relative to the rest

of the Country (Fig 5B (i-iii). The trend for over-five incidence in Table 1 shows that over half

Fig 5. Temporal trend of malaria under-five children and over five age group mortality and incidence trends, 2000–2015. The red trend shows

increasing, the blue trend shows declining, and the black trend shows constant/no change. Classifications are based on the maximum posterior

probabilities: the darker/deeper the shading, the higher the posterior probability for that trend and vice versa. Fig 5(iii) is also published elsewhere [61].

https://doi.org/10.1371/journal.pcbi.1008669.g005
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of all districts (62%) are increasing, while only 14% are decreasing and 24% exhibit no-change

(all results are statistically significant at a 95% credible interval).

A classification matrix for determining overall malaria burden

While rate and risk trend clusters show a clear picture of overall district-level classification, i.e.

decline, no-change or increase as illustrated in Fig 4 and Table 1, reviewing these trends sepa-

rately may conceal or mask the overall underlying picture which in turn might undermine the

actual implications of these trends for malaria control. For instance, a district with high risk,

high rate, and showing no-change in trend could be more alarming compared to a district that

has low risk, low rate and no change or an increasing trend. Therefore, we created a matrix of

the combined indices for malaria RIsk, RAtes, and Trends (RIRAT) to accurately classify high-

burden and low-burden districts (Fig 6) (See also S1 Appendix).

Fig 7 shows comparative district level maps for mortality and incidence burden for the two age

categories on the spectrum of low (green), medium (yellow), and high (red) -burden (See S1 Table
for details). Fig 7A and 7C shows the districts in 2015 (mostly in Eastern and Luapula provinces)

with the highest under 5 mortality-burden (8 districts) or highest incidence-burden (8 districts)

representing an estimated half a million children in that age cohort. Twelve unique districts were

classified with either high-mortality or high-incidence burden while four had both. For the over-

fives, 15 districts were identified as high-incidence burden areas representing approximately 2

million people in that age group. Only two districts had both high-mortality and high incidence

burden representing about a quarter-million vulnerable people, while an additional 1.5 million

people aged over five lived in the 13 districts with a high-incidence burden only.

Derived from the matrix score, more than 3 million people live in districts with generally

high incidence risk, high incidence rates and an increasing trend. This population is exposed

to at least twice the risk of malaria compared to other areas in the country.

To assess our method further, we observed differences among incidence classification of

those aged�5 years through a comparison of the derived results using raw rates alone against

our method. There was a considerable difference in the proportion of districts classified as

high or low burden compared to those identified by our method. For example, only 55% of dis-

tricts identified as high incidence using raw rates alone were also deemed high-burden using

the overall weighted combined method. The differences observed here were because high bur-

den districts were showing an overall increasing trend over the period while the others did not.

Similarly, 45% of those districts identified as high in the raw rates dropped into the moderate

burden category, and 30% of districts identified as low ended up as moderate-burden districts.

Table 1. Summary description of malaria mortality and incidence trends (<5 years children,�5 years, and all ages combined. NB % represents the proportion of the
72 districts assigned to each trend, i.e. Decrease, Increase, or No-change.

Mortality Incidence

Age group Districts % Trend Districts % Trend

under 5 19 26.4% No change 45 62.5% No change

51 70.8% Decrease 20 27.8% Decrease

2 2.8% Increase 7 9.7% Increase

over 5 20 27.8% No change 17 23.6% No change

50 69.4% Decrease 10 13.9% Decrease

2 2.8% Increase 45 62.5% Increase

overall 31 43.1% No change 34 47.2% No change

39 54.2% Decrease 13 18.1% Decrease

2 2.8% Increase 25 34.7% Increase

https://doi.org/10.1371/journal.pcbi.1008669.t002
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The differences observed here highlight the limitations of using raw incidence rates as a basis

for identifying and targeting intervention strategies at the subnational level.

Discussion

Our study findings have important implications for malaria policy in Zambia, and the various

intervention approaches used within the country. As shown, in both age groups, it is clear that

there has been remarkable progress in mortality reduction but less so in incidence reduction.

Both the under-five and the over five age groups experienced a similar rate of reduction in

mortality (85% and 90% respectively). However, the under-fives continue to experience

Fig 6. Data preparation and processing to determine areas of highest/lowest burden. Stages of data analysis from initial, intermediate, to final outputs. The classes

relate to 1, 2, 3 scores with 1 = low, 2 = medium and 3 = high applied to risk, rates, and trends.

https://doi.org/10.1371/journal.pcbi.1008669.g006
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approximately five times the incidence rates and at least 2.5 times the mortality burden com-

pared to the over-fives. Without overemphasising the observed declining malaria mortality, the

overall results would indicate that more can still be done to further reduce the under-five mor-

tality burden by targeting the highest-burden areas. The benefit of the high precision district-

level analysis presented in this study provides an opportunity to move away from the one-size-

fits-all approach, and optimise resource deployment in a more focused, efficient and geographi-

cally targeted manner. The findings also demonstrate how a small number of high burden areas

can skew the national averages and overshadow the actual progress achieved so far in the coun-

try as a whole. This study has provided a means of determining districts with high malaria bur-

den where, if prioritised, targeted malaria control efforts could help maximise impact (S2 Fig).
With proposed sub-national elimination approaches soon to be implemented in Zambia,

our method, based on an analysis of 16 years of data has identified those areas that are most

suitable for malaria elimination (S2 Fig). Our method can be applied to help other countries

identify high-burden areas and achieve maximum impact through the appropriate use of tools

and interventions efficiently and effectively. This is important when considering the use of

expensive interventions such as indoor residual spraying, which requires rounds of minimum

spray coverage thresholds of up to 85% [46].

Fig 7. High/low burden malaria mortality (A) & (B) and incidence (C) & (D) districts using matrix scores of risk, rate, and trends.

https://doi.org/10.1371/journal.pcbi.1008669.g007
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An additional point of particular interest in Zambia is that most high-burden areas com-

prise districts along the national borders with Angola, Democratic Republic of Congo, Malawi,

Tanzania, and Mozambique. All these countries are unequivocal, high-burden malaria-

endemic countries that have often been ranked among the top ten high-burden countries in

the world. This observation highlights the significance of the need for countries to engage in

bilateral and collaborative regional malaria initiatives for successful control along borders.

While Zambia is part of the Elimination8 countries cross-border malaria collaborations, this

only applies in southern bordering countries. No such formal undertakings are present with

Zambia’s northern bordering countries [20]. The patterns and trends presented here reflect

Zambia’s geographic location and adjacency with contrasting high-burden and low-burden

neighbouring countries and highlight the potential influence and impact of cross-border

malaria risk in border districts [47,48]. This method, if carefully applied, could additionally

benefit other low resource countries and encourage broader regional collaborations, particu-

larly for targeted cross-border initiatives.

We have presented an empirical but rigorous approach for the identification of high-bur-

den/low-burden malaria incidence and mortality in affected countries. In the case of Zambia,

we would propose a review of the current under-five malaria intervention strategies, especially

in high-mortality burden districts so that any potential problems or issues can be identified

and addressed. We would also recommend more focused ongoing operational research to

assess progress and identify specific challenges at the community level [49].

While this study focused more on the identification of high burden malaria control areas

rather than those most suitable for elimination, the approach still provides sufficient evidence

and information that can accurately inform both control and elimination approaches. Our

approach provides the information base needed to facilitate further research into the specific

factors that might explain within-country differences between regions and age cohorts, includ-

ing the value and impact of intervention programmes over time. For example, Fig 8 shows the

Fig 8. Incidence and mortality trend against major malaria policy changes. Significant malaria policy changes and guidelines, interventions and

diagnostics in Zambia 2000–2015. Note that we did not include any changes that were progressive, e.g. IRS. Major policy changes undertaken in Zambia,

2000–2015 (Source of data: Steketee et al. 2008, Chanda et al., 2013, Redditt et al. 2012, Kamuliwo et al. 2015) [2003: Chloroquine (CQ) replaced by

artemisinin-lumefantrine (Coartem) as first-line malaria treatment and new diagnosis and treatment guidelines for malaria to reflect drug policy change

launched; 2006: Use of Insecticide Treated Nets (ITNs) adopted; 2006–8: Training of additional microscopists, scale-up of RDTs distribution; free

distribution of ITNs through antenatal care (ANC) and intermittent preventive treatment (IPT) using sulfadoxine-pyrimethamine (SP); 2011:

Consideration for future elimination begins with the alignment of NMCP strategic plan 2011–2015 with the national vision “a malaria-free Zambia by
2030”].

https://doi.org/10.1371/journal.pcbi.1008669.g008
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relationship between mortality and incidence trends with significant malaria policy changes

and guidelines on interventions and diagnostics in Zambia between 2000 and 2015.

Of interest is the post-2008 trend of increasing incidence rates despite the various interven-

tion strategies. Potential explanations for the observed trends and incidence rate patterns or

changing risk patterns include among others low intervention coverage (particularly IRS),

insecticide resistance in mosquito nets or low utilisation driven by misuse such as fishing or

agriculture fencing or even changing climatic and ecological conditions [31,50]. Our spatio-

temporal modelling and the identification of those specific areas where incidence burden and

risk is highest provide essential information to support future geographically targeted initia-

tives. Such initiatives could replace expensive countrywide programmes, thus facilitating more

efficient and effective use of scarce resources.

It is recognised that some of the changes in malaria policy, diagnostics, definition, and col-

lection methods during the 16 years may have introduced potential biases in this study. The

incorporation of malaria cases by clinical symptoms added some level of non-malarial fever

burden, and which could lead to an over-estimation, especially between 2000 and 2008. This

bias, however, would be declining in the post-2008 period (see S1 Appendix).
For example, the observed changes in prevalence rates over time may in some parts have

been influenced by changes in diagnostic tools or methods used in case reporting rather than

representing real changes in malaria incidence. This could be more relevant in rural health

facility settings [28] where limited availability of trained human resources still exist. We also

note that this study gives a long-term time-series of mean trends, risks and rates up to 2015,

and therefore presents conclusions accurate for this period of study. Usage for present and

future decision-making would have to be based on an analysis of more recent and relatively

short time datasets of 3 to 5 years.

Progress in health care provision that could have also impacted some of the identified

changes in malaria rates may include the creation of new health facilities and the introduction

of Community Health Workers (CHWs), particularly since 2010. The assumption is that both

these factors could increase access to health care services which in turn would artifactually

result in higher treatment-seeking rates and higher case diagnoses. The increase in CHWs is

supported by evidence from the MIS 2018 [51] which shows that CHW activity increased dur-

ing the 2010 to 2015 period of our study. During that period, malaria medication received

from CHWs increased across previous MIS surveys from 2% in 2010, 8% in 2012 to 25% in

2015 but down slightly to 22% in 2018 (see Fig 9 and S4 Fig). This increase could suggest that

CHWs are a possible cause or contributor to the increase in incidence in some areas. However,

this argument would be further supported if the increase in CHW treatments was matched

with a similar increase in treatment-seeking behaviour. In fact, national data trends show a

considerable reduction in treatment-seeking behaviour during the same period in both rural

and urban areas (see Fig 9 and S4 Fig). So while nationally, there has been an increase in the

proportion of patients being treated by CHWs through increased numbers and availability, the

actual total proportions of those people seeking treatment has decreased.

This also relates to the assumption that increasing numbers of health facilities may explain

some of the increasing incidence trends. Zambia’s primary reason for the construction of new

health facilities is often based on population growth with catchment distance and accessibility

issues a secondary factor [52–55]. During the period of this study from 2009 to 2015, the num-

ber of health facilities reporting in the HMIS increased from 1552 in 2009 to 1869 in 2015. The

increase was made up of a combination of government, mission (faith-based), and private pro-

viders [52]. During the same period, Zambia’s population increased by 18.5%, while the total

number of health facilities increased by 18.7%, and the ratio of health facilities to population

remained the same throughout (1.2 health facilities per 10 000 population).
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Based on a comparison between population growth and the increase in health facilities, it

seems obvious and acceptable to suggest that the construction of new health facilities was pri-

marily driven by population growth. It can also be further argued that the population growth

ratio was consistent with the provision of health care facilities per person. Similarly, the inci-

dence rates of malaria would also have stayed the same unless other factors were at play. It

would be expected that in either scenario malaria incidence rates would be normalised by the

relevant underlying catchment populations and therefore would not likely increase incidence

significantly unless the introduction of new facilities resulted in increased treatment-seeking

rates. We have seen from Fig 9 that the national treatment-seeking rates in the country actually

fell as reported across all the MISs in nearly all provinces and across the rural-urban divide

[51,56–60]. In addition, an analysis of national Health Facility data by District from 2009–

2015 found a small, but significant, negative correlation (-0.16) between the number of health

facilities and incidence rates with over 50% of districts that had an increase in health facility

provision actually showing a declining malaria trend and only 33% showing an increase.

In this study, other potential limitations that could have influenced some of the observed

results may include: i) the potential presence of unquantifiable effects due to the lack of reliable

subnational treatment-seeking rates capable of indicating existing subnational variations if

present, ii) uncaptured subclinical malaria which is long known to have a severe impact on

transmission, especially in the older age groups due to partial immunity; and iii) the unknown

effects of any differences on how quickly RDT use was adopted across the country. These, if

present, may affect our conclusions of what the malaria burden in the population actually is

(see S1 Appendix for details on asymptomatic malaria).

Having said that, the increasing availability (reduced lag) and improvement (in accuracy)

of health management information system (HMIS) data presented here provide a much

Fig 9. Treatment-Seeking behaviours and Community Health Worker medications in Zambia 2006–2018. �T.S stands for Treatment-seeking. Data
source: MIS reports 2006, 2008, 2010, 2015, & 2018.

https://doi.org/10.1371/journal.pcbi.1008669.g009
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greater opportunity for such data to be used with more confidence in the future. This is partic-

ularly true given the more expensive alternatives such as surveys that may not always provide

comprehensive longitudinal information and analysis at the times when it is most needed.

Conclusion

We have presented a method here that augments conventional measures of identifying malaria

risk and provides an effective approach for the identification of areas of high and low malaria

burden at the sub-national level within countries. By applying a rigorous spatio-temporal

approach that uses longitudinal rates, risks and trend clusters, we can help policymakers deter-

mine priority areas to deploy scarce resources for high impact control interventions in high-

burden areas and elimination strategies in low burden areas.

This easy to implement and replicate methodology will help policy makers and malaria con-

trol/elimination program staff in malaria-endemic countries who may not be fully cognisant

of or technically skilled in advanced statistical methods (See S1 Code). The novelty of our

method is not in the statistical algorithms, which are well-established techniques in their own

right, but in the approach of combining the typically independent measures of rates, risk, and

trend over time and space that better represent malaria prevalence within a country and are

easy to replicate and use at an operational and practical planning level.

We believe that applying this approach could be extremely beneficial to countries embark-

ing on their malaria elimination strategies as part of the global malaria eradication agenda.

This could be particularly effective through informed sub-national programs at even finer lev-

els of geographic aggregation, such as health facility catchments, which are well suited for tar-

geted control and elimination strategies.
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34. Charras-Garrido M, Abrial D, Goër J De, Dachian S, Peyrard N. Classification method for disease risk

mapping based on discrete hidden Markov random fields. Biostatistics [Internet]. 2012; 13:241–55.

Available from: https://doi.org/10.1093/biostatistics/kxr043 PMID: 22133757

35. Napier G, Lee D, Robertson C, Lawson A. A Bayesian space-time model for clustering areal units

based on their disease trends. Biostatistics [Internet]. 2018; 00:1–17. Available from: https://academic.

oup.com/biostatistics/advance-article-abstract/doi/10.1093/biostatistics/kxy024/5039880.

36. R Core Team. R: A Language and Environment for Statistical Computing: R Foundation for Statistical

Computing. 2013; Available from: http://www.r-project.org/.

37. R Core Team. R Core Team (2018). R: A language and environment for statistical computing. R Foun-

dation for Statistical Computing, Vienna, Austria. http://www. R-project. org;

38. Napier G, Lee D, Robertson C, Lawson A, Pollock KG. A model to estimate the impact of changes in

MMR vaccine uptake on inequalities in measles susceptibility in Scotland. Stat Methods Med Res [Inter-

net]. SAGE Publications Ltd STM; 2016; 25:1185–200. Available from: https://doi.org/10.1177/

0962280216660420 PMID: 27566772

39. World Bank. Zambia Study Shows Stronger Supply Chains for Key Drugs Can Reduce Child Mortality.

Washington, DC; 2010.

40. Zambia Ministry of Health Logistics Pilot Program Steering Committee. Essential Medicines Logistics

Pilot Program: Steering Committee Evaluation Report. Lusaka; 2011.

41. Yadav P. Improving public health in developing countries through operations research. Wiley Encycl

Oper Res Manag Sci. Wiley Online Library; 2010;

42. Leung N-HZ, Chen A, Yadav P, Gallien J. The impact of inventory management on stock-outs of essen-

tial drugs in Sub-Saharan Africa: secondary analysis of a field experiment in Zambia. PLoS One. Public

Library of Science; 2016; 11:e0156026. https://doi.org/10.1371/journal.pone.0156026 PMID: 27227412

43. USAID | Deliver Project TO 4 and 7. USAID | Deliver Project Final Country Report: Zambia. Arlington;

2016.

44. President’s Malaria Initiative. President’s Malaria Initiative Zambia Malaria Operational Plan FY 2019.

2019; Available from: https://www.pmi.gov/docs/default-source/default-document-library/malaria-

operational-plans/fy19/fy-2019-kenya-malaria-operational-plan.pdf?sfvrsn = 3.
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