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Highlights:
What are the main findings?
• Two new complexes containing mixed ligands were prepared and characterized;
• NMR data indicated that two thiolate ligands coordinate a metal ion via the sulphur atom after

deprotonation.

What is the implication of the main finding?

• The platinum complex was active against three strains of Campylobacter jejuni;
• A synergistic effect was observed when the Pt (II) complex was combined with ciprofloxacin.

Abstract: This work describes the synthesis and characterization of two metal complexes of the type
[M(L1)2(phen)], where M = Pt2+ (complex I) or Pd2+ (complex II), L1 = 5-amino-1,3,4-thiadiazole-
2(3H)-thiolate and phen = 1,10-phenanthroline. The in vitro antibacterial activity of these complexes
was investigated in isolation and synergistically with ciprofloxacin (CIP) and erythromycin (ERY)
in three strains of Campylobacter jejuni (MIC = 32 mg/L for CIP and ERY), selected from a bank of
235 strains representative of three poultry exporting states of the country (A, B and C), previously
analyzed for epidemiology and resistance to CIP and ERY. A total of 53/235 (22.55%) strains showed
co-resistance to CIP and ERY. Isolated resistance to CIP was higher than to ERY. Epidemiological
analysis showed that resistance to CIP was more evident in state B (p < 0.0001), as well as a higher
susceptibility to ERY in state C (p = 0.0028). Co-resistance was expressive in state A and in the spring
and fall seasons. The evaluation of I alone and in synergy with CIP and ERY found values up to 0.25
mg/L not significant for ERY. Complex II did not show an antimicrobial effect on the three strains of
tested C. jejuni. The effect provided by complex I represents a promising alternative for control of
resistant strains of C. jejuni.

Keywords: bacterial resistance; Campylobacter jejuni; metal-based drugs; platinum(II) complexes;
synergism

1. Introduction

Infections caused by antimicrobial-resistant bacteria represent one of the greatest
threats to global health, accounting for approximately 1.2 million deaths per year from a
worldwide perspective [1,2]. Campylobacter jejuni is the most prevalent zoonotic bacterial
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pathogen associated with foodborne gastroenteritis worldwide and represents a major
recent challenge due to the increasing development of outbreaks associated with strains re-
sistant to the drugs of choice for treatment, which include fluoroquinolones and macrolides.
Although Campylobacter jejuni and Campylobacter coli are the species most often implicated
in carcasses, other thermotolerant species, such as Campylobacter lari and Campylobacter
upsaliensis cause campylobacteriosis and are foodborne [3–5].

In the search for new antimicrobial agents, the most promising strategy aims to develop
novel agents with new mechanisms of action and new cellular targets [6]. In this sense,
metal complexes have access to unique modes of action and such mechanisms are difficult
if not impossible to replicate with purely organic compounds [7]. In addition, the use of
metal complexes demonstrates therapeutic value and well-documented pharmacological
applications [8] for genera such as Salmonella, among others [9–14].

Indeed, the configuration of metal complexes allows the adoption of distinct geome-
tries and oxidation states, which reflect in different modes of action on the pathogen [15].
This degree of flexibility makes them attractive in antimicrobial therapy [16] and their
association with phenanthroline derivatives have been shown to possess promising activity
in disrupting the metabolism of metals crucial for microorganisms, such as interfering with
the acquisition and bioavailability of essential ions. Moreover, the low toxicity profile of
these compounds consolidates their potential for clinical approval, including studies with
antineoplastic activity [17]. For example, several metal complexes have been screened by
the Community for Open Antimicrobial Drug Discovery (CO-ADD) for antimicrobial activ-
ity. When compared to organic drugs, the metal complexes showed a significantly higher
hit-rate not exhibiting any cytotoxicity against mammalian cell lines or hemolytic properties,
especially the metal complexes of ruthenium, silver, palladium, iridium and platinum [7],
which justifies the design and development of metal complexes as antimicrobial drugs.

In parallel, many studies have focused on the benefits of drug combinations to act at
different target sites in bacterial cells to enhance the efficacy of traditional antimicrobials.
Synergistic therapy has advantages that include reduction in treatment time, broadening the
spectrum of activity, an increase in drug stability and bioavailability, delay in the emergence
of bacterial resistance, reduction in side effects by efficacy at lower concentrations, and
restoration of the antibiotic activity of the clinical agent by desensitizing strains to the drugs
for which they have become resistant [18].

In summary, examination of synergy can promote suppression of the evolution
of antimicrobial resistance and provide the solution in combating difficult-to-control
pathogens [19], significantly increasing the effectiveness of traditional antimicrobials asso-
ciated with metal complexes [20].

By the year 2020, campylobacteriosis accounted for 60% of gastrointestinal zoonoses
notifications with more than 120,000 confirmed cases in the European Union [21]. In
the United States, it is estimated that approximately 1.5 million people become ill from
Campylobacter spp. infections every year [22]. In Brazil, there are no confirmed outbreaks of
campylobacteriosis due to the absence of notifications and the disarticulation of actions in
the health arena, besides the difficulty of isolation and characterization of the genus [23,24].

The importance of Brazil in this context occurs due to its position as the largest exporter
of chicken meat, the main vehicle of transmission of the pathogen, with 4,231 tons in 2020
and with a growing productivity, reaching the highest production since 2010. Despite this,
there is no official data regarding the contamination of chicken carcasses [24–26].

Motivated by the problem regarding the antimicrobial resistance in C. jejuni, the coun-
try’s prominent position in the export of chicken meat and the promising strategy of using
metal complexes, this study aimed to describe the synthesis and physicochemical charac-
terization of two new metal complexes, evaluate the epidemiology of C. jejuni resistance
representative of the national territory, and determine the isolated and synergistic effect of
these new actives in co-resistant strains combined with the analysis of desensitization. The
literature has not yet reported studies of antimicrobial activity for 5-amino-1,3,4-thiadiazol-
2(3H)-thione or its metal complexes. Then, to the best of our knowledge, this is the first
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paper to describe the antibacterial properties of platinum(II) and palladium(II) complexes
containing 5-amino-1,3,4-thiadiazol-2(3H)-thione.

2. Results and Discussion
2.1. Chemistry

In this work, two new metal complexes were prepared (see Figure 1) under mild
conditions with good yields (>80%). In both cases, the metal ion is coordinated to two
5-amino-1,3,4-thiadiazole-2(3H)-thiolate ligands (L1) and to a 1,10-phenanthroline molecule.
The metal complexes were characterized by elemental analysis, molar conductivity measure-
ments, FT-IR, and nuclear magnetic resonance (1H, 13C, and 195Pt NMR). Both complexes
are stable to air and light and were isolated as orange solids soluble in dimethylsulfoxide
(DMSO). The results of the elemental analysis (% CHN) indicate that the compounds have
a high degree of purity and the molar conductivity values measured in 1.0 × 10−3 M
dimethylsulfoxide confirmed the non-electrolytic nature of these complexes.
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Figure 1. Synthetic route and structure proposed for complex I and II.

As to the spectral data, the infrared spectrum of the 5-amino-1,3,4-thiadiazole-2(3H)-
thiol ligand showed two bands at 3327 cm−1 and 3246 cm−1 attributable to the symmetric
stretching νs(NH2) and the asymmetric stretching νas(NH2) mode of amine group. A
band close to 3000 cm−1 due to NH stretching was also observed, suggesting the presence
of the thione tautomer. In addition, a very weak S-H band at approximately 2760 cm−1

reinforces that in the solid state the 5-amino-1,3,4-thiadiazole-2(3H)-thiol ligand is in the
thione form [27]. On the other hand, the S-H and N-H bands did not appear in the
spectra of the metal complexes. Furthermore, the characteristic bands of thioamides at
1606, 1361, 1174 cm−1 observed in the free ligand were not observed in the spectra of the
metal complexes, also suggesting deprotonation in the N-H group. These observations
corroborate the coordination of the ligand to the metal ions (Pt2+ or Pd2+) through the
sulphur atom in the thiolate form [28].

The 1H and 13C NMR spectra of complexes I (Figures 2 and 3) and II (Figures S1 and S2,
Supplementary Material) are very similar and only the spectrum of I will be discussed. In
the 1H NMR spectrum of the free ligand, the signals corresponding to the NH2 and NH pro-
tons appeared as a singlet at δ7.06 and 13.14, respectively (see Figure 2). The NH proton did
not appear in the spectrum of complex I and the signal corresponding to the NH2 protons
was very little affected excluding the participation of this group in the coordination. Indeed,
an integral value equal to 4 for the NH2 group and the absence of the NH proton in the 1H
NMR spectrum of I suggests the presence of two thiolate ligands coordinated to the metal
ion via the sulphur atom upon deprotonation (S−). In the 13C NMR spectrum of complex I,
it is possible to observe the signals from C2 and C5 carbons at δ 166.7 and 157.0 (Figure 3)
while in the spectrum of 5-amino-1,3,4-thiadiazole-2(3H)-thiol these signals were observed
at δ 180.9 and at 161.4 ppm, respectively. Thus, in the 13C NMR spectrum of complex I, the
most strongly downfield-shifted signal was the C2 carbon, which also indicates that one
platinum ion is coordinated to the ligand via the sulphur atom upon deprotonation [28].
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As to the 195Pt NMR spectrum of complex I, a signal at –3557 ppm is in agreement with the
PtN2S2 coordination sphere (see Figure S3, Supplementary Material) [29].
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2.2. Epidemiological and Antimicrobial Resistance Study of the Bank of 235 Strains of C. jejuni

Resistance to CIP (121/235, 51.5%) was significantly higher than ERY (83/235, 35.3%).
Nevertheless, the results of MIC50 and MIC90 demonstrated the need for expressive concen-
trations of ERY (4 and 32 mg/L, respectively), being at least two or even four times higher
than the MIC50 and MIC90 identified for CIP (2 and 8 mg/L, respectively) (Table 1).
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The frequencies and percentages of the resistance profiles found for the 235 strains
of C. jejuni are described in Table 2 and broken down according to the epidemiological
characteristics evaluated. Of the 235 strains, 53 (22.55%) showed mutual resistance to CIP
and ERY, 68 (28.93%) were resistant to CIP only, 30 (12.76%) to ERY only, and 84 (35.74%)
were sensitive to both antibiotics. Furthermore, we observed that ERY-only resistance
was lower than the other profiles identified (p = 0.0075, Fisher’s test) and that the profile
including sensitive strains was the most prevalent (p = 0.0023, Fisher’s test).
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Table 1. Frequency distribution and percentages for the MIC, MIC50, and MIC90 (mg/L) in C. jejuni
isolated from chicken carcasses in Brazil.

Concentration
(mg/L)

CIP
n (%)

ERY
n (%)

0.25 39 (16.59%) 14 (5.95%)
0.5 18 (7.65%) 8 (3.40%)
1 57 (24.25%) 30 (12.76%)
2 60 (25.53%) 42 (17.87%)
4 33 (14.04%) 40 (17.02%)
8 20 (8.51%) 18 (7.65%)
16 4 (1.70%) 5 (2.12%)
32 4 (1.70%) 78 (33.18%)

R (%) 121 a (51.48%) 83 b (35.31%)

MIC50 2 4
MIC90 8 32

R (%): number and percentage of resistant strains; n (%): number and percentage of strains distributed in
the different concentrations of the antimicrobials tested; highlighted in grey: resistant strains; a,b: p = 0.0006,
Fisher’s test.

Table 2. Antimicrobial susceptibility profile of C. jejuni isolated from chicken carcass broken down by
state and season.

Epidemiological Factor
Antimicrobial Resistance Profiles-n (%)

Profile 1: CIP/ERY Profile 2: CIP Profile 3: ERY Profile 4: Susceptibility Total

Federal State
A 29 (31.18%) 21 (22.58%) 24 (25.80%) 19 (20.43%) 93
B 15 (18.29%) 33 (40.24%) 6 (7.31%) 28 (34.14%) 82
C 9 (15%) 14 (23.33%) 0 (0.00%) 37 (61.66%) 60

Season
Spring 30 (22.72%) 43 (32.57%) 12 (9.09%) 47 (35.60%) 132

Summer 3 (7.31%) 12 (29.26%) 6 (14.63%) 20 (48.78%) 41
Autumn 18 (32.14) 12 (21.42%) 9 (16.07%) 17 (30.35%) 56
Winter 2 (33.33%) 1 (16.66%) 3 (50%) 0 6

Total 53 (22.55%) a 68 (28.93%) a 30 (12.76%) b 84 (35.74%) c 235

n (%): number and percentage of strains distributed according to the profiles and epidemiological character.
Different letters in the same row indicate statistical difference, p < 0.05 Fisher’s test.

Resistance to the drugs of choice in the treatment of campylobacteriosis has proven
alarming. In the United States, the concern reflects in the healthcare sector with ap-
proximately 310,000 cases of potentially untreatable Campylobacter infections, leading to
28 deaths annually [22]. Despite geographic heterogeneity in resistance profiles, the issue
is directly associated with antibiotic mismanagement reflected especially in the agricultural
sector, and in low-income countries, whose underreporting is significant [30]. In India,
resistance to CIP and ERY reaches values of 33.3 and 21.4% in strains isolated from chicken
carcasses [31]. However, Poudel et al. (2022), in China, demonstrated a reduction in the
levels of resistance to CIP (from 28% to 15.3%) in isolates from chickens raised without the
use of antimicrobials in veterinary practices [32].

In Brazil, despite finding expressive values, control measures were adopted and
resulted in significant mitigation of C. jejuni resistance levels to drugs such as ERY (from
38.2 to 9.1%) in a slaughterhouse in the state of Minas Gerais [33–36]. Quinolone resistance
has been associated with the presence of two different mechanisms, which include the
presence of cmeABC and point mutations present in the gyrA and gyrB genes [37].

A single mutation at the Tre-86-Ile position in the QRDR of gyrA is known to lead
to the substitution of the amino acid threonine for isoleucine and is responsible for the
elevation of the MIC in strains and considered to be the main mechanism of resistance to
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fluoroquinolones [38]. Of 121 resistant strains, we have already identified the presence
of this mutation in 65 of them (53.7%). For macrolides, erythromycin resistance is mainly
caused by mutations in positions A2075G and/or A2074C of domain V of the 23S rRNA
gene [39], already identified in 24/83 (28.9%) resistant strains in our study [40].

The presence of the ermB gene encoding 23S rRNA methyltransferase and the cmeABC
multidrug efflux pump has also been shown to be involved in acquired resistance to
erythromycin [41]. The latter has been identified in 80/235 (34.0%) strains in our study
to date, including susceptible strains [40]. The presence of this efflux pump is favorable
to the pathogen, not only in the elimination of antimicrobials but also in the excretion of
metabolites and bile salts harmful to C. jejuni [39,41].

At the epidemiological level, co-resistance was expressive (p = 0.0342, Fisher’s test) in
state A (29/93, 54.71%) over state C (9/60, 15.00%). Overall CIP resistance (33/68, 48.52%)
was higher than ERY (6/30, 20.00%), especially for state B (p < 0.0001, Fisher’s test). As
well as in state C, where the absence of resistance to ERY (0/60, 0.00%) was a site exclusive
factor (p = 0.0028). It should be noted that in state A we identified the lowest frequency of
strains with profile 4 (susceptible) (19/93, 20.43%).

The local variation of resistance profiles is multifactorial, but studies point out that
sites that have better monitoring structuring regarding the use of antimicrobials and more
rigorous self-control programs show efficiency in reducing the prevalence of microorgan-
isms and the levels of antimicrobial resistance, including C. jejuni [33,42,43]. Regarding
seasonality, we observed that the P4 profile was significantly more prevalent in sum-
mer (20/41, 48.78%), compared to the P1 (3/41, 7.31%; p < 0.0001) and P3 (6/41, 14.63%;
p = 0.0017) profiles. In the spring, ERY-only resistance (12/132–9.09%) was lower than
the other profiles (p = 0.0038). Furthermore, spring (p = 0.0386) and fall (p = 0.0052) were
the seasons in which we identified more co-resistant strains (30/132, 22.72% and 18/56,
32.14% respectively).

The seasonality of the microorganism is described in temperate countries [44], with a
higher frequency in summer months [45,46]; however, there are studies that highlight the
need to evaluate the seasonality in tropical regions, since there are no large temperature
variations or well-defined seasons. In Brazil, there are studies that show the influence
of seasonality, but there are also cases in which there were no changes throughout the
year [47,48]. Studies related to the resistance profile of strains throughout the seasons of
the year do not demonstrate the influence of seasonality on antibiotic resistance. Our study
observed that the seasons with the highest number of strains were spring (132/235) and
fall (56/235).

The resistance profiles identified in the strains from three Brazilian states with rele-
vance in poultry meat production show a worrisome picture, since there is no evidence
of resistance to antibiotics. Campylobacter strains present in these profiles are absolutely
problematic clinically, especially in immunocompromised patients.

2.3. Effect of Metal Complexes

The ineffectiveness of macrolides and fluoroquinolones in controlling C. jejuni repre-
sent a growing public health threat, given its importance as the most prevalent pathogen
causing foodborne gastroenteritis worldwide. This demonstrates the importance of studies
including promising new substances and combinations on an ongoing basis as treatment op-
tions. Figure 4 shows a comparative analysis of the effect of complex I on three co-resistant
C. jejuni strains that had the highest MICs for CIP and ERY (32 mg/L).

Of the three strains tested, we obtained, for the isolated use of complex I, MIC values
equivalent to 0.25 for one strain and 32 mg/L for the other two. In synergism, complex
I reduced the MIC of CIP to 0.25, 0.5, and 2 mg/L, and for ERY, the change was only
identified in one of the strains, whose MIC was reduced from 32 to 0.25 mg/L. Thus, 2/3
and 1/3 strains were desensitized to CIP and ERY, respectively. The only strain that did
not show a change in susceptibility profile in synergism was from state A, with the highest
amount of co-resistant strains. The grouped analysis of mean values showed that complex
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I was efficient in lower MIC values both alone (21.4 ± 10.6 mg/L) and in synergy with
antimicrobials (+CIP = 0.9 ± 0.5; +ERY = 21.4 ± 10.6 mg/L) compared to CIP and ERY. The
difference in mean MIC values was significant in complex I in synergy with CIP (p = 0.0367).
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Figure 4. Effect of antimicrobial treatment with and without addition of complex I on three C. jejuni
strains. * p < 0.05, ns p > 0.05, Mann–Whitney test in comparison with CIP and ERY alone. Red line:
cut-off points for ERY and CIP according to CLSI (2021).

Analyzing the data, it is possible to affirm that the platinum ion plays a pivotal role in
the antibacterial activity reported here, since complex I was more effective than complex II,
which did not affect bacterial growth even at the highest concentration tested (32 mg/L).
Thus, our results strongly suggest a potentiating activity of platinum against bacterial
cells, considering the concentration used especially related to the synergistic effect. The
action of complex I on bacterial viability is achieved by the ligand’s destructive cellular
mechanisms coupled with the metal’s interference in cellular processes. Its sensitizing effect
is mainly directed towards destabilizing the bacterial outer membrane through interaction
with electronegative chemical groups that promote increased permeability and disruption
of internal processes, allowing greater effect and antibiotic activity [6].

The best synergism came from the coadministration of complex I + CIP since it resulted
in greater ability to desensitize the strains, with an average 34.8× reduction in the MIC
value. For the combination with ERY, despite the desensitization of only one strain, the
average reduction in the MIC was 1.5×. These results are compatible with previously
reported data, where Escherichia coli and Staphylococcus aureus resistant to ampicillin and
kanamycin were desensitized by employing synergistic antibiotic-metal combinations [49].

The expressive effect on the combination of platinum compounds with CIP has already
been described for M. tuberculosis, showing lower MIC values than those used for the drugs
of choice [50].

For complex II, the MIC identified for the three strains was equivalent to the MIC
used for the drugs CIP and ERY (32 mg/L), and we did not detect any synergistic effect in
its use conjugated to the drugs of choice CIP and ERY. The absence of antimicrobial activity
of palladium-based thione complexes was also described by Eğlence-Bakır et al. [51] on
gram-negative bacteria. In parallel, it is possible that the diversity of molecular factors
already identified in the tested strains, such as the cmeABC efflux pump [40], may contribute
in the infeasibility of the effect for this complex. Although platinum and palladium are
chemically similar, platinum’s primary target is DNA, while palladium complexes bind
to proteins leading to DNA damage and consequent cell death. Palladium has greater
interaction for ligand exchange and for this reason they also interact easily with other
compounds, becoming more toxic due to their greater reactivity [16]. Although, additional
studies such as molecular docking or assays of interaction with specific biological targets of
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the Campylobacter jejuni strain are needed to investigate the mechanism of action of complex
I (platinum centre), as well as justify the inactivity of complex II (palladium centre).

No previous studies have been conducted to evaluate the synergistic potential of
thione- and phenanthroline-based complexes against C. jejuni strains. Reports on the
activity of new antimicrobial compounds, alone or in combinations, against C. jejuni
are limited.

The results in the three strains tested clearly demonstrate an increase in antibacterial
potency, especially in the association of complex I with CIP, the breadth of research on
which can be further explored. Correlation of these results with future studies on the
mechanisms of action involved, in vitro in cell cultures and in vivo, are needed to clarify
the applicability of these therapies in clinical practice.

3. Materials and Methods
3.1. Metal Complexes

The metal precursors [PtCl2(phen)] and [PdCl2(phen)] used in the synthesis of com-
plexes I and II were prepared as previously reported in the literature [52–54]. All reagents
and solvents were purchased from Merck and were used as received. Elemental analyses
to determine the percentage carbon, hydrogen, and nitrogen (CHN) were performed on a
CHNSO PerkinElmer 2400 Analyzer. Infrared spectra (4000–220 cm−1) were performed on
a PerkinElmer Frontier MIR spectrometer equipped with an attenuated total reflectance
(ATR) sample holder with a diamond crystal. Conductivity measurements were performed
using a Tecnopon mCA-150 conductivity meter with UV/HPLC grade dimethyl sulfox-
ide as solvent. 1H, 13C and 195Pt NMR spectra were performed on a Bruker AscendTM
400 Avance III HD spectrometer (9.2 T) at 400 MHz (1H), 100 MHz (13C), and 86 MHz (195Pt)
using DMSO-d6 as solvent at room temperature. Chemical shifts were expressed as δ (in
ppm) from the internal reference standard TMS (δTMS = 0.00) and K2[PtCl4] (195Pt NMR).

3.2. Preparation of Complexes

The method used to prepare the metal complexes I and II is described below. First,
0.250 mmol of 5-amino-1,3,4-thiadiazole-2(3H)-thione was solubilized in 5.0 mL MeOH
and added dropwise in 0.125 mmol of [PtCl2(phen)] (0.0556 g) or [PdCl2(phen)] (0.0447 g),
depending on the complex, previously suspended in 5.0 mL of MeOH. After the addition
of the 5-amino-1,3,4-thiadiazole-2(3H)-thione ligand, three drops of triethylamine were
added to the reaction mixture, which was kept under stirring and reflux (60 ◦C) for 96 h
(platinum complex) or 72 h (palladium complex). Next, orange solids were filtered off,
washed with water, methanol and ethyl ether and dried under reduced pressure.

3.2.1. Complex I-[Pt(L1)2(phen)]

Yield: 84.50%. Color: Orange. Massa Weight (g mol−1): 639.66408. Anal. Calc. for
[Pt(C2H2N3S2)2(phen)]: C, 30.04; H, 1.89; N, 17.52%; Found: C, 30.43; H, 2.15; N, 17.37%.
1H NMR (400 MHz; DMSO-d6) δ (ppm): 6.55 (s, 4H, NH2); 8.26 (dd, 3J = 8.0 Hz; 3J = 5.4 Hz,
2H, H3′ e H8′); 8.32 (s, 2H, H5′ e H6′); 9.06 (dd, 3J = 8.4 Hz; 4J = 1.4 Hz, 2H, H4′ e H7′);
9.82 (dd, 3J = 5.2 Hz; 4J = 1.4 Hz, 2H, H2′ e H9′). 13C RMN (100 MHz; DMSO-d6) δ (ppm):
126.4; 127.8; 130.7; 140.1; 146.5; 148.8 (phen); 157.0 (C5); 166.7 (C2). 195Pt NMR (86 MHz;
DMSO-d6) δ (ppm): −3557. FT-IR spectrum in ATR, ν (cm−1): 3241, 3109, 3064, 1603, 1583,
1506, 1429, 1395, 1328, 1311, 1044, 1030, 847, 711, 600, 506, 435, 406, 369, 343, 321, 293, 234.
ΛM (10−3 M em DMSO) = 1.46 S cm2 mol−1.

3.2.2. Complex II-[Pd(L1)2(phen)]

Yield: 91.27%. Color: Orange. Molar Weight (g mol−1): 551.00008. Anal. Calc. for
[Pd(C2H2N3S2)2(phen)]: C, 34.88; H, 2.20; N, 20.34%; Found: C, 34.59; H, 2.31; N 20.17. 1H
NMR (400 MHz; DMSO-d6) δ (ppm): 6.67 (s, 4H, NH2); 8.20 (dd, 3J = 8.2 Hz; 3J = 5.2 Hz,
2H, H3′ e H8′); 8.30 (s, 2H, H5′ e H6′); 8.97 (dd, 3J = 8.4 Hz; 4J = 1.4 Hz, 2H, H4′ e H7′); 9.49
(dd, 3J = 5.2 Hz; 4J = 1.4 Hz, 2H, H2′ e H9′) 13C NMR (100 MHz, DMSO-d6) δ (ppm): 126.04;



Antibiotics 2022, 11, 1645 10 of 13

127.54; 130.27; 140.03; 145.68; 149.60 (phen); 157.71 (C5); 168.11 (C2). FT-IR spectrum in
ATR ν (cm−1): 3264, 3100, 3053, 1598, 1586, 1422, 1406, 1393, 1317, 1306, 1050, 1025, 842,
713, 604, 502, 426, 407, 393, 338, 314, 254, 242. ΛM (10−3 M in DMSO) = 1.04 S cm2 mol−1.

3.3. Strains

We used 235 strains of C. jejuni previously isolated and identified in an exploratory
study conducted by the Ministry of Agriculture, Livestock and Supply of Brazil (MAPA)
and kept in the culture bank of the Molecular Epidemiology Laboratory of the School of
Veterinary Medicine of the Federal University of Uberlândia. The strains were isolated from
chicken carcasses from exporting slaughterhouses registered in the SIF (Federal Inspection
System) during the period from October 2017 to July 2018, from 43 municipalities belonging
to three Brazilian states defined as A, B, and C, which represent 64.1% of the national poultry
production [55,56].

3.4. Preparations of Strains, Antimicrobial and Metal Complexes

Samples stored in cryoprotectant enriched with UHT milk were reactivated in Campy-
lobacter Agar Base Blood Free (CCDA) (Oxoid®) and maintained in microaerophilic (Probac)
at 37 ◦C for 48 h [57]. The typical colonies were then morphologically analyzed for the
appearance of curved Gram-negative bacillus on gram stain.

The antibiotics ciprofloxacin and erythromycin, as well as platinum- and palladium-
based compounds (complexes I and II) were tested. All antimicrobial agents were prepared
in a stock solution at a concentration of 64 µg/mL.

3.5. Minimum Inhibitory Concentration (MIC) and Bactericidal Concentration (MBC) Test

Antimicrobial susceptibility testing of the strains was performed using the broth
microdilution method according to the CLSI description [28]. For the tests with commercial
antibiotics (CIP and ERY), Mueller-Hinton broth (MH) was prepared with the addition
of Ca2+, Mg2+, and 5% defibrinated sheep blood (Laborclin®), and the same medium
with the addition of the stock solution of 64 µg/mL, as well as the bacterial suspension
(standardized in sterile 0.85% NaCl). Briefly, the bacterial suspension was standardized at
a concentration corresponding to 0.5 on the McFarland scale, and the concentrations of 32,
16, 8, 4, 2, 1, 0.5, and 0.25 µg/mL of the antimicrobials were used. Afterwards, the bacterial
suspension was inoculated and the microplates incubated at 37 ◦C for 48 h. The reading
was performed visually with the determination of the MIC as corresponding to the lowest
concentration where no turbidity was observed, characterized by the change in coloration
of the medium. Additionally, a 10 µL aliquot of each dilution was plated on CCDA to
verify bacterial growth (BCC) of the respective dilution well. For all tests, negative controls
consisting of the medium without added bacteria were used. The cut-off points (µg/mL)
considered to classify the strains as resistant were: CIP > 1 and ERY > 8. MIC50 and MIC
90 were defined as the minimal concentrations of metal compounds that promoted 50 and
90% inhibition, respectively, of the bacterial isolates tested.

3.6. Isolated and Synergistic Effect of Metal Compounds

Three strains that expressed resistance profiles to commercial antimicrobials at the
highest concentrations (32 µg/mL), genotypically and phenotypically distinct (data not shown)
and from different Brazilian states were selected for the tests with the metallic compounds.

The isolated assays with the different metallic compounds were performed as de-
scribed for the commercial antibiotics in the same concentrations of 32, 16, 8, 4, 2, 1, 0.5, and
0.25 µg/mL. The synergistic effect assays were performed with the commercial antibiotics
diluted in the same way mentioned above, with 10 µM of each of the metal compounds eval-
uated in three different assays at a concentration defined according to the results obtained
in a pilot test, corresponding to complex I (6.39 µg/mL) and complex II (5.51 µg/mL).
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3.7. Statistical Analyses

The results were tabulated and submitted to descriptive statistics with calculation of
the percentage of resistance for each antimicrobial and each resistance profile identified.
Comparative analyses were performed using Fisher’s test. All the assays with the metal
complexes were done in triplicate and the comparative statistics were done by applying
the Mann–Whitney test. The tests were performed using Graph Pad Prism 8.0.1 software,
with a 95% confidence interval.

4. Conclusions

In this work, two new metal complexes were prepared and characterized by con-
ventional techniques. Their structures present two thiolate ligands coordinated in a mon-
odentate manner and a phenanthroline molecule coordinated through its two nitrogen
atoms. The metal compounds were tested as antibacterial agents against three strains of
Campylobacter jejuni and demonstrated the effectiveness of complex I action, especially in
CIP desensitization.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics11111645/s1, Figure S1. 1H NMR spectrum (400 MHz,
DMSO-d6) of complex II. Figure S2. 13C NMR spectrum of II (100 MHz, DMSO-d6) highlighting the
region between 125.0 and 170.0 ppm. Figure S3. 195Pt NMR spectrum of I.
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