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Abstract: In recent years, it has become apparent that cancer nanomedicine’s reliance on synthetic
nanoparticles as drug delivery systems has resulted in limited clinical outcomes. This is mostly due
to a poor understanding of their “bio–nano” interactions. Protein-based nanoparticles (PNPs) are
rapidly emerging as versatile vehicles for the delivery of therapeutic and diagnostic agents, offering
a potential alternative to synthetic nanoparticles. PNPs are abundant in nature, genetically and
chemically modifiable, monodisperse, biocompatible, and biodegradable. To harness their full clinical
potential, it is important for PNPs to be accurately designed and engineered. In this review, we outline
the recent advancements and applications of PNPs in cancer nanomedicine. We also discuss the
future directions for PNP research and what challenges must be overcome to ensure their translation
into the clinic.

Keywords: drug delivery; nanomedicine; cancer therapy; cancer imaging; virus-like particles;
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1. Introduction

Cancer nanomedicine is defined as implementing nanotechnology for the diagnosis and treatment
of cancer [1,2]. It predominantly relies upon nanoparticles (NPs), which are inorganic and/or organic
materials with nanoscale dimensions (1–100 nm), to act as delivery vehicles for imaging or therapeutic
agents [3]. These nanoparticle-based drug delivery systems (NDDSs) have the potential to overcome
many of the challenges associated with drug delivery in conventional cancer therapies, such as: enabling
specific drug targeting; enhancing drug physicochemical properties (e.g., stability and solubility);
improving drug pharmacokinetics and biodistribution; lowering drug toxicity; assisting cellular uptake;
and facilitating uniform drug dosing—all of which can ultimately enhance clinical outcomes for patients.
In addition, many NPs have useful optical properties and can also be loaded with optically-active
agents (e.g., fluorophores), allowing NDDSs to provide better contrast enhancement and sensitivity in
bio-imaging applications, with the added potential for performing multi-modal imaging [4]. In 1995,
Doxil® (Sequus Pharmaceuticals Inc.) - a liposomal formulation of the chemotherapy drug doxorubicin,
became the first Food and Drug Administration (FDA) approved cancer nanomedicine. Since then,
nine cancer nanomedicines [5] and two nano-imaging agents [6] have received approval. The most
recent is Vyxeos™ (Jazz Pharmaceuticals plc.), the first approved dual-drug liposomal nanoparticles,
which are loaded with daunorubicin and cytarabine (at a proven synergistic 5:1 ratio). Vyxeos delivers
drugs to bone marrow to treat acute myeloid leukaemia (AML), and was shown to successfully improve
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the overall survival rate of newly diagnosed AML patients. This result is encouraging and continues
to drive the design, synthesis, and application of NDDSs for cancer nanomedicine [7].

Despite the myriad of NDDSs that have been synthesized and exploited by researchers over the
last decade, only about 2% have progressed into clinical trials [8]. Thus, an obviously large discrepancy
exists between nanomedicine research and its clinical translation [8]. Factors preventing nanomedicines
reaching the clinic include a poor understanding of the dynamic and often limiting interactions that
occur between NDDSs and the human body, referred to as the “bio–nano” interactions [2]. This typically
reduces the accumulation of NDDS at their site-of-action (e.g., tumors) which significantly diminishes
their therapeutic efficacy [9]. Chan et al. recently conducted a multivariate analysis of NDDSs’
preclinical studies over a 10-year period, finding that only 0.7% (median value) of the injected dose of
an NDDS was detected in tumor tissue in vivo [9]. Additionally, scaling-up the synthesis/production
of NDDS for use in large clinical trials also presents an ongoing challenge to the nanomedicine field [3].
Therefore, a successful implementation of NDDSs in cancer nanomedicine requires new and easily
manufactured materials that can work on “bio–nano” interactions inside patients.

Protein-based nanoparticles (PNPs) PNPs are composed of protein subunits that possess the
remarkable ability to spontaneously and precisely self-assemble into nanoparticles with hollow interior
cavities. In nature, these internal cavities act as reaction chambers for enzymes; storage containers for
inorganic materials; scaffolds for partially unfolded proteins; and protective nanocarriers for genetic
material (e.g., viral DNA). Accordingly, PNPs play critical roles in all domains of life and can generally
be classified as virus particles (VPs), virus-like particles (VLPs), non-viral particles (NVPs), or a de
novo PNPs [10,11]. This review focus solely upon VLPs that are derived from viruses and NVPs that
are derived from prokaryotic (e.g., bacteria) or eukaryotic (e.g., plants) sources (as listed in Table 1).

PNPs have a number of intrinsic properties that make them attractive alternatives to the
synthetic nanoparticles used in conventional NDDSs [12,13]. PNPs are amenable to both genetic and
chemical modification and have three distinct components with functionalities that lend themselves
to applications in drug delivery: (i) an interior cavity that can be loaded with therapeutic cargo (e.g.,
small molecule drugs); (ii) an exterior surface that can be functionalized to display cancer-targeting
ligands for drug targeting; and (iii) interfaces between the their protein subunits which can potentially
be engineered to allow disassembly for controlled drug release. Additionally, PNPs are non-toxic
and biodegradable, which is essential in biomedical applications [10,11]. Since PNPs are synthesized
within biological systems, they require fewer production steps and show low inter-batch variability
during the manufacturing process [14].

In this review, we describe PNPs’ “bio–nano” interactions and the existing strategies employed to
engineer them into effective NDDS for cancer nanomedicine. We also discuss future directions for PNP
research and what challenges must be addressed to successfully translate them into the clinic.
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Table 1. Example of protein-based nanoparticles (PNPs) and their application in cancer therapeutics and imaging agent delivery (in this review).

Type PNPs Shape Size
(nm) Half-Life Application Cargo Functionalization Ref.

V
ir
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e

Pa
rt

ic
le

(V
LP

)

Tobacco mosaic virus
(TMV)

Cylindrical 300 × 18 30 min

Gene delivery siRNA TAT [15]

- - RGD—PEG spacer [16] *

- - Serum albumin—PEG [17] *

MRI 1-NIRF 2 imaging Dy3+, Cy7.5 PEG-DGEA targeting peptide [18] *

MS2 bacteriophage Icosahedral 26 N/A Gene delivery siRNA SP94 targeting peptide H5YGW
fusogenic peptide [19]

Gene delivery siRNA TAT [20] *

Cowpea mosaic virus
(CPMV) Pseudo-icosahedral 30–34 4–7 min

NIRF imaging Alexa Fluor PEG-E7p72 targeting peptide [21]

Chemotherapy Mitoxantrone - [22]

Cowpea chlorotic mottle
virus (CCMV) Icosahedral 28 N/A Gene delivery siRNA M-lycotoxin L17E (penetrating

peptide) [23]

Potato virus X (PVX) Filamentous 515 × 13 12.5 min Protein delivery TRAIL 3 - [24] *

Simian Virus 40 (SV40) Icosahedral 20–40 < than 5 min NIRF Imaging Ag2S-QD PEG [25] *

N
on

-V
ir

us
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Pa

rt
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le
(N

V
P)

Ferritin Octahedral 12 1.1 h

Chemotherapy DOX 4 Serum albumin coating [26] *

Hypoxia targeting
therapy

HIF 5-1α inhibitor
(Acriflavine)

PEG [27] *

Chemotherapy Mitoxantrone MMP-cleavable PASE [28,29] *

Chemotherapy Fe (II)-DOX Nicked ferritin [30]

PDT 6 ZnF16PC FAP-scFv [31] *

- - X-TEN + affibody [32] *

PET 7 64CuS - [33] *

Encapsulin Icosahedral 20–40 N/A Chemotherapy Aldox SP94-targeting peptide [34]

P22 Icosahedral 60 N/A - - CD47-self peptide [35]

Heat shock protein (Hsp) Octahedral 24 N/A

Chemotherapy OSU030312 iRGD [36]

Gene delivery siRNA - [37]

MRI Gd–DTPA iRGD [38] *

Gas Vesicles Tip-conned
cylindrical 45 × 250 N/A Ultrasound Air CD47, R8 [39]

Asterisk (*) indicated that the study was conducted in vivo. 1 MRI: magnetic resonance imaging, 2 NIRF = near infrared fluorescence, 3 TRAIL = tumor necrosis factor (TNF)-related
apoptosis-inducing ligand, 4 DOX=doxorubicin, 5 HIF = hypoxia-inducible factor, 6 PDT = photodynamic therapy, 7 PET = positron emission tomography.
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2. Current Clinical Status of PNPs

Of all the reported PNPs, VPs and VLPs have had the most success in the clinic. This is due
to their natural capacity to infect and deliver nucleic acids, which has enabled them to be readily
repurposed as vehicles for gene therapy, oncolytic viral therapy, and cancer immunization. In 2003,
Gendicine® (Sibiono GeneTech Ltd., Shenzhen, China) became the first FDA-approved VP for gene
therapy treatment of head and neck carcinoma. Gendicine is a human adenovirus carrying the p53
tumor suppressor gene which induces cell-cycle arrest, senescence, apoptosis, and/or autophagy
in cancer cells [40]. In 2015, the FDA approved Talimogene laherparepvec (T-VEC or Imlygic™)
as the first oncolytic virus therapy, which is used to treat patients with advanced melanoma [41].
T-VEC is a genetically engineered variant of an oncolytic herpes virus (155–240 nm) that contains
double strand DNA in which some viral genes have been deleted and the gene encoding human
granulocyte-macrophage colony-stimulating factor (GM-CSF) was inserted [42]. T-VEC is applied
locally to induce viral replication inside tumor cells, causing cell destruction and stimulating an
immune response against melanoma cells [41]. Other successful PNPs include vaccines that prevent
the sexually transmitted oncovirus human papillomavirus (HPV), which is the primary cause of
cervical cancer. For example, the Gardasil 9® (Merck) vaccine is a VLP composed of various capsid
protein sub-units from different HPV types. This recombinant VLP lacks any viral DNA cargo
and is, therefore, non-infective and cannot induce cancer. It does, however, trigger the generation
of HPV-specific antibodies that protect vaccinated patients from becoming infected and acquiring
HPV-related cancers [43]. Despite these successes, the overall use and clinical translation of PNPs is
limited, with most PNP-related research languishing at pre-clinical stages.

3. Engineering PNPs as NDDS

Ideally, a systemically administered NDDS must exhibit long blood circulation times,
evade recognition and clearance by the immune system, extravasate from blood-vessels via enlarged
endothelial gaps into tumors, penetrate through dense stroma and accumulate within the complex
tumor microenvironment, selectively enter tumor cells, and finally release an active agent to induce a
therapeutic effect. This journey and the eventual fate of an NDDS inside the human body was recently
defined by Sun et al. as the “CAPIR Cascade”—circulation, accumulation, penetration, internalization,
and release [44]. In this section, we highlight the in vivo behavior of systemically delivered PNPs
(Figure 1) and discuss the potential solutions used to overcome the challenges PNPs face during each
phase of the CAPIR Cascade (Figure 2 and Table 2).

3.1. Phase I: Circulation

Systemically administered PNPs often display short blood circulation times and rapid clearance
in animal models, which has significantly impeded their advancement as NDDSs [45]. For example,
simian virus 40 (SV40) was eliminated from circulation only 5 min after IV injection in mice [25],
while cowpea mosaic virus (CPMV) was cleared after 30 min, with a half-life of 4–7 min [46]. Studies
with the tobacco mosaic virus (TMV) showed a circulation half-life of 30 min [47], whereas potato
virus X (PVX) was cleared after 2–6 h with a half-life of 12.5 min [48]. Moreover, many of these PNPs
were found to accumulate in organs of the mononuclear phagocytic system (MPS), such as the liver,
spleen, and kidneys [48]. The half-life of cowpea chlorotic mottle virus (CCMV) and heat shock protein
(Hsp) have not been reported, but studies have shown that both were broadly distributed throughout
the body and rapidly excreted from the mice [49]. These poor pharmacokinetic and biodistribution
profiles are driven by different factors, but primarily the formation of protein coronas on PNP surfaces.
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spleen. Therefore, to enable therapeutic concentrations of the NDDS to interact with tumors, PNPs 

must evade the MPS, while retaining their stability during blood circulation. Phase II: ‘Accumulation 

and Penetration.’ PNPs must extravasate from the bloodstream via leaky vasculature into the tumor, 
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trafficked into endo/lysosomes and finally degraded to release their therapeutic cargo. Depending on 
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compartments to the cytosol. TAM= tumor-associated macrophages; EPR effect = enhanced 

permeability and retention effect; ECM = extracellular matrix; IFP = interstitial fluid pressure. 

Figure 1. The three phases of PNP delivery and the pathophysiological barriers they encounter
after systemic administration (i.e., intravenous injection). Phase I: ‘Circulation.’ After entering the
bloodstream, protein corona formation on PNPs can evoke recognition by the mononuclear phagocytic
system (MPS), leading to their clearance via MPS-rich organs; e.g., liver, kidney, and spleen. Therefore,
to enable therapeutic concentrations of the NDDS to interact with tumors, PNPs must evade the MPS,
while retaining their stability during blood circulation. Phase II: ‘Accumulation and Penetration.’
PNPs must extravasate from the bloodstream via leaky vasculature into the tumor, where they must
overcome physical and physiological barriers to penetrate deep into the tumor microenvironment.
Phase III: ‘Internalization and Cargo Release.’ Following endocytosis, PNPs are trafficked into
endo/lysosomes and finally degraded to release their therapeutic cargo. Depending on their cargo’s
mode-of-action, PNPs may need to escape (and avoid degradation) from endo/lysosomal compartments
to the cytosol. TAM= tumor-associated macrophages; EPR effect = enhanced permeability and retention
effect; ECM = extracellular matrix; IFP = interstitial fluid pressure.
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Figure 2. Illustration showing the various outer surface modifications used to make ‘stealth’ PNPs,
and/or enhance their cellular targeting, uptake, and intracellular trafficking.

In the first phase of systemic delivery, PNPs enter the blood stream, wherein plasma proteins
adsorb non-specifically onto their surfaces to form a biologically active coating termed the “protein
corona” [50]. The formation of this corona is unavoidable, rapid and dynamic, and is primarily
determined by the PNPs’ surface chemistry, charge, and size [50,51]. The biological fate and function
of a PNP is the result of specific physiological responses toward this ‘PNP–protein corona’ complex
(Figure 1, Phase I). Importantly, opsonin proteins (e.g., immunoglobulins (IgG) and complement
proteins) within the protein corona trigger recognition by the MPS, which promptly engulfs any
opsonin-bearing PNPs and clears them from the bloodstream. This fast-acting innate immune response
reduces PNP concentrations, preventing therapeutic amounts reaching the site of action and thus
represents a significant barrier to success for many NDDS.

Protein corona formation on PNPs remains understudied. In the only detailed report on this topic,
Steinmetz and co-workers showed that a protein corona formed on the surface of TMV after exposure
to blood plasma [16]. The amount of proteins adsorbed onto TMV was about six-fold lower than that
those absorbed onto synthetic silica oxide nanoparticles. This less efficient adsorption of proteins
was due to the TMV’s heterogeneous surface properties (i.e., variable charge and hydrophobicity),
while the synthetic silica oxide nanoparticles’ smooth surfaces and uniform surface charges promoted
the formation of a rich protein corona. Opsonins (i.e., IgG and complement protein C3) were the
most abundant components of the protein corona of TMVs [16], making clearance by the MPS likely.
Furthermore, heat-induced changes in TMV’s morphology from rod-shaped to spherical, and the
incorporation of lysine residues to increase its surface charge positivity, had only minimal effects on
TMV’s protein corona profiling [16]. Uptake of PNPs by macrophages may also induce the adaptive
immune response that generate PNPs-specific antibodies, which also contribute to the rapid elimination
of PNPs in the bloodstream. For example, Aanei et al. reported that the repetitive injection of MS2
protein nanocages into mice resulted in the generation of IgG, IgM, and MS2-specific antibodies.
The MS2-specific antibodies were also detected despite the presence of protective polyethylene glycol
(PEG) coatings on the MS2 surface [52]. Similar results were also observed for TMV, in which
TMV-specific antibodies were generated after a second injection of both native and PEGylated-TMV
in mice [17].

The formation of a protein corona can affect a PNP’s colloidal stability and biodistribution
profile [16]. When PEGylated-TMV was decorated with a fibrinogen-binding peptide (GPRPP),
the resulting TMV–PEG–GPRPP rapidly aggregated after exposure to human plasma, while TMV–PEG
remained stable. GPRPP peptide has strong affinity towards fibrinogen; therefore, increasing the
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proportion of fibrinogen within the protein corona of TMV–PEG–GPRPP, which could be responsible for
the observed aggregation [16]. Following injection into a mouse model, TMV–PEG–GPRPP displayed
higher accumulation in the lung than TMV–PEG, due to aggregation and filtration through lung
capillaries. Thus, as shown in this study, the degree of PNP aggregation may affect its bio-distribution
profile in vivo.

Enhancing the Pharmacokinetic and Biodistribution Profiles of PNPs

To be considered a suitable NDDS for clinical applications, a PNP must demonstrate good in vivo
pharmacokinetic and biodistribution profiles. Accordingly, a PNP needs be resistant to degradation
and metabolism, evade recognition and clearance by the immune system, and avoid non-specific
uptake by off-target cell types (e.g., endothelial cells). To address these challenges, a variety of “stealth”
coatings have been developed and applied to PNPs, some of which we discuss below.

• PEGylation

PEGylation is the most well-established and practical strategy to help NDDSs evade the immune
system and increase their blood circulation times. PEGylation reduces serum protein adsorption
and opsonization, while promoting the formation of protein coronas enriched with dysopsonins.
Dysopsonin proteins (e.g., clusterin/ApoJ) inhibit phagocytic ingestion by macrophages [53]. Recently,
the PEGylation of TMV was shown to reduce opsonization, with less complement proteins, plasminogen
and immunoglobulins observed within their protein coronas [16]. This altered corona probably
explained the doubled circulation time of the TMVs from 3.5 min to 6.3 min [47]. In another study,
PEGylated SV40 showed 100-fold lower internalization by RAW264.7 murine macrophage cells,
which reduced its distribution within MPS organs (i.e., liver, spleen, and bone marrow) and prolonged
its in vivo half-life from 5 min to 12 h [25].

Despite its widespread use, PEG coatings have been shown to trigger the generation of PEG-specific
antibodies after repeated administration, leading to the clearance of PEGylated entities from blood
(also referred to as the ‘accelerated blood clearance (ABC) phenomenon’) [53]. This new observation
has led to the search for alternative ‘stealth’ coatings for NDDSs, including PNPs. Besides PEG, several
anti-fouling polymers have been reported as potential stealth coatings for NDDS, like polybornene,
polypyrrole, poloxamer, and many others [54–56].

• Serum Albumin Coatings

Albumin is a naturally abundant plasma protein that can be used as a surface coating to
avoid the PEG-specific antibody clearance of PEGylated-PNPs. For example, serum albumin (SA)
coatings were covalently cross-linked to PEGylated-TMV (SA/PEG–TMV) [57]. When compared to
PEGylated-TMV, in vitro dot blot studies revealed that SA coatings made SA/PEG–TMV 5–6 times less
recognizable by both TMV and PEG-specific antibodies. However, despite reduced recognition by
antibodies, SA/PEG–TMV was internalized by RAW294.7 macrophages in vitro in a similar manner
as PEGylated-TMV. Moreover, after repetitive injection, balb/c mice treated with PEGylated-TMV or
SA/PEG–TMV still showed a robust production of TMV-specific antibodies, but no detectable amounts
of SA-specific antibodies. In vivo studies also showed that the SA/PEG–TMV had a 100-fold greater
half-life than PEGylated TMV. This study indicated that additional SA coating can mask the TMV from
recognition by both TMV and PEG-specific antibodies. This was confirmed by the negative binding
of the TMV-antibody isolated from SA/PEG–TMV immunized mice towards SA/PEG–TMV in dots
blot study [17,58].

In a similar study, ferritin was genetically modified to display a serum albumin-binding domain
(from the streptococcal protein G) on its external surface (ABD–Hfn), enabling the facile non-covalent
attachment of serum albumin coatings upon entering the blood plasma [26]. ABD–Hfn was loaded
with DOX as a drug model and fluorescent reporter in pharmacokinetic studies performed in mice.
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When compared to wild-type ferritin, ABD–Hfn successfully extended DOX’s blood circulation half-life
(from 0.9 h to 17 h) and residence time (from 1.97 h to 17 h) [26].

• Blood circulation-prolonging peptides

A biomimicry strategy to avoid clearance by the immune system is to attach the CD47 “do not
eat me” signal to NDDS. The cell-surface protein CD47 interacts with its receptor on macrophages,
SIRPα, to prevent the phagocytosis of normal ‘self’ cells. The critical segment of the CD47 protein,
referred to as the ‘self-peptide,’ has been used as a functional anti-phagocytosis ligand for NDDS [59].
For example, presentation of the ‘self-peptide’ on the surface of liposomal [60] and polystyrene
nanobeads [59] reduced their macrophage-mediated clearance, thus enhancing their circulation times
and accumulation in tumors. This approach has also been applied to PNPs, for instance, the P22
nanocage was genetically engineered to display the ‘self-peptide’ on its outer surfaces (via its ‘decoration
protein’). This modification reduced P22 nanocage uptake by primary splenocytes in vitro by 50% [35].
However, biodistribution and pharmacokinetic studies are needed to confirm the enhancing effect the
‘self-peptide’ has on the circulation half-life of P22 nanocages in vivo [35].

Another reported peptide that extends the half-life of PNPs is the blood circulating-prolonged
peptide 1 (BCP1) which is derived from the MS13 bacteriophage [61]. BCP1 was genetically fused at the
N-terminus of human heavy chain ferritin which was then loaded with DOX. In mice, the DOX-loaded
BCP1-ferritin had a half-life of 14.9 h, whereas the half-lives of DOX-loaded wild-type ferritin and free
DOX were only 7.8 h and 3.3 h, respectively. BCP1 was also shown to delay macrophage-mediated
clearance and enhance blood retention ferritin due to its binding interactions with platelets. Due to its
extended circulation time, DOX-loaded BCP1-ferritin showed greater antitumor activity in vivo than
DOX-loaded ferritin or free DOX alone [61]. Interestingly, the interactions between BCP1 and ferritin
could be potentially exploited in ‘cell-mediated delivery’ strategies, wherein PNPs are modified to
bind the surfaces of living cells (e.g., platelets, red blood cells or leukocytes) to increase their circulation
time and/or targeting efficiencies [62,63].

• Long Repetitive Hydrophilic Peptides

Repetitive and highly hydrophilic peptides have been designed to mimic the physicochemical
and ‘stealth’ properties of PEG. Falco and co-workers used ‘PASylation,’ a technique in which they
genetically fused PAS (Pro–Ala–Ser) polypeptides at the N-terminus of ferritin subunits (up to 75
residues in length). PASylation was used to prevent the interaction of ferritin and its natural receptor
TfR-1, reducing its uptake by healthy off-target cells and prolonging its circulation time. Using surface
plasmon resonance, the PASylated ferritin displayed an about six-fold lower binding affinity towards
TfR-1 than wild-type ferritin [29]. In vivo, PASylated ferritin prolonged the DOX half-life up to
12.3 h, while the wild-type ferritin only up to 2.7 h [64]. The same research group also reported a
modification of this peptide by adding glutamate (Glu (E)) residues to form a repetitive ‘PASE’ sequence.
The Addition of glutamate was used to introduce a negatively charged residue into the modified ferritin,
thus promoting a longer circulation lifetime and reducing accumulation in the liver [28]. While loaded
with DOX, PASE-ferritin had a significantly higher plasma residence concentration, higher DOX
accumulation in tumor tissue, and lower accumulation in the liver, compared to PAS-ferritin.

Kim and co-workers [32] developed long circulating ferritin nanocages (LCFNs) with “intrinsically
disordered proteins” (referred to as X-TEN) as a stealth layer. X-TEN is a randomized amino acid
sequence composed of hydrophilic amino acids (Ala, Gly, Glu, Pro, Ser and Thr). The genetic fusion of
X-TENs of varying lengths to the outside of ferritin, resulted in a series of LCFN variants with enhanced
in vivo pharmacokinetic profiles. For example, when compared to wild-type ferritin nanocages (wtFN),
the LCFN variant LCFN144, displayed a ~12-fold longer circulation half-life (t1/2), ~13.5-fold greater
mean blood residence time; and a 37-fold slower clearance rate (ml hr−1 kg−1) [32]. X-TEN coatings
were also shown to reduce the internalization of LCFN144 by macrophages and endothelial cells,
indicating their ability to mask LCFN144 from the MPS and prevent non-specific cellular uptake
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(by cells expressing natural ferritin receptors). In a tumor-bearing mouse model, these ‘stealth’
properties allowed LCFN144 to passively accumulate over time within tumors in vivo, which was
further improved by the attachment of tumor-targeting affibodies, leading to a two-fold increase in
tumor accumulation in vivo when compared to wtFN.

3.2. Phase IIa: Accumulation

In the next phase of delivery, PNPs must extravasate out of blood vessels into the tumor site
(Figure 1, Phase II). By means of prolonged circulation times, PNPs can accumulate inside tumors via
the enhanced permeability and retention (EPR) effect. The EPR effect relies on the differences between
the vascularization of normal tissues and tumors. In normal tissues, small molecules transit easily out of
the blood stream, while large molecules, such as NDDS, cannot. In contrast, the tumor vasculature is a
chaotic network of undeveloped and “leaky” angiogenic blood vessels, which allows the extravasation
of large NDDS that are up to several hundred nanometers in size. This, in conjunction with impaired
lymphatic drainage, results in the relatively effective and somewhat selective accumulation of NDDS
within tumors [9,65]. Accordingly, most FDA-approved cancer nanomedicines exploit the EPR effect
to “passively” target and accumulate within diseased tissues. However, the clinical efficacy of the
EPR effect has become highly controversial. This is due to widespread variations in the presence of
leaky tumor vasculature and its inconsistent molecular cut-off size, which is dependent on the patient
and the tumor’s location, stage, and type [66]. In addition, tumor tissue exhibits irregular blood
vessel formation and permeability, poor blood flow, and non-uniform interstitial fluid pressure (IFP),
which further limits the extravasation and perfusion of NDDSs [66,67]. Therefore, tactics to overcome
these barriers are needed.

Improving the PNP’s Tumor Accumulation

A number of strategies have been developed to enhance the transit of NDDSs across blood vessels
into tumors. These mostly involve modifying the physicochemical and functional properties of NDDSs,
and/or modulating the tumor vasculature itself. In general, NDDSs that have small dimensions (12–60
nm) and are neutrally charged, elongated, and flexible, demonstrate good blood-vessel crossing [68].
Steinmetz and colleagues investigated the relationship between the aspect ratio and the passive
targeting properties of PNPs [69]. Filamentous TMVs of varying lengths (Ls) and aspect ratios (ARs)
were produced and subsequently functionalized with PEG. The resulting PEGylated TMVs were
referred to as PEG-TL (L 300 nm; AR 16.5), PEG-TM (L 130 nm; AR 7) and PEG-TS (L 60 nm; AR 3.5) [69].
After injection into tumor-bearing mice, AlexaFluor647 labelled-PEG-TS showed the highest passive
accumulation within tumor tissue (ex vivo fluorescence quantification). This result was due to PEG-TS’s
small size and low AR, which enabled it to extravasate through the “leaky” tumor vasculature more
effectively than the larger PEGylated TMVs with higher ARs [69]. This highlights the need to select
of PNPs with favorable physical (size and shape) and functional (e.g., PEGylation) properties that
enable extravasation.

Techniques that augment the physiology of the tumor vasculature have been used to enhance the
EPR effect. These include, increasing blood flow by administration of vasodilator agents (e.g., nitric
oxide); enhancing blood vessel permeability by physically disrupting tumor vasculature; and weakening
a tumor’s structural strength and internal pressure by eliminating cells located within the tumor
itself [70]. PNPs have also been designed to facilitate EPR enhancement. For example, Zhen et al.
engineered photosensitizer-loaded RGD (Arg–Gly–Asp) modified ferritin (ZnF16Pc-loaded RFRT) that
could “actively” target tumor vasculature (via the integrin-binding activity of RGD) [71]. After IV
administration of ZnF16Pc-loaded RFRTs into mice bearing subcutaneous tumors, photodynamic
therapy (PDT) was performed. In this process, light-activated ZnF16Pc-loaded RFRTs delivered
destructive reactive oxygen species (ROS) to the tumor endothelium, which permeabilized tumor
blood vessels and increased the ‘leakiness’ of the tumor vasculature. Systemically administered Doxil
(DOX-loaded liposomes) were then shown to easily pass through the disrupted endothelial barrier
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and enter the tumor parenchyma, indicating EPR enhancement. With this pre-treatment step, 20-fold
more Doxil accumulated in the tumor site and its therapeutic efficacy increased by 75% in vivo [71].
This study highlights the potential for engineered PNPs to directly modulate physiology and their
compatibility with other NDDSs to create multimodal nanomedicine-based treatment regimens.

3.3. Phase IIb: Penetration

After extravasation from blood vessels, PNPs enter the highly complex and heterogeneous tumor
microenvironment (TME) (Figure 1, Phase II). The TME is composed of cellular and non-cellular
components. The TME possesses unique physiological conditions that are associated with tumor growth
and progression, such as acidic pH; hypoxia; high interstitial fluid pressure (IFP); and proteinases
(e.g., metalloproteinases), which are commonly used as a trigger for stimuli responsive NDDSs [72].
Malignant cells within solid tumors make up the tumor parenchyma, which are supported by the
tumor stroma. The tumor’s stroma consists of a diverse range of elements, including new blood
vessels, abundant tumor-associated macrophages (TAMs), connective tissue cells, and the extracellular
matrix (ECM) [73]. Connective tissue cells like fibroblasts and mesenchymal stromal cells are highly
active within the tumor parenchyma and produce a range of growth factors, cytokines, chemokines,
and proteinases. They are referred to as “cancer-associated fibroblasts” (CAFs) and their activation
directly promotes the proliferation of tumor cells, tumor angiogenesis, and ECM remodeling. The ECM
is a structural scaffold built by fibrous molecules, such as collagen, hyaluronic acid and proteoglycans.
During its remodeling, the ECM becomes denser, more rigid and more fibrotic. This increases stress
on the solid tumor and compresses its vasculature, thus becoming a significant physical barrier
and limiting factor for the movement, penetration, and distribution of an NDDS inside the tumor
parenchyma [73].

The smaller the size of the NDDS, the greater its ability to transport and diffuse through tumor
interstitial space. Based on the same principles for enhancing extravasation, tumor penetration by
PNPs is greatly influenced by their size, shape, and surface charge. Therefore, due to the inherently
small dimensions (as low as ~10 nm) of most PNPs they are able to move through the extracellular
space within the TME via simple diffusion. Similar to synthetic NDDSs, filament-like PNPs show better
abilities to penetrate deeper and diffuse through fibrous matrices (like collagen) due to their physical
flexibility [74]. For example, fluorescent microscopy was used to visually track fluorescently-labelled
filamentous PVX in an avian embryo tumor xenograph model. PVXs were observed accumulating,
penetrating, and finally reaching the tumor’s inner core. In contrast, fluorescently-labelled spherical
CCMVs were seen spreading throughout the tumor without any enhanced localization in the inner core
region. Similarly, in tumor-bearing mice, PEGylated PVXs showed enhanced tumor tissue penetration
and 15% higher tumor accumulation than PEGylated CPMV [74]. Thus, the physical properties of
PNPs should be considered when delivering therapeutics to solid tumors.

One strategy to enhance the tumor penetration of some PNPs is to exploit their natural affinity
toward cell-surface receptors, which can facilitate receptor-mediated transcytosis/transcellular transport
deep inside tumors. This phenomenon was recently shown between ferritin (FTn) and its native
Transferrin receptor-1 (TfR-1). Huang et al. [27,75] performed tumor penetration studies using 3D lung
cancer cell spheroids. Bare FTn and FTn PEGylated with low molecular weight PEG (FTn–PEG2K)
distributed uniformly throughout the entire spheroid (including its inner core), while FTn PEGylated
with higher molecular weight PEG (FTn–PEG5K and FTn–PEG10K) were predominately localized in the
spheroid’s periphery. Interestingly, in the presence of anti-TfR-1 (blocking agent), FTn–PEG2k became
unable to penetrate the tumor, localizing in the outer regions. These results indicated that TfR-1 played
an important role in mediating FTn tumor penetration, while higher molecular weight PEG (long
chain length) can hinder FTn/TfR-1 interactions, limiting FTn penetration. TfR-1 was overexpressed
in the hypoxic and hard-to-reach interior regions of tumors. The authors also investigated the effect
PEGylation coverage (%) had on the ability of FTn to penetrate lung tumor spheroids. In comparison to
various PEGylated FTns, the FTn containing≥75% PEGylated subunits (PEG–FTn75% and PEG–FTn85%)



Nanomaterials 2019, 9, 1329 11 of 25

displayed the greatest accumulation within the hypoxic interior of the spheroid model (Figure 3B).
Following intratumoral injection into a tumor-bearing mice model, PEG–FTn75% accumulated more
efficiently within hypoxic regions of the tumor than non-PEGylated FTn. These studies indicate that
the molecular weight and density of a PNP’s PEG coating (and other ‘stealth’ coatings) must be finely
tuned to enhance a PNP’s circulation half-life while maintaining their ability to target and penetrate
tumors [27,75].Nanomaterials 2019, 9, x FOR PEER REVIEW 15 of 25 
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Figure 3. Examples of PNP-mediated drug delivery for different cancer therapies. (Left panel)
Anti-hypoxia therapy: ferritin-mediated delivery of the HIF-1α inhibitor, Acriflavine (AF). (A) AF is
encapsulated within PEGylated ferritin (FTn) via assembly-disassembly method. (B) Fluorescence
microscopy showed that the PEGylation density of FTn affected its ability to penetrate 3D lung cancer
tumor spheroids. (C) FTn with a PEG coverage of ≥75% (PEG–FTn75%) showed deep penetration and
accumulation within inner hypoxic areas of tumor spheroids. (D) Tumor sections from orthotropic lung
tumor-bearing mice showed that PEG–FTn75% successfully penetrated inner hypoxic areas in tumors
after systemic injection. (E) Delivery of AF using PEG–FTn75% significantly reduce HIF5-1α, LOX,
and VEGF expression in vivo. Adapted from [27], with permission from American Chemical Society,
2019. (Right Panel) Photodynamic therapy (PDT): ferritin-mediated delivery of photosensitizers for
photodynamic therapy. (F) Ferritin is used to target the delivery of photosensitizers into tumors
to mediate PDT which kills cancer-associated fibroblasts (CAFs), weakens the extracellular matrix
(ECM), and enhances the penetration of nanoparticles into the tumor. (G) ZnF16PC-loaded chain
variable fragment (scFv)–ferritin for targeted PDT (H) Both the free photosensitizer ZnF16PC and
ZnF16PC-loaded scFv–ferritin produced similar amounts of reactive oxygen species ROS upon
irradiation in time dependent manner (I) Bilateral tumor bearing mice were used to compare the effect
of PDT on the reduction of collagen level in the tumor ECM. The tumor covered with aluminum foil was
not irradiated. (J) Tumor section from irradiated tumor and non-irradiated tumor. ECM levels were
decreased by PDT in the irradiated tumor (Mason’s trichome staining). (K) Increased accumulation
of 50 nm quantum dots (QDs) in the irradiated tumor after PDT indicated that the decrease in ECM
improves the penetration and accumulation of the NDDS in tumor tissue (Maestro II imaging system).
Adapted from [31], with permission from American Chemical Society, 2018.
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3.4. Phase III: Internalization and Cargo Release

After the PNPs’ penetration and subsequent accumulation within the TME, their therapeutic
cargo can be released either extracellularly within the TME or intracellularly inside the tumor cells
(Figure 1, Phase III). This release can be triggered by environmental stimuli (extra or intracellularly) or
by simple degradation of the PNP itself [12]. The desired release method is obviously contingent upon
the cargo’s therapeutic mode-of-action.

For intracellular delivery, the outer surfaces of a PNP can be decorated with cancer-targeting
ligands (e.g., peptides, aptamers, and antibodies) that mediate its selective recognition and uptake
by tumor cells. However, ligands on a PNP surface are often sterically masked by a protein corona
that forms during circulation. This causes non-selective binding and uptake of the PNP by otherwise
healthy cells and tissues. In addition, the presence of stealth coatings that reduce corona formation,
like PEG, may hinder interactions between the targeting ligand and its corresponding receptor, further
reducing PNP uptake. This phenomenon is termed the “PEG dilemma.”

To overcome the PEG dilemma, active-targeting moieties are often conjugated to PNP surfaces via
flexible spacer regions. For example, Steinmetz and co-workers incorporated PEG spacers between the
surface of TMV and tumor-targeting RGD peptides [16]. Herein, PEG spacers of varying chain lengths
(4, 12, or 24 PEG units) were attached to TMV, providing 25% PEG–RGD coverage in a ‘mushroom
conformation.’ The longer the PEG spacer’s chain length, the more effective it was at mitigating TMV’s
opsonization (‘stealth’). RGD-modified TMVs with PEG spacers displayed three times higher uptake
in HeLa cervical cancer cells than those without PEG spacers. Thus, the PEG spacers improved the
orientation of RGD, promoting its specific binding interactions with integrins overexpressed on the
HeLa cells.

Cleavable-stealth coatings are another approach employed to address the PEG dilemma.
For instance, ferritin was decorated, via genetic engineering, with a matrix metalloproteinase
(MMP)-cleavable PASE peptide and loaded with the anticancer drugs DOX or mitoxantrone (via a
disassembly–reassembly procedure) [28]. The PASE peptide acted as a stealth coating that prolonged
ferritin’s half-life by reducing its unspecific uptake by normal cells. Once ferritin entered the TME,
the PASE peptide was cleaved by intratumoral MMP-2. As a result, the unmasked ferritin was
internalized via its natural transferrin receptor-1 (TfR-1 or CD71), which is overexpressed on cancer
cells. Other physicochemical properties of the unique TME (e.g., acidic pH, hypoxia, and proteinases)
can be exploited to trigger the cleavage of stealth coatings.

Like most NDDS, PNPs are internalized by tumor cells through a process known as endocytosis.
Endocytosis pathways can be subdivided into four categories; namely, macropinocytosis, the clathrin-
mediated pathway, the caveolae-mediated pathway, and the clathrin/caveolae independent pathway.
The internalization of PNPs by tumor cells can occur via one or more of these pathways. Which pathway
is activated is determined by a PNP’s size, shape, surface chemistry, and its interactions with the
cellular membrane [76]. Most actively targeted PNPs enter cells via the clathrin-mediated pathway
which is a receptor-mediated pathway. Except for the caveolae-mediated pathway, that may delivery
the endosomal cargo to the cytosol, all three other pathways will first traffic a PNP to early endosomes
(pH 6.5–6.0); then to late endosomes (pH 6.2–5.2); and finally, to lysosomes (pH 5.2–4.5). The harsh
acidic pH and proteases (e.g., cathepsin) within lysosomes are then responsible for the degradation of
PNPs and/or their cargo [77].

PNPs have been reported to demonstrate different intracellular fates upon endocytosis. Wild type
SV40 entered CV-1 cells (kidney murine cells) via the caveolae-mediated pathway and were then
transported to the cell’s endoplasmic reticulum (ER) [78]. CPMVs were shown to be taken up by HeLa
cells through both the caveolae-mediated pathway and micropinocytosis, resulting in their accumulation
inside late endosomes and lysosomes [79]. Chang et.al reported that the MS2 bacteriophage decorated
with an epidermal growth factor receptor (EGRF)-targeting peptide, GE11, was internalized by Hep2G
(hepatocellular carcinoma) cells via both the clathrin-mediated and micropinocytosis pathways [80].
Moreover, the GE11-decorated MS2 was internalized by the cells within 30 min and reached maximum
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intracellular levels after 12 h [80]. However, this study did not specify whether GE11-MS2 ended
up inside lysosomes. In the majority of studies, PNPs are localized inside lysosomes following their
endocytosis, leading to their degradation. This degradation can be potentially utilized as a mechanism
to release small-molecule chemotherapeutic drugs; e.g., DOX.

In most cases, PNP degradation is not desirable; PNPs should, therefore, be designed to escape from
endo/lysosomes. A proven strategy to promote PNPs’ endosomal escape is to modify their surfaces with
cell-penetrating peptides (CPPs) and/or fusogenic peptides. CPPs are highly cationic and amphiphilic
peptides that can interact with membrane lipids [81]. The TAT peptide (GRKKRRQRRRPQ)—derived
from the transactivator of transcription (TAT) of the human immunodeficiency virus, is a widely used
CPP, and has been previously attached to MS2 and TMV to enhance endosomal escape in siRNA
delivery applications [15,20]. M-lycotoxin peptide L17E which is derived from spider venom, is another
CPP capable of disrupting endo/lysosomal membranes [23]. L17E was conjugated to CCMV and
used to enhance the cytosolic delivery of GFP siRNA in an in vitro model. The resulting L17E–CPMV
successfully increased siRNA transfection efficiency and was able to ‘silence’ GFP expression by 50%
in genetically engineered HeLa cells. In contrast, unconjugated CPMV decreased GFP expression by
30% in the same model, indicating L17E’s ability to mediate the endosomal escape of PNPs.

Table 2. Engineering strategies used to maximize PNP delivery in vivo.

Purpose Engineering Strategy PNP Example in This Review

Prolong circulation half-life

PEGylation TMV [16], SV40 [25]
Albumin coating TMV [17,58], Ferritin [26]

CD47 “self-peptide” P22 [35]
Blood-circulating peptide-1 (BCP-1) Ferritin [61]

PAS/PASElation Ferritin [28,29]
X-TEN Ferritin [32]

Increase tumor accumulation
Tumor vasculature disruption (PDT) Ferritin [71]

Elongated PNPs TMV [69], PVX [82]

Improve tumor penetration and diffusion
Receptor-mediated transcytosis Ferritin [27]

Elongated/High aspect ratio TMV [69], PVX [82]
ECM degradation (via PDT) Ferritin [31]

Enhance cellular uptake Cell-targeting peptide (with PEG spacer) TMV [16]
Cleavable-stealth coating Ferritin [28]

Mediate endo/lysosomal escape Cell-penetrating peptide MS2 [20], TMV [15], CCMV [23]
Fusogenic peptide MS2 [19]

In another report, Ashley et al. genetically modified MS2 to display the SP94 peptide—which
selectively targets hepatocellular carcinoma (HCC) cells. The resulting MS2–SP94 was internalized
by HCC cells, but became trapped inside lysosomal compartments where it can be degraded.
To avoid this, MS2–SP94 was additionally engineered to co-display the H5YGW fusogenic peptide.
The histidine- rich H5YGW peptide became protonated by the endosome’s acidic pH (pKa = 6.0),
which induced the osmotic swelling of endosomes and the destabilization of endosomal membranes [19].
MS2 co-displaying SP94 and H5YGW were observed to be taken up by HCC cells, and subsequently
distributed inside the cytosol 1 h after their endocytosis, thus indicating their ability to escape from
endosome [19]. Importantly, this work shows that the intracellular fate of PNPs can be tuned to best
deliver its therapeutic cargo.

4. The Application of PNPs as NDDS for Cancer Therapeutics and Imaging Agents

PNPs are used as nanocarriers for anticancer drugs and imaging agents. A variety of methods to
load drugs inside PNPs have been reviewed elsewhere [12]. Different passive and active targeting
methods have been tested to help the delivery of drug-loaded PNPs to cancers. In this section,
we describe current methods available for designing PNPs as NDDS for cancer therapy and imaging.
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4.1. The Delivery of Anti-Cancer Therapeutics

Encapsulation of a drug by a PNP should improve a drug’s physiochemical and pharmacokinetics
properties. A good design would also increase drug loading, maintain the stability of both the PNP
and its cargo, and minimize early drug leakage during storage and en route to its site-of-action.
Furthermore, PNPs made for clinical purposes should be reliable, scalable, and compatible with other
clinically compliant processes.

Ferritin is the most commonly used PNP for the delivery of chemotherapeutics in research. Ferritin
disassembles in acidic pHs or high salt conditions, and is then made to reassemble in the presence
of a drug at a neutral pH or in normal salt conditions, respectively. The drug becomes encapsulated
within its interior cavity. Although ferritin as a drug loading method has limitations, this phenomenon
has been exploited by researchers to encapsulate chemotherapy agents; encapsulation of doxorubicin
(DOX) in each ferritin particle via the pH-mediated disassembly/reassembly method resulted in the
uptake of 20 to 30 DOX molecules. However, 30% of the drug was lost via leakage during the first
week of storage [64]. In addition, 50% of ferritin PNPs were lost because of acid-induced precipitation.
The reassembly of ferritin is not fully reversible because losses in protein subunit conformation can
cause DOX leakage [83]. We should mention that losing DOX because of hydrolysis after exposure to
low pH was not investigated by the authors.

Hypoxia-inducible factor 1-alpha (HIF-1α) is a transcription factor that mediates adaptive
responses to hypoxia and plays important roles in tumor growth and progression [84]. Due to ferritin’s
inherent ability to reach hypoxic areas within solid tumors (where HIF-1α is upregulated), PEGylated
ferritin (PEG–FTn75%) has been utilized to target the delivery of the HIF-1α inhibitor, acriflavine
(AF) (Figure 3A) [27]. AF was first encapsulated inside PEG–FTn75% using a denaturant triggered
disassembly-reassembly method, resulting in 62 ± 4 AF molecules per PEG–FTn75%. Compared to
free AF, AF-loaded PEG–FTn75% showed a four-fold longer circulation time (mean residence time:
1.39 h versus 5.91 h) and a 72-fold greater area under curve (AUC). This enhanced pharmacokinetic
profile resulted in seven-fold higher AF accumulation in tumor tissue in vivo, after intravenous
administration. Fluorescent imaging of 3D lung cancer cell spheroids and in vivo tumor sections
showed that PEG–FTn75% successfully penetrated into inner hypoxic areas in these tumor models
(Figure 3B,C). Consistent with this result, PEG–FTn75% that was systemically delivered into an
orthotropic lung cancer mouse model, was shown to accumulate in the hypoxic areas of tumors
that lacked vascularization (Figure 3D). Further, using real time PCR and western blot analysis,
PEG–FTn75%/AF was also found to be two times more effective at inhibiting the in vivo expression of
HIF-1α and HIF-1α driver genes (i.e., vascular endothelial growth factor, VEGF), when compared to
free AF (Figure 3E). This study comprehensively demonstrates that a drug can be efficiently loaded into
PEG–FTn75%, resulting in improved pharmacokinetic profiles, targeted delivery (i.e., inner hypoxic
regions), and enhanced efficacy.

As an alternative to the well-established pH- or denaturant-mediated disassembly/reassembly
method, Zhen et al. [85] exploited the native divalent metal (i.e., Fe(II)) binding functionality of ferritin
to load it with drugs. By pre-complexing metal copper ion with DOX (Cu-Dox), the DOX loading of
RGD-modified ferritin reached ~30 wt%. Ahn et al. [30] further optimized a ‘nicked ferritin,’ a hybrid
ferritin composed of human heavy chain ferritin and four-fold truncated ferritin (F-160). This nicked
ferritin variant had wider pore openings than the original (<4Å) and displayed increased Fe(II)-Dox
loading. This strategy successfully provided 70% protein stability after incubation of the ferritin
with metal. Through this method a DOX final load of 121 molecules per PNPs was achieved which
remained stable in neutral pH for over 25 h [30]. In another drug-loading method, Wang et al. [86]
tested high hydrostatic pressure (500 MPa) at a pH of 5.5 to disassemble ferritin and to increase protein
conformation recovery. Following disassembly at high pressure, a gradual decompression was used to
induce gently ferritin reassembly and DOX encapsulation. Protein aggregation was reduced by the
addition of 20 mM arginine during this process and resulted in 100% ferritin recovery and no premature
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drug leakage over 2 weeks. This approach may provide a method for the scaled-up production of drug
encapsulation inside ferritin.

Other PNPs have been loaded with anticancer agents. Murata et al. [36] engineered the 13 nm
small heat shock protein 16.5 (Hsp 16.5) PNP from the thermophilic archaeon Methanococcus jannaschii
to deliver OSU03012 for the treatment of pancreatic cancer. OSU03012 is a novel derivative of celecoxib,
which causes tumor cell death via endoreticulum stress-induced cell death signaling. Due to its
hydrophobicity, OSU030312 could be physically entrapped within the hydrophobic regions of Hsp.
To achieve this, OSU030312 and Hsp were mixed for 30 min at 50◦C, which led to the encapsulation of
40–50 OSU030312 molecules per Hsp. To enable its targeted delivery, Hsp was also genetically modified
to display iRGD—a peptide that binds the neurophilin-1 receptor overexpressed on pancreatic cells.
For in vitro cell viability studies with AsPC-1 pancreatic cancer cells, OSU030312-loaded iRGD-Hsp
(IC50 = 4.7 µM) was found to be slightly more cytotoxic than OSU030312-Hsp (IC50 = 5.4 µM) and up
to two-fold more cytotoxic than free OSU030312 (IC50 = 10 µM). These results show that the Hsp PNPs
are able to enhance both the delivery and efficacy of OSU030312.

Targeting ligands, therapeutics and fluorescent dyes can be covalently attached to reactive amino
acid residues that are presented either naturally or by mutation on the PNPs surface. For example,
Moon et al. [34] recently used this approach to modify the encapsulin protein nanocage from the
bacterium Thermotoga maritima for drug delivery. The authors used amine-reactive chemistry to
conjugate the hepatocellular carcinoma-targeting peptide SP94 to the naturally-occurring lysine
residues on the exterior surface of the encapsulin, thus enabling their specific tumor-targeting
capabilities. Encapsulin sub-units were genetically engineered to display a single cysteine residue,
resulting in a total 60 surface-available cysteines. This enabled the precise use of sulfhydryl-reactive
chemistry to covalently attach the 60 molecules of the anticancer prodrug, Aldoxorubicin (ALDox).
The Aldox-SP94 encapsulin was shown to release 60% of the attached Aldox at pH 5 after 8 h.
Furthermore, in vitro cytotoxicity studies using Hep2G hepatocellular carcinoma cells indicated that
the Aldox-SP94 encapsulin showed similar toxicity to free Aldox. Thus, encapsulins, like other PNPs,
can be readily engineered for the precise incorporation of functionalities, which is highly advantageous
in clinical applications.

4.2. Delivery of Photosenstizers for Photodynamic Therapy (PDT)

Photodynamic therapy (PDT) can provide minimal invasive cancer treatment. PDT relies on
the photochemical reactions between excitation light and photosensitizers (PS) to convert molecular
oxygen into damaging reactive oxygen species (ROS). Several PS are clinically approved for the
treatment of cancers, including porfimer sodium, which is used to treat cervical, endobronchial,
esophageal, lung, bladder, gastric, and brain tumors [87,88]. PDT treatment kills cancers by generating
ROS that kill tumor cells directly; damage tumor vasculature; and/or activate the immune system to
recognize and kills tumor cells [88,89]. Although PDT has been extensively used in clinical settings,
patients often suffer from skin photosensitivity. Moreover, utilization of PDT in the treatment of
bulky solid tumors is subject to several limitations, including: (i) uneven and low PS accumulation in
tumor tissue after systemic administration; (ii) tumor hypoxia that limits the availability of oxygen;
and (iii) light penetration within the tumor mass. Therefore, the encapsulation of PS in NDDS has
been used increase payloads; avoid photosensitivity by increasing targeting selectivity and reducing
unspecific PS accumulation; and to perform combination therapy (e.g., chemo-PDT and photothermal
therapy-PDT) [56,88,90].

The use of PNPs as delivery vehicles or PS is in its early stages. For example, the potent hydrophobic
PS ZnF16Pc, was loaded into ferritin which was modified to externally-display a single-chain
variable fragment (scFv) that binds the fibroblast-activation protein (FAP) overexpressed on CAFs [31].
By targeting PDT to CAFs, the density and stiffness of a tumor’s ECM can be reduced (Figure 3F).
ZnF16Pc was encapsulated into scFv–ferritin through a pH-mediated disassembly-reassembly method.
This encapsulation method led to a 40 wt.% loading with minimal premature leakage due to the
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bulky nature and hydrophobicity of ZnF16Pc. ZnF16Pc loaded-scFv ferritin was shown to be stable
in solution, with no precipitation observed after storage in PBS for 1 week (Figure 3G) [31,71,91].
Upon irradiation at 671 nm, the PS-loaded ferritin generated ROS in a time-dependent manner
(Figure 3H). The presence of scFv promoted a higher ferritin retention in the in vivo tumor section of
primary 4T1, LL/2, and LL2 liver metastases. Then, an in vivo study was conducted using bilateral
subcutaneous 4T1 tumor-bearing mice model and PDT at a confluence rate of 300mW/cm2 for 15 min
(Figure 3I). Compared to an unirradiated tumor, the tumor that received PDT showed a reduction in
CAFs and collagen levels (observed using Mason’s trichrome staining) (Figure 3J). The decrease of
collagen further reduced the density of ECM. Following this PDT treatment, 50 nm quantum dots were
able to effectively accumulate and diffuse through the tumor tissue (Figure 3K). This study showed
that PS-loaded ferritin could successfully target and mediate PDT to disrupt the TME, improving the
subsequent delivery of NDDS and were reported can improve enhanced the infiltration of CD8+ T
cells in tumors [92].

4.3. Delivery of Biotherapeutics

The clinical translations of biotherapeutics (e.g., genes and proteins) have been hampered by their
low stability in blood, potential immunogenicity, poor cell-penetrating properties, and intracellular
degradation. Accordingly, an ideal NDDS must protect a biotherapeutic en route to its site-of action
(e.g., tumor), enhance its cell-targeting and uptake, and enable it to avoid lysosomal degradation
by facilitating its endosomal escape (to the cytosol). By taking advantage of its natural capacity to
encapsulate nucleic acids, the MS2 bacteriophage has been widely utilized for their delivery in gene
therapy [20,80]. However, other non-viral PNPs have been recently repurposed into vehicles for gene
delivery. For example, Guan et al. utilized Hsp for siRNA delivery [37]. Hsp was genetically fused
with an arginine-rich peptide (R9) at its C-terminus, resulting in a positively charged exterior surface
that facilitated the electrostatic binding of negatively charged siRNA. Using a green fluorescent protein
(GFP)-specified siRNA as a model system, Hsp–R9 was able to form a Hsp–R9/siRNA complex at a
1:80 molar ratio (confirmed by gel retardation assay). This Hsp–R9/siRNA complex showed good
stability (no siRNA release seen after 4 h in cell culture medium) and protected the siRNA from RNAse
degradation. Hsp–R9/siRNA was internalized by HeLa cervical cancer cells via the clathrin-mediated
pathway and was able to escape from lysosomes. When compared to free siRNA, the Hsp–R9/siRNA
complex showed greater transfection (0.3% verus 35.7%, respectively) and also downregulated GFP
expression in HeLa-enhanced GFP cells four times more effectively (determined by measuring changes
in fluorescence intensity). This study highlights the potential of Hsp–R9 (and other non-viral PNPs)
for gene delivery; however, further investigations are warranted to confirm their feasibility in vivo.

Another potential biotherapeutic for cancer treatment is the tumor necrosis factor (TNF)-related
apoptosis-inducing ligand (TRAIL). TRAIL is a cytokine that induces cellular apoptosis by activating
caspase-dependent pathways through its interactions with Death Receptors 4 and 5 (DR 4/5). In clinical
trials, the soluble form of TRAIL had poor efficacy and high instability. Le et al. developed the
PVX PNP to display a multivalent form of TRAIL that mimics its natural membrane-bound state
(Figure 4A) [24]. To achieve this, Ni-NTA was conjugated to PVX, which facilitated the subsequent
attachment of His-tagged TRAIL (HisTRAIL) in a trimeric form. This approach immobilized TRIAL
molecules on the PVX surface in an orientation that exposed its C-terminus, mimicking TRAIL’s native
state. The cytotoxic effect of PVX–HisTRAIL on triple negative breast cancer cells was found to be three
to five fold higher than free HisTRAIL alone (Figure 4B). It also induced apoptotic caspase activation
more effectively (Figure 4C). Furthermore, 30 days after intratumoral injection into tumor-bearing
mice, PVX–HisTRAIL was more effective at slowing tumor growth (1.09-fold increase in original tumor
size) than free HisTRAIL (2.53-fold increase in original tumor size) (Figure 4D,E). While these results
show the clinical potential of PVX–HisTRAIL, further comparative studies must be performed against
free TRAIL (e.g., physiological stability and pharmacokinetic profile).
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Figure 4. Examples of PNP-mediated delivery of biotherapeutics and imaging agents. (Upper panel)
TRAIL-based therapy: PVX-mediated delivery of the anti-cancer biotherapeutic HisTRAIL. (A) Schematic
showing PVX–HisTRAIL-induced apoptosis via caspase dependent pathway. (B) IC50 of free His-TRAIL
and PVX–HisTRAIL against various cancer cell types (C). PVX–HisTRAIL activated caspase 8 and
caspase 3/7. (D,E) In comparison to free HisTRAIL, PVX–HisTRAIL significantly regressed tumor
growth in tumor-bearing mice after 30 days. Adapted from [24], with permission from American
Chemical Society, 2019. (Lower Panel) Magnetic resonance imaging (MRI): Hsp-mediated delivery of
the MRI contrast agent Gd–DTPA. (F) Design of Hsp variants for Gd–DTPA delivery. (G) Hsp was
modified with a C-terminal iRGD to target pancreatic cancer cells. To generate variants of different
sizes, hydrophobic peptides repeats were attached at the N-terminus of Hsp, resulting in: 1-nanocage,
2-nanocage, 3-nanocage, and 4-nanocage. (H) Relaxivity values (at 1.5 Tesla) for each iRGD–Hsp
variant of free Gd–DTPA, in vitro. (I,J) In vivo MRI images (9.4 T) in transgenic mice bearing pancreatic
tumors 6h after IV injection. The ‘4-nanocage’ variant showed a significantly higher tumor-to-normal
MRI contrast ratio than free Gd–DTPA. Adapted from [38], with permission from Elsevier, 2018.
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4.4. Delivery of Magnetic Resonance Imaging (MRI) Contrast Agents

MRI is a versatile and noninvasive radiological imaging technique that provides anatomical,
physiological, and even molecular information about a physiological system. MR contrast images are
produced by measuring the relaxation mechanism of hydrogen protons across the body. Relaxation is
referred to the process whereby protons re-align with a magnetic field following their excitation with
radiofrequency pulses [93]. To distinguish between MR signals from diseased tissue and surrounding
healthy tissue, the contrast in the diseased tissue must be enhanced using contrast agents that have
high relaxivity (r1 = 1/T1 or r2 = 1/T2). A common MRI contrast agent is the paramagnetic gadolinium
(Gd(III)) ion, which boosts MR image contrast by improving the signal intensity associated with
T1-weighted images [94,95]. However, Gd(III) is toxic and must be complexed with a chelating
agent [94]. Moreover, clinically-available Gd(III)-based contrast agents (e.g., Gd–DTPA) have low
relaxivity (4–5 mM−1s−1 at 60mHz 25 ◦C) and are rapidly cleared from the body [96]. Therefore,
an ideal NDDS for MRI should have high relaxivity, low toxicity, and the capacity to accumulate within
diseased tissue (e.g., tumors).

Recently, Kawano et al. engineered the small heat shock protein 16.5 (Hsp 16.5) PNP into a
targeted MRI contrast agent for the detection of pancreatic cancer [38]. Herein, a glycine residue in
Hsp 16′s inner cavity was substituted with a cysteine to permit the thiol-maleimide conjugation of
Gd–DTPA. This action led to the attachment of one Gd–DTPA per Hsp 16.5 subunit—as quantified by
chromatographic methods and mass spectrometry. To selectively target the neurophilin-1 receptor
overexpressed on pancreatic cells, the exposed C-terminus of Hsp 16.5 was genetically modified to
display iRGD (Figure 4F). Additionally, to evaluate whether the size of Gd–DTPA-loaded iRGD-Hsp 16.5
could affect its overall relaxivity, its N-terminus was modified with varying repeats of a hydrophobic
peptide domain (Figure 4G). The variant with four hydrophobic peptide repeats (4-nanocage), displayed
3.5-fold higher relaxivity than a variant with a single hydrophobic peptide, and nine-fold more
relaxivity than free Gd–DTPA (Figure 4H). Thus, relaxivity of the Gd–DTPA cargo was dependent
upon the PNP carrier’s size, with larger PNPs likely to have slower molecular tumbling rates that
result in faster T1 relaxation rates. Furthermore, the cellular uptake of iRGD-displaying Hsp 16.5
by neurophilin-1 positive AsPC-1 pancreatic cells was significantly higher than control cell lines,
validating iRGD-Hsp 16.5 capacity to target cancer cells. Finally, in MRIs of tumor-bearing mice,
the 4-nanocage efficiently accumulated within tumor periphery 6 h after intravenous administration
and increased the tumor-to-normal (T/N)) contrast ratio up to 120%, whereas free Gd–DTPA enhanced
T/N by ~105% (Figure 4I,J).

4.5. Delivery of Near Infrared Fluorescence (NIRF) Probes

NIRF imaging is a non-invasive technique that measures the fluorescence intensity of fluorophores
after excitation with near-infrared (NIR) light (λ 650–900 nm). NIRF imaging provides high spatial
resolution and sensitivity and is less harmful than other imaging modalities (e.g., radioimaging) [97].
Only two NIR fluorophores have been approved by the FDA, indocyanine green and methylene
blue, while other NIR fluorophores are widely employed in pre-clinical research [98]. In recent years,
nanoparticle-based NIRF probes (e.g., quantum dots and upconversion nanoparticles) have been
developed to overcome the drawbacks of NIRF dyes including their low photostability, hydrophobicity,
and non-specific targeting [97]. In addition, these nanoparticle-based NIRF probes provide the
opportunity for multimodal imaging applications.

TMV has been engineered into a PNP-based nanoprobe for MRI/NIRF bimodal imaging [18].
TMV was used to simultaneously deliver the MRI contrast agent dysprosium (Dy3+) and the
NIR fluorophore Cy7.5. Dy3+ is a lanthanide ion with high T2-weighted MR signal intensity
that makes it an ideal contrast agent in ultra-high field MRI applications. Both Dy3+ and Cy7.5
were conjugated to TMV, resulting in the attachment of ~380 Cy7.5 molecules and ~980 chelated
Dy3+ ions per TMV particle. The multimodal TMV’s were modified to display either PEG
(passive delivery) or the DGEA peptide, which binds integrins overexpressed on prostate cancer
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cells (active targeting). In comparison to conventional lanthanide-based NaDyF4 nanoparticles,
Dy–Cy7.5–TMV–PEG had higher r2 values at 9.4 T (399 versus 101 mM−1s−1). In a cell model
of prostate cancer, actively-targeted Dy–Cy7.5–TMV-DGEA demonstrated about three-fold higher
cellular uptake than the passively targeted Dy–Cy7.5–TMV–PEG. Similarly, ex vivo NIRF imaging of
mice models, showed that Dy–Cy7.5–TMV-DGEA accumulated inside tumors about two times more
effectively than Dy–Cy7.5–TMV–PEG. For in vivo T2-mapping MRI at 9.4 T, Dy–Cy7.5–TMV-DGEA
showed a 40% reduction of T2 (which lead to higher value of r2), while Dy–Cy7.5–TMV–PEG showed
an only 14% reduction. The outcomes of this research indicate that PNPs can be used for targeted
bimodal cancer imaging, allowing for their potential applications in cancer diagnostics, prognostics,
and patient stratification.

4.6. Delivery of Positron Emission Tomography (PET) Tracers

Positron emission tomography (PET) is an imaging process that provides functional images
to diagnose abnormalities at a molecular level [99–101]. PET captures diagnostic images using the
highly specific radiopharmaceutical activity of its contrast agent [102,103]. This imaging process has a
limitless penetration depth and a higher sensitivity than other imaging agents. PET is a very helpful
tool for early diagnosis and monitoring disease progression. Although PET is a FDA-approved clinical
molecular imaging technique, it does have some drawbacks [104]. PET has low spatial resolution,
short acquisition time, and its radioisotopes have a short half-life. In addition, PET can expose patients
to large doses of radiation. Therefore, the use of PNPs and some of their multimodal variants can
address these issues.

Wang et al. developed ultra-small 64Copper sulfide-ferritin nanocages (64CuS–Fn) as novel cancer
nanotheranostics [33]. 64CuS nanoparticles were formed inside the cavity of ferritin (Fn) nanocages
using a biomineralization-inspired method. First, 64Cu was loaded within ferritin by exploiting the
presence of open surface pores and its natural affinity towards bivalent metals (i.e., Fe2+). Next,
Na2S was added into solution to form 64CuS–Fn. Due to the presence of the ferritin protein shell,
this biomineralization method was used to control the size of 64CuS nanoparticle formation, while also
enhancing its solubility and monodispersity. 64CuS–Fn showed good colloidal stability and minimal
copper leakage after 24h incubation in sodium acetate buffer. Eight hours after IV administration in U87
MG subcutaneous tumor-bearing mice, 64CuS–Fn doubled the accumulation of 64Cu in the tumor area
and produced a higher tumor-to-normal contrast PET signal, compared to free 64Cu. This approach
harnessed the unique properties of PNPs to produce an optically-active 64CuS particle with good
stability, biocompatibility, and passive targeting. The ferritin shell also provides a scaffold for the
attachment of functional cancer-targeting moieties to the encapsulated CuS nanoparticle, which could
improve this system’s PET imaging accuracy. Furthermore, CuS nanoparticles have the ability to absorb
and convert light into heat, and therefore, this system could be readily applied in photothermal therapy.

4.7. Use as Ultrasound Contrast Agents

Ultrasonography (US) is a non-invasive and cost-effective technology that allows anatomical
imaging in real-time [105]. US works by transmitting high frequency ultrasound pulses (1–20 mHz)
into tissue. The reflection of these pulses off anatomical structures creates echoes that can be detected
and then depicted as points of variable brightness (brightness (B)-mode), allowing any changes in tissue
anatomy to be observed. Contrast-enhanced ultrasound (CEUS) has been used in the clinic to improve
the detection of lesions in breast, liver, kidney, and ovarian cancer. To obtain images suitable for
patient diagnosis/prognosis, CEUS must be combined with effective ultrasound contrast agents (UCAs).
One class of UCAs are micro or nano-bubbles, which work by resonating ultrasound beams that result
in reflection signals greater than those observed in normal tissues [105]. The first FDA-approved UCAs
were the albumin-coated microbubbles Albunex® and OptisonTM (GE Healthcare) [106].

Recently, Shapiro et al. described protein-based gas vesicles (GVs) found inside Anabaena flos-aquae
(Ana GV) and Halobacterium NRC-1 (Halo GV). [39,107]. These GVs are unique rod-shaped PNPs
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with dimensions between 45–200 nm (width) and 100–800 nm (length) and protein shell thicknesses of
~2 nm [107]. While GVs naturally exclude water from their internal cavities, their protein shells are
permeable to gas, thus allowing surrounding gases to diffuse into them. Accordingly, the potential of
GVs to act as UCAs has been investigated both in vitro (using a gel phantom model) and in vivo (in
immunodeficient mice—via IV or subcutaneous injection). In both studies, the GVs provided clear and
robust contrast in ultrasound images, even at nanomolar concentrations [107]. However, before being
potentially incorporated into existing clinical US, the safety, biodistribution, and pharmacokinetics of
these PNP GVs must be evaluated.

5. Conclusions and Future Perspectives

To date, a diverse range of PNPs have been specifically developed as NDDSs for diagnostic and/or
therapeutic applications. While showing efficacy in pre-clinical models, engineered PNPs are overly
complicated, bringing into question their real-world clinical feasibility. For this reason, we suggest
that researchers engineering PNPs adopt a highly rational and standardized approach. For instance,
by implementing the MIRIBEL (minimum information reported in bio–nano experimental literature)
reporting system that was proposed by the Caruso group to help standardize nanomedicine data
and improve its quality and reproducibility [108]. In addition, future efforts to engineer PNPs for
nanomedicine should focus on enhancing pharmacokinetics, reducing immunogenicity, and promoting
endo/lysosomal escape. Furthermore, rather than using DOX as a drug model to evaluate PNPs,
we suggest prioritizing the encapsulation of newer and more promising therapeutics that may have
failed initial clinical trials. Finally, in order for PNPs to move from the proof-of-concept stage to feasible
clinical applications, they must be developed to effectively leverage the physiological environment
of the human body and the pathology of cancer; i.e., taking a “disease-first approach” instead of a
“formulation-first approach” [2,108].
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