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Abstract: Two new compounds isobenzofuranone A (1) and indandione B (2), together with eleven
known compounds (3–13) were isolated from liquid cultures of an endophytic fungus Alternaria sp.,
which was obtained from the medicinal plant Morinda officinalis. Among them, the indandione (2)
showed a rarely occurring indanone skeleton in natural products. Their structures were elucidated
mainly on the basis of extensive spectroscopic data analysis. All of the compounds were evaluated
with cytotoxic and α-glucosidase inhibitory activity assays. Compounds 11 and 12 showed significant
inhibitory activities against four tumor cell lines; MCF-7, HepG-2, NCI-H460 and SF-268, with IC50

values in the range of 1.91–9.67 µM, and compounds 4, 5, 9, 10, 12 and 13 showed excellent inhibitory
activities against α-glucosidase with IC50 values in the range of 12.05–166.13 µM.
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1. Introduction

Endophytic fungi have been considered a rich source of structurally novel and bioactive
diverse metabolites that have become interesting and significant resources for drug discovery [1–3].
Morinda officinalis, known as one of the ‘top four south authentic traditional Chinese medicines’,
has obvious regional characteristics. Its roots contain plant sterols, anthraquinones, flavonoids,
vitamin C, sugar, resin and other ingredients, and they are widely used to treat impotence,
spermatorrhea, rheumatism and female infertility [4]. However, there are few systematic reports on
endophytic fungus resources from this plant and their active components. During our ongoing search
aimed at structurally unique and bioactive substances from endophytic fungi [5–8], we conducted
a chemical analysis on a fraction of the broth extract of the fungus Alternaria sp. A744 derived from
M. officinalis, which led to the isolation of two new secondary metabolites along with eleven known
compounds (Figure 1). All the compounds were evaluated for their cytotoxic and α-glucosidase
inhibitory activities via assays. Herein, the details of the isolation, structural elucidation and bioassay
are described.
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Figure 1. Structures of compounds 1–13 isolated from Alternaria sp. A744. 

2. Results 

2.1. Structural Elucidation of New Compounds 

Isobenzofuranone A (1), colorless oil, had a molecular formula of C11H10O5 on the basis of negative 
high-resolution electrospray ionization mass spectra (HR-ESI-MS) ([M − H]− m/z 221.0460, calcd. for 
221.0450), corresponding to seven degrees of unsaturation (see Figures S1–S9). The infrared spectroscopy 
(IR) spectrum exhibited absorption bands at 3435 (hydroxyl group) and 1732 (carbonyl group) cm−1. 
The 1H-NMR spectroscopic data of 1 (Table 1) combined with heteronuclear multiple quantum 
coherence (HMQC) experiment implied one methoxy signal [δH 3.72 (s, J = 1.1, H3-10)], one methylene 
signal [δH 3.08 (dd, J = 16.6, 4.6), 2.80 (dd, J = 16.6, 8.0)], one methine [δH 5.82 (dd, J = 8.0, 4.6, H-3)] and 
three aromatic protons [δH 6.90 (d, J = 8.2, H-6), 7.00 (d, J = 7.4, H-4), 7.55 (dd, J = 8.2, 7.4, H-5)]. The 
13C-NMR spectrum revealed 11 carbon resonances attributed to two carbonyl groups (δC 171.2, 
171.5), a methoxyl carbon δC 52.4 (C-10), one methylene carbon δC 40.0 (C-8), three sp2 quaternary 
carbons [δC 158.4 (C-7), 152.2 (C-3a), 112.5 (C-7a)], and three sp2 methine carbons [δC 113.9 (C-4), 
137.8 (C-5), 117.1 (C-6)]. The COSY correlations between H-4 (δH 7.00) and H-5 (δH 7.55), H-5 and H-6 
(δH 6.9) confirmed the presence of 1,2,3-trisubstituted benzene moiety. The benzene ring along with two 
carbonyl groups accounted for six unsaturation degrees, while the remaining degrees of unsaturation 
indicated that an additional ring must be present in the molecule. Meanwhile, a signal of 13C-NMR 
resonance at δC 171.5 and an absorption in the IR spectrum at 1732 cm−1 suggested the presence of a 
lactone carbonyl group. These data showed a great resemblance to the known compound 
isoochracinic acid [9], the only difference between them is that a hydroxyl group at position C-10 in 
the known compound was replaced by a methoxy group in 1. Furthermore, the heteronuclear 
multiple bond correlation (HMBC) correlations (Figure 2) from methine proton H-3 (δH 5.82) to C-1 
and C-7a, H2-8 to C-1 and C-3a, as well as H-6 to C-7a and C-1 secured the connection of C-3 and C-1 
to the aromatic ring. Simultaneously, the relative downfield chemical shift of C-3 (δC 78.9) revealed a 
connection with oxygen, thereby forming a lactone ring. The HMBC cross-peaks from H-3 and the 
proton of methoxy H3-10 (δH 3.72) to C-9 determined the presence of a methyl acetate unit in 1. The 
critical COSY signals (Figure 2) from H-3 to H2-8 suggested that the methylene group was directly 
connected to the lactone ring at C-3. Thus, the planar structure of 1 was determined, as shown in 
Figure 1. 
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2. Results

2.1. Structural Elucidation of New Compounds

Isobenzofuranone A (1), colorless oil, had a molecular formula of C11H10O5 on the basis of
negative high-resolution electrospray ionization mass spectra (HR-ESI-MS) ([M − H]− m/z 221.0460,
calcd. for 221.0450), corresponding to seven degrees of unsaturation (see Figures S1–S9).
The infrared spectroscopy (IR) spectrum exhibited absorption bands at 3435 (hydroxyl group)
and 1732 (carbonyl group) cm−1. The 1H-NMR spectroscopic data of 1 (Table 1) combined with
heteronuclear multiple quantum coherence (HMQC) experiment implied one methoxy signal [δH 3.72
(s, J = 1.1, H3-10)], one methylene signal [δH 3.08 (dd, J = 16.6, 4.6), 2.80 (dd, J = 16.6, 8.0)], one methine
[δH 5.82 (dd, J = 8.0, 4.6, H-3)] and three aromatic protons [δH 6.90 (d, J = 8.2, H-6), 7.00 (d, J = 7.4,
H-4), 7.55 (dd, J = 8.2, 7.4, H-5)]. The 13C-NMR spectrum revealed 11 carbon resonances attributed
to two carbonyl groups (δC 171.2, 171.5), a methoxyl carbon δC 52.4 (C-10), one methylene carbon
δC 40.0 (C-8), three sp2 quaternary carbons [δC 158.4 (C-7), 152.2 (C-3a), 112.5 (C-7a)], and three sp2

methine carbons [δC 113.9 (C-4), 137.8 (C-5), 117.1 (C-6)]. The COSY correlations between H-4 (δH 7.00)
and H-5 (δH 7.55), H-5 and H-6 (δH 6.9) confirmed the presence of 1,2,3-trisubstituted benzene moiety.
The benzene ring along with two carbonyl groups accounted for six unsaturation degrees, while the
remaining degrees of unsaturation indicated that an additional ring must be present in the molecule.
Meanwhile, a signal of 13C-NMR resonance at δC 171.5 and an absorption in the IR spectrum at
1732 cm−1 suggested the presence of a lactone carbonyl group. These data showed a great resemblance
to the known compound isoochracinic acid [9], the only difference between them is that a hydroxyl
group at position C-10 in the known compound was replaced by a methoxy group in 1. Furthermore,
the heteronuclear multiple bond correlation (HMBC) correlations (Figure 2) from methine proton H-3
(δH 5.82) to C-1 and C-7a, H2-8 to C-1 and C-3a, as well as H-6 to C-7a and C-1 secured the connection
of C-3 and C-1 to the aromatic ring. Simultaneously, the relative downfield chemical shift of C-3
(δC 78.9) revealed a connection with oxygen, thereby forming a lactone ring. The HMBC cross-peaks
from H-3 and the proton of methoxy H3-10 (δH 3.72) to C-9 determined the presence of a methyl acetate
unit in 1. The critical COSY signals (Figure 2) from H-3 to H2-8 suggested that the methylene group
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was directly connected to the lactone ring at C-3. Thus, the planar structure of 1 was determined,
as shown in Figure 1.

Table 1. 1H-NMR (500 MHz) and 13C-NMR (125 MHz) data for 1 and 2 in CD3OD.

No.
1 2

δH (J in Hz) δC δH (J in Hz) δC

1 171.2, C 200.7, C
2 73.8, C
3 5.82 (dd, 8.0, 4.6) 78.4, CH 200.8, C
3a 152.2, C 143.4, C
4 7.00 (d, 7.4) 113.9, CH 7.44 (d, 7.4) 115.5, CH
5 7.55 (dd, 8.2, 7.4) 137.8, CH 7.77 (dd, 8.2, 7.4) 139.1, CH
6 6.90 (d, 8.2) 117.1, CH 7.28 (d, 8.2) 124.4, CH
7 158.4, C 158.3, C
7a 112.5, C 127.4, C
8 3.08 (dd, 16.6, 4.6) 40.0, CH2 3.37 (d, 2.5) 49.5, CH2

2.80 (dd, 16.6, 8.0)
9 171.5, C 208.1, C
10 3.72 (s) 52.4, CH3 2.09 (s) 29.3, CH3
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Indandione B (2) was obtained as yellow oil. HRESIMS analysis of 2 revealed a molecular formula
C12H10O5 ([M −H]− m/z 233.0467, calcd. for 233.0450), corresponding to eight degrees of unsaturation
(see Figures S10–S17). The IR spectrum exhibited absorption bands at 3377 (hydroxyl group), 1743 and
1703 (carbonyl groups) cm−1. The 1H-NMR data of 2 (Table 1) revealed one methoxy signal [δH 2.09
(s, H3-10)], one methylene [δH 3.37 (d, J = 2.5, H2-8)], and one 1,2,3-trisubstituted benzene moiety
[δH 7.28 (d, J = 8.2, H-6), 7.44 (d, J = 7.4, H-4), 7.77 (dd, J = 7.4, 8.2, H-5)]. The 13C-NMR spectrum and
the HMQC revealed 12 carbon resonances attributed to one methyl, one methylene, three methines,
and seven quaternary carbons. The abovementioned information was quite similar to that of the
known compound indanostatin, which was isolated from Streptomyces sp. [10]. They all have a typical
indandione five-membered ring structure, except for the absence of a hydroxyl group at position
C-4 and a methyl group at position C-5 on the benzene ring in 2. The HMBC correlations from
H-4 to C-3, C-6 and C-7a, H-5 to C-3a and C-7, H-6 to C-3a, C-7a, and C-1, along with the HMBC
cross-peaks between H-8 to C-1, C-2, and C-3, secured the presence of an indandione five-membered
ring. Moreover, the HMBC correlations (Figure 2) from H2-8 and H3-10 to C-9 implied the presence of
a 2-oxopropyl unit in 2. Finally, the HMBC cross-peaks of methylene protons with C-1, C-2 and C-3
suggested that the 2-oxopropyl group was connected with the indandione five-membered ring at C-2.
Therefore, the planar structure of 2 was assigned, as shown in Figure 1.

The known compounds were determined as isosclerone (3) [11], 2,4,8-trihydroxy-1-tetralone
(4) [9], 3,4-dihydro-3,4,8-trihydroxy-1[2H]-naphthalenone (5) [12], 6-hydroxyisosclerone (6) [13],
cis-4-hydroxyscytalone (7) [14], alternariol-4-methyl ether (8) [15], 6-epi-stemphytriol (9) [16],
dihydroalterperylenol (10) [17], alterperylenol (11) [16], altertoxin II (12) [18,19], and stemphyperylenol
(13) [20], by spectroscopic analysis and comparison with previous reports in literature.
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2.2. In Vitro Cytotoxicity Assay

The in vitro cytotoxic activity of compounds 1–13 was investigated against four tumor cell lines,
including MCF-7, HepG-2, NCI-H460 and SF-268, by the SRB (Sulforhodamine B) method with cisplatin
as the positive control. As outlined in Table 2, compounds 11 and 12 showed significant inhibitory
activities against the four tumor cell lines with IC50 values in the range of 1.91–9.67 µM.

Table 2. Cytotoxic activity of compounds 1–13.

Compounds
IC50 (µM)

MCF-7 HepG-2 NCI-H460 SF-268

1–8 ≥100 ≥100 ≥100 ≥100
9 35.73 ± 1.61 52.38 ± 2.46 43.31 ± 1.75 49.04 ± 1.84

10 ≥100 ≥100 ≥100 ≥100
11 3.73 ± 0.33 5.30 ± 0.95 5.47 ± 0.26 6.57 ± 0.35
12 1.91 ± 0.17 5.63 ± 0.10 9.67 ± 0.22 4.25 ± 0.01
13 ≥100 ≥100 ≥100 ≥100

Cisplatin 3.09 ± 0.27 1.39 ± 0.18 2.43 ± 0.15 2.37 ± 0.35

2.3. α-Glucosidase Inhibitory Activity Assay

Simultaneously, all compounds were further evaluated for their α-glucosidase inhibitory activity.
Compounds 4, 5, 9, 10, 12 and 13 showed excellent inhibitory activity against α-glucosidase with
IC50 values in the range of 12.05–166.13 µM (Table 3), which was obviously stronger than the positive
control of acarbose (IC50 = 427.34 µM).

Table 3. α-Glucosidase inhibitory activities of compounds 4, 5, 9, 10, 12 and 13.

Compounds α-glucosidase (IC50, µM)

4 34.88 ± 1.59
5 102.34 ± 2.45
9 141.43 ± 7.66

10 74.94 ± 2.70
12 12.05 ± 2.06
13 166.13 ± 2.81

Acarbose 427.34 ± 12.03

3. Materials and Methods

3.1. General Experimental Material

Optical rotations were determined on an Anton Paar MCP-500 spectropolarimeter (Anton Paar,
Graz, Austria) at room temperature. UV spectra were recorded on a Shimadzu UV-2600
spectrophotometer (Shimadzu, Kyoto, Japan). IR spectra were measured using a Shimadzu IR Affinity-1
spectrometer (Shimadzu, Kyoto, Japan). 1D and 2D NMR spectra were performed on a Bruker
Avance-500 spectrometer with tetramethylsilane (TMS) as an internal standard (Bruker, Fällanden,
Switzerland). ESIMS was measured by an Agilent Technologies 1290-6430A Triple Quad LC/MS
(Agilent Technologies, Palo Alto, CA, USA). HRESIMS were done with a Thermo MAT95XP
high resolution mass spectrometer (Thermo Fisher Scientific, Bremen, Germany). A Shimadzu
LC-20 AT (Shimadzu, Kyoto, Japan) equipped with a SPD-M20A PDA detector was used for
HPLC, and a YMC-pack ODS-A/AQ column (250 mm × 20 mm, 5 µm, 12 nm) was used for
semi-preparative HPLC separation. Column chromatography (CC): silica gel (200–300 mesh; Qingdao
Marine Chemical Inc., Qingdao, China), C-18 reversed phase silica gel (40–63 µm, Merck, Darmstadt,
Germany), and Sephadex LH-20 gel (Pharmacia Fine Chemical Co. Ltd., Uppsala, Sweden). Silica gel
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60 GF254 glass plates (Merck, Darmstadt, Germany) were used for thin layer chromatography (TLC)
spotting. All solvents used were of analytical grade (Guangzhou Chemical Regents Company, Ltd.,
Guangzhou, China). α-Glucosidase from Saccharomyces cerevisiae was purchased from Sigma
(St. Louis, MO, USA).

3.2. Fungal Material

The endophytic fungal strain A744 was isolated from the twigs of Morinda officinalis, which was
collected from Gaoyao city, Guangdong province of China, in January 2015. The strain A744 was
identified by sequence analysis of rDNA ITS (internal transcribed spacer) region. The sequence of the
ITS region of the strain has been submitted to GenBank (Accession No. KF706672). By using BLAST
(nucleotide sequence comparison program) to search the GenBank database, A744 has 100% similarity
to Alternaria sp. MY-2011 (Accession No. JN038490). The strain was preserved at the Guangdong
Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute
of Microbiology.

3.3. Fermentation, Extraction and Compound Isolation

The fungal strain Alternaria sp. A744 was cultivated on potato-dextrose agar (PDA) medium at
28 ◦C for 5 days, and then plugs of agar supporting mycelial growth were cut into small pieces and
transferred aseptically into five Erlenmeyer flasks (500 mL), each containing 250 mL potato-dextrose
broth, and incubated on a rotary shaker for 5 days at 28 ◦C at 120 r/min to prepare the seed culture.
Then, 10 mL of the seed culture was inoculated into a total of 600 Erlenmeyer flasks (500 mL) containing
250 mL culture broth for 7 days under the same conditions. The culture (150 L) was filtered to separate
the broth and mycelia. The broth was extracted five times with EtOAc, while the mycelia were
homogenized and saturated with MeOH by the ultrasonic extraction method. The EtOAc crude extract
(7.1 g) was subjected to column chromatography (CC) on Sephadex LH-20 (CH2Cl2/MeOH, 1:1, v/v)
to obtain four fractions (A–D) based on TLC monitoring.

Fraction D (3.5 g) was further purified on C18 reversed phase silica gel and eluted with a gradient
of MeOH/H2O (v/v, 3:7→10:0) to yield eight major fractions (D1–D8). Subfraction D2 (1.7 g) was
separated by a silica gel CC to give five fractions (D2.1–D2.5). D2.2 was subjected to a semi-preparative
HPLC (ACN/H2O, 30:70, 3 mL/min), then a secondary preparation HPLC (MeOH/H2O, 40:60,
3 mL/min) to afford compounds 1 (4.6 mg) and 3 (8.0 mg). D2.3 was further separated by Sephadex
LH-20 (CH2Cl2/MeOH, 1:1, v/v), following a silica gel CC (Hexane/Acetone, 8:1→2:1, v/v) and
a semi-preparative HPLC (ACN/H2O, 15:85, 3 mL/min) to obtain compounds 2 (6.0 mg), 4 (8.4 mg)
and 5 (2.2 mg). D2.4 was separated by Sephadex LH-20 (Acetone), following a silica gel CC to yield
compound 6 (9.2 mg). D2.5 was separated by a silica gel CC, following a Sephadex LH-20 (Acetone)
and a preparation HPLC (ACN/H2O, 10:90, 3 mL/min) to afford compound 7 (2.7 mg). D3 (125.3 mg)
was further purified on Sephadex LH-20 (MeOH), following a semi-preparative HPLC (MeOH/H2O,
55:45, 3 mL/min) to obtain compound 9 (17.0 mg). D4 (101.1 mg) was applied onto a semi-preparative
HPLC (MeOH/H2O, 45:55, 3 mL/min) to acquire compound 10 (13.4 mg). D5 (46.9 mg) was displayed
in the same way as D4 to give compound 11 (20.5 mg). Fraction D7 (26.3 mg) was subjected to a silica
gel CC, following a Sephadex LH-20 (Acetone) to obtain compound 12 (2.0 mg). Compound 8 (3.0 mg)
was separated from D8 (66.1 mg) by a silica gel CC and a semi-preparative HPLC (MeOH/H2O, 80:30,
3 mL/min). Finally, compound 13 (6.0 mg) was isolated from mycelia using a silica gel CC, following
a semi-preparative HPLC (MeOH/H2O, 50:50, 3 mL/min).

3.4. Spectroscopic Data

Isobenzofuranone A (1): colorless oil; [α]25
D +2.9 (c 0.1, MeOH); UV (MeOH) λmax (log ε) 211 (4.11),

233 (3.56), 299 (3.38) nm; IR νmax 3435, 2955, 2920, 2851, 1732, 1607, 1468, 1285, 1161, 1003 cm−1;
ESIMS negative m/z 221.0 [M−H]−; HRESIMS m/z 221.0460 [M−H]− (calcd. for C11H9O5, 221.0450);
and 1H (500 MHz) and 13C (125 MHz) NMR data, see Table 1.



Molecules 2017, 22, 765 6 of 7

Indandione B (2): yellow oil; [α]25
D –4.3 (c 0.1, MeOH); UV (MeOH) λmax (log ε) 201 (4.03), 235 (3.02), 334

(3.57) nm; IR νmax 3377, 2924, 2853, 1744, 1703, 1601, 1464, 1290, 1177, 1020 cm−1; ESIMS negative m/z
233.0 [M − H]−; HRESIMS m/z 233.0467 [M − H]− (calcd. for C12H9O5, 233.0450); and 1H (500 MHz)
and 13C (125 MHz) NMR data, see Table 1.

3.5. In Vitro Cytotoxicity Assay

The in vitro cytotoxic activities of compounds (1–13) were assayed against four human tumor
cell lines MCF-7, HepG-2, NCI-H460 and SF-268, with cisplatin as a positive control. Assays were
performed by the SRB method [21].

3.6. α-Glucosidase Inhibitory Activity Assay

An assay of α-glucosidase inhibitory activity was evaluated according the method previously
published in Reference [22].

4. Conclusions

In this study, thirteen compounds, including two new ones, were isolated from Alternaria sp.,
an endophytic fungus from Morinda officinalis. All the structures were established by extensive
spectroscopic analysis. The isolates were evaluated their cytotoxicities against four human tumor
cell lines and α-glucosidase inhibitory activity assays. Compounds 11 and 12 exhibited significant
inhibitory activities with IC50 values in the range of 1.91–9.67 µM. Compounds 4, 5, 9, 10, 12 and
13 showed excellent inhibitory activity against α-glucosidase, which might be useful for further
developing α-glucosidase inhibitor.

Supplementary Materials: Supplementary material relating to this article can be accessed online.
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