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Abstract
Lifestyle and genetic factors play a large role in the development of Type 2 Diabetes (T2D).

Despite the important role of genetic factors, genetic information is not incorporated into the

clinical assessment of T2D risk. We assessed and comparedWhole Genome Regression

methods to predict the T2D status of 5,245 subjects from the Framingham Heart Study. For

evaluating each method we constructed the following set of regression models: A clinical

baseline model (CBM) which included non-genetic covariates only. CBM was extended by

adding the first two marker-derived principal components and 65 SNPs identified by a re-

cent GWAS consortium for T2D (M-65SNPs). Subsequently, it was further extended by

adding 249,798 genome-wide SNPs from a high-density array. The Bayesian models used

to incorporate genome-wide marker information as predictors were: Bayes A, Bayes Cπ,

Bayesian LASSO (BL), and the Genomic Best Linear Unbiased Prediction (G-BLUP). Re-

sults included estimates of the genetic variance and heritability, genetic scores for T2D, and

predictive ability evaluated in a 10-fold cross-validation. The predictive AUC estimates for

CBM and M-65SNPs were: 0.668 and 0.684, respectively. We found evidence of contribu-

tion of genetic effects in T2D, as reflected in the genomic heritability estimates (0.492±

0.066). The highest predictive AUC among the genome-wide marker Bayesian models was

0.681 for the Bayesian LASSO. Overall, the improvement in predictive ability was moderate

and did not differ greatly among models that included genetic information. Approximately

58% of the total number of genetic variants was found to contribute to the overall genetic

variation, indicating a complex genetic architecture for T2D. Our results suggest that the

Bayes Cπ and the G-BLUPmodels with a large set of genome-wide markers could be used

for predicting risk to T2D, as an alternative to using high-density arrays when selected mark-

ers from large consortiums for a given complex trait or disease are unavailable.
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Introduction
While the Human Genome Project provides a detailed description of genetic variation, the
causal genes for many diseases are yet to be found. Although some variants have been found to
be directly causal and to increase the risk of disease, the significant variants associated with
complex traits have been found to explain only a small percentage of the phenotypic variation.
This problem has been referred to as the ‘missing heritability’ of complex traits and diseases
[1,2]. However, recent studies show that by using information from hundreds of thousands of
loci with Whole Genome Regression (WGR), all the heritability in family-based data[3,4] and
half of the expected heritability in complex traits can be explained [4–6].

Of late, there is an increasing interest in estimating the variance in complex traits that is ex-
plained by molecular markers, with the ultimate goal of obtaining accurate estimates of indi-
vidual genetic predisposition to disease. With Whole Genome Prediction (WGP), genetic risk
is modeled using thousands of (small-effect) loci concurrently [5,7]. The foundational idea of
these whole-genome methods was published by Meuwissen et al. and it has since brought
about a revolution in the animal and plant breeding communities in both academia and indus-
try [8–10]. Modeling genetic risk for human disease by regressing high-density-SNP arrays on
phenotypes is feasible with the use of penalized and Bayesian variable selection [11,12] and
shrinkage estimation methods [13–15]. Since 2001, WGR has been extensively used [5,6,16–
18] to estimate genetic parameters [3,6,19] and, more recently, to predict genetic risk [4,18,20].

In samples of related humans, an increment in the number of markers used by the model in-
creases the genetic variance explained and monotonically increases the prediction accuracy [4].
However, in samples of unrelated humans, while variance explained can reach up to 50% of the
genetic heritability [5,7], there is an optimum number of SNPs at which prediction accuracy
is maximized [21]. Therefore, in unrelated samples of humans, relatively poor prediction
accuracy of disease risk is achieved. The span of linkage disequilibrium (LD) is much shorter
in humans compared to domestic agricultural species (e.g., cattle [22]), thus genetic markers
cannot correctly estimate genomic relationships and the statistical model cannot separate ge-
netic signal from random variation [21]. Consequently, empirical studies show that while the
prediction R-squared in validation samples (for human height) is approximately 0.3 in a fami-
ly-based sample, it is only about 0.03–0.05 in unrelated individuals [21]. In summary, in fami-
ly-based samples, the predictive ability is higher if the model is informed by relatives who share
large sections of the chromosome with the individuals to be predicted [4,18]. There, a SNP that
is distant from a causal locus can still be highly informative of the genetic risk of disease. In
short, prediction in related and unrelated individuals are two different problems. Thereby, for
complex human traits in unrelated subjects, it may be important to reduce the noise from the
genotype by targeting regions of causal loci. Whole Genome Regressions are a large family of
methods that can either differentiate genetic regions or weight the entire genome equally. How-
ever, how different WGRs work for prediction of unrelated subjects has not been completely
addressed yet.

WGRs differ in the priors assigned to the marker effects and in their ability to perform selec-
tion and shrinkage of predictors. Some WGRs (e.g., G-BLUP) have an underlying assumption
that all predictors have some small effect, with genetic risk being determined by a very large
number of variants. This implies that the trait (e.g. human height) has a highly complex genetic
architecture [5]. Other priors from the thick tailed family (e.g., the scaled-t, or the double-expo-
nential) have, relative to the Gaussian prior, higher mass at zero and thicker tails; examples in-
clude Bayes A [16] and the Bayesian LASSO (BL) [15]. Finally, finite-mixture priors assign a
certain prior probability for the effects to be equal to zero. These priors—for example, Bayes
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Cπ [12,23]—induce variable selection and shrinkage simultaneously and work best for traits
whose genetic architectures include regions that do not contribute to genetic risk at all.

In this article we aim to evaluate several Bayesian models, including BL, Bayes A, Bayes Cπ,
and G-BLUP that perform differential shrinkage and variable selection. We focus on Type 2
Diabetes Mellitus (T2D) since it is the fastest growing chronic disease in the developing world
[24]. A complex interaction between lifestyle factors and genetics (h2 between 0.25–0.70 in
family and monozygotic twins) plays a large role in the development of T2D [25–29]. Addi-
tionally, for T2D, several studies report highlights of the genetic architecture of T2D by uncov-
ering several SNP variants [30–32], and recently 65 SNPs have been associated with T2D [30].
In our study, we included a benchmark model with these well-established SNPs to evaluate the
performance of the Bayesian methods.

Materials and Methods

Ethics Statement
The FHS obtained informed consent from the participants to use their clinical records for re-
search purposes such as this study. Additionally, we obtained the data from dbGap, where data
is de-identified before being distributed to other researchers.

Data
Phenotypes. The data set consists of 5,245 participants (2,381 males and 2,864 females)

from the Framingham Heart Study, which has collected longitudinal phenotypic information
in several generations of families [33,34]. Subjects in this study have been characterized every
other year from adulthood to death on risk factors, outcomes of physical exams, and disease
status. T2DM was defined as having blood sugar� 126 mg/dL, at any exam, or having ever
taken anti-diabetic medication. The studies used have the dbGaP (database of Genotypes and
Phenotypes) accession number pht000040.v4.p7, pht000041.v4.p7 and pht000311.v5.p7. Par-
ticipants included in our study belong to the Original cohort (n = 1,498), and the cohort that is
comprised of their Offspring (n = 3,747). We excluded subjects from the third generation co-
hort because their follow up time is still too short. Data and material distributions from this
study are made in accordance with the individual consent history of each participant and the
current study has been approved by the Internal Review Board of University of Alabama at Bir-
mingham (IRB Protocol Number: X090720002).

Genomic Information. All subjects were genotyped for single nucleotide polymorphisms
(SNPs) with the Affymetrix 500K chip. Details on the genotyping method are described at
the Framingham SHARe at the NCBI dbGaP website (http://www.ncbi.nlm.nih.gov/projects/
gap/cgi-bin/study.cgi?study_id = phs000007.v3p2). We removed markers with minor allele
frequency< 0.05 or with more than 10% missing genotypes. After edition, we randomly re-
duced the platform to approximately half of the SNPs (p = 249,798) to attenuate computational
demand. This platform included 20 SNPs of the 65 SNPs previously published. Pre-analysis in-
cluding and excluding the 65 markers suggests that including or excluding them in WGR does
not vary WGR results.

Statistical Methods
The outcome y = {yi} was defined as presence (yi = 1) or absence (yi = 0) of T2D (blood sugar>
126 mg/dL, or having ever taken an anti-diabetic medication) during the follow up time of the
FHS. We assessed several models including WGRs with various types of Bayesian approaches
that differ in the selection and shrinkage applied to the marker effects. This section is organized
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as follows: (a) the description of the probit link connecting the response variable (diabetes pres-
ence or absence) with a linear predictor (ηi); (b) the sequence of models developed; (c) the Bayes-
ian statistical models evaluated, (d) estimates of genetic effects associated to markers, and (e)
model evaluation tools.

a) Probit Link. Let yi be the random variable that denotes the presence or absence of
diabetes and define ϑi (i.e. the probability of having diabetes) as ϑi = P(yi = 1|xi). It follows that
yi is distributed as a Bernoulli random variable with probability of success given by ϑi (ϑi) a sub-
ject-specific Bernoulli parameter). In probit regression, the probability of success depends on a
set of covariates (xi 0s) and is modeled as,

Wi ¼ FðZiÞ;
where Fð�Þ is the cumulative distribution function of the standard normal distribution, and
(ηi) is a model dependent linear predictor that will be described next.

b) Sequence of statistical models. Covariates baseline model (CBM). The CBM included
non-genetic covariates only. The linear predictor for CBM is

Zi ¼ a0 þ a1si þ a2ci þ a3li

Where ηi is represented as the sum of an intercept(α0), plus a regression on the ‘fixed effects’ of
sex (si, as dummy variable), cohort (ci, a dummy variable indicating whether participants were
from the Original or Offspring cohort), the age at last contact or death (li, ranging from 34 to

104) to control for different exposure times or observational periods, and α = (α1,. . ., α3)0, are
the corresponding regression coefficients. The sample from FHS includes subjects from two co-
horts and each cohort starts at a different year, a few of the measures could have different pro-
tocols and a different data collection team. We included cohort information in the models to
correct for these factors.

65-SNP Model (M-65SNP). The CBMmodel was first extended by adding 2 marker-derived
principal components (PC1 and PC2) and 65 SNPs that have been consistently associated with
T2DM. The PCs were derived from 1,000 European-ancestry informative markers reported by
[35]. This model is a second benchmark or baseline model to compare with WGR. The linear
predictor could then be expressed as,

Zi ¼ a0 þ a1si þ a2ci þ a3li þ a4PC1i þ a5PC2i þ
X65

j¼1
gjxij;

where α4 and α5 are regression coefficients associated with PCs 1 and 2 respectively; xij is the
genotype of the ith individual (i = 1,. . ., 5,245) at the jth marker (j = 1,. . .,65), expressed as
the count of one of the two alleles xij 2 {0,1,2}, for the imputed SNPs xij 2 [0,2] (a real
number) and the γ = {γi}’s are marker effects. When absent in the platform, these SNPs were
imputed with IMPUTE2 with 1,092 subjects from the 1,000 Genomes data as reported
previously [36–38].

c) Bayesian models for Whole Genome Regressions. Subsequently, we evaluated several
WGRs using the CBM as the base and included the genomic effects (ui) modeled with whole-
genome markers. These were comprised of a high density array of p = 249,798 SNPs and were
regressed on a function of the phenotype evaluated in this study. SNP effects were included in
the models using either Bayes A, Bayes Cπ, Bayesian LASSO (BL), and G-BLUP. The linear
predictor for these models could be written in general as,

Zi ¼ a0 þ a1si þ a2ci þ a3li þ a4PC1i þ a5PC2i þ ui

In addition to the joint conditional probability of the data, given the unknown coefficients,
the prior density of the unknowns was flat for α, i.e. p(α)/ 1. This yields estimates of effects
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comparable to those obtained with maximum likelihood. The genomic effect term ui is differ-
ent in every one of the Bayesian models evaluated. The definition of ui and its prior probability
completes the Bayesian model. We describe them below for each Bayesian model evaluated.

Bayes A (BA). In Bayes A models [16], ui ¼
Pp

j¼1xijbij and the prior density of the SNPs ef-

fects is assumed to follow a t distribution, T(βj|dfβ, Sβ), (j = 1,. . .,65), which could be re-express-
ed as

R
Nðbjj0; s2

bj
Þw�2ðs2

bj
jdfbj ; SbjÞ@s2

bj
where s2

bj
is the variance of the marker effects

corresponding to the jth position; see [39]. Thus, the conditional distribution of marker effects
βj is normal with mean 0 and variance s2

bj
, at the next level of hierarchy we assigned a scaled-in-

verse chi squared distribution to the variance of marker effects. The corresponding hyper-pa-
rameters for the scaled-inverse chi-squared distribution were set according to the rules given in
[40] and implemented in the BGLR package.

Bayes C π (BC). In Bayes C models [12], ui ¼
Pp

j¼1xijbij and here the prior for the marker ef-

fects is a two component mixture. One of the components is a point of mass at zero and the
other component is a normal distribution. The prior for the marker effect for this model can be
written as,

pðbjjp; s2
bÞ ¼ p� 1ðbj ¼ 0Þ þ ð1� pÞ � Nðbjj0; s2

bÞ

where π is the proportion of markers with non-null effects and the prior assigned to π was Beta
(p0, π0) (see[41]). We assigned a scaled-inverse chi-squared distribution to s2

b, the correspond-

ing hyper parameters were set using the rules given in de los Campos et al. (2013).
Bayesian LASSO (B-LASSO). In the Bayesian LASSO [15], ui ¼

Pp
j¼1xijbij and the prior densi-

ty of the SNPs effects can be expressed as Nðbjj0; t2j Þ, where the prior distribution of t2j is expo-

nential, i.e. Expðt2j l2Þ and the prior density assigned to λ2 is a gamma distribution, G(λ2 | δ1, δ2),

with the hyper-parameter rate set to 0.0001 and shape 0.55; (For further details on priors for this
model see [42]).

G-BLUP. In this model [43], u = {ui} is a random effect in the regression which distribution
is Nðuj0;Gs2

uÞ where G = {Gii0} is an n × nmatrix of relationships based on the p SNP geno-
types such that,

Gii0 ¼
1

n
�
Pp

j¼1ðxij � 2qjÞðxi0 j � 2qjÞ
2
Pp

j¼1qjð1� qjÞ
;

where qj is the estimated jth allele frequency; and s2
u is an ‘additive’ genetic variance parameter.

We assigned a scaled-inverse chi-squared distribution to s2
b, the corresponding hyper parame-

ters were set using the rules given in de los Campos et al. (2013). The marker effects were ob-
tained with the equivalent Bayesian Ridge Regression model, as described elsewhere [40].

The parameters of the above-described model were estimated in a Bayesian framework
using the BGLR package[41,44] in R [45]. Priors used were relatively non influential [41]. We
used 40,000 MCMC iterations with 15,000 samples taken as burn in. Convergence was assessed
by visual inspection of the trace plots, e.g. S1 Fig and S2 Fig.

Genomic Heritability
In the models described above, narrow sense heritability in the liability scale is defined as the
ratio of the genetic variance to the total variance. The residual variance is fixed at one, thus the

narrow sense heritability is h2
G ¼ s2u

s2uþ1
, since the residual variance is set to one as defined else-

where for binary traits[46,47]. The genomic heritability is interpreted as the proportion of
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inter-individual differences at risk for T2D that can be explained by regression on common
SNPs.

Model Evaluation
The covariates included in all models were selected based on significance. This evaluation was
done with the generalized linear model (glm function) from the R base package [45]. Models
were compared based on effect estimates from published GWAS. We present distribution of ef-
fects and scatter plots of these estimates for each model. Additionally, we assessed the models'
prediction accuracy using a 10-fold cross-validation. Since Framingham is a family based
study, we randomized and assigned entire families, according to the pedigree, to folds such that
when the model is trained, neither the subject to be predicted nor the subjects in the same fold
—which include all subjects in one family—are used to fit the predictive model. The testing
sets of the cross-validation yielded predictions of risk scores fẐig, which were derived without
using the ith observation or any relative of the ith observation. AUC was computed using the
pairs of points that included the presence/absence of diabetes and the risk score was predicted
using cross validation fyi; Ẑig. Since realization of diabetes (yi) is a binary response (0/1), it is
more appropriate to report results in terms of false positive rate and Area Under the Receiver
Operating Characteristic Curve (AUC, see [48]). We estimated the former statistics using the
R package ROCR [49].

Results

Descriptive Statistics
Participants in the two cohorts that were included in this study were born between 1890 and
1968, and the age at either last contact or death was 74±12 (mean ± standard deviation). The
total number of T2D cases was 939 out of the 5,245 subjects; since FHS is an ongoing study,
many study participants do not have diabetes yet. The incidence of diabetes in participants
with last contact at age<65 was 8%, while it was 26% for participants with last contact at
age> 83 years. The 939 cases showed a first record of diabetes at 63±24 years of age [50]. The
proportion of subjects in the population with diabetes between cohorts was 30.2% in the Origi-
nal cohort and 13.0% in the Offspring cohort (paternal and offspring generations, respectively).
This difference reflects the shorter observational time of the Offspring cohort, whose subjects
have an age at the last contact time (or death time) of 69±10, whereas this age is 87±8 for the
Original cohort. The proportion of people that had diabetes was 20.5% in males (45% of the
sample) and 15.7% in females (55% of the sample). This difference in proportions is in accor-
dance with what has been observed in the literature where males have a higher incidence of
diabetes [50]. In the study we also included principal components derived from ethnicity infor-
mative SNPs to account for population structure; Fig 1 shows a scatter plot with the ethnicity-
informed marker-derived PC 1 and 2.

Estimates of Fixed Effects and Odd Ratios for CBM
The effects estimated in CBM are on a liability scale. The estimated effect of sex (being female)
was -0.26± 0.04 (p-value<1e-6), with an odds ratio of 0.77, implying a decreased risk of
developing diabetes in females, relative to males. The estimated effect of the Offspring cohort
was -0.40±0.06 (p-value<1e-6), with an odds ratio of 0.68, implying a lower risk of diabetes
for subjects on the Offspring cohort relative to subjects of the Original cohort. This estimate
is probably affected by the shorter observational period of the members of the Offspring
cohort, even though the age at the last contact was included in the study to correct for

Whole-GenomeMethods for Genetic Risk Assessment of Diabetes

PLOS ONE | DOI:10.1371/journal.pone.0123818 April 17, 2015 6 / 14



different censoring times. The estimated effect for the age at the last contact was 0.016±0.002
(p-value<1e-6) with an odds ratio of 1.02, implying that there is a slightly higher risk of ob-
serving diabetes per year of exposure. Finally, PCs 1 and 2 were non-significant with odds ra-
tios of 1.25±1.89 (p-value = 0.57) and 1.18±2.06 (p-value = 0.57), respectively. However, in
order to correct for population stratification, we retained the principal components in the
model.

SNP Effects, Genetic Effects and Genetic Parameters
Odds ratio for the 65 SNPs obtained with the M-65SNP model and odds previously reported in
the literature [30] have a correlation of 0.42. Genetic scores were calculated for all subjects with
the different models. The genetic risk score derived with the G-BLUP model ranged from
-0.980 to 1.766 and was centered at -0.003±0.498 (mean ± standard deviation). The genetic risk
score with G-BLUP, and M65-SNPs had a positive but weak association of 0.23. The much
higher amount of SNPs between the M-65SNPs and the G-BLUP brings different information
to the prediction of genetic scores.

Fig 2 shows the estimated SNP effect with G-BLUP model (re parameterized as a Bayesian
Ridge Regression) and the dots highlight where the effects of the 65 SNPs of the M-65SNPs
model are. It can be observed that the highly significant markers were not always the SNPs
with the greatest effect. Models BC and BLASSO produced estimated effects of the SNP with
similar shrinkage than one observed in Fig 2; BA however had convergence problems in the
full data analysis.

Fig 1. Principal Components 1 and 2, derived from 1,000 ethnicity informative SNPs for European
origin.

doi:10.1371/journal.pone.0123818.g001

Whole-GenomeMethods for Genetic Risk Assessment of Diabetes

PLOS ONE | DOI:10.1371/journal.pone.0123818 April 17, 2015 7 / 14



Fig 3 shows the relationship between the probability of having diabetes for healthy (a) and
diabetic (b) participants. Estimates in the scatter plots were obtained from the G-BLUP model
and M-65SNPs. Other WGR (not shown) presented a strong association with the probabilities
estimated with the G-BLUP. The line is a slope of one, indicating the hypothetical situation in
which both models estimate the same probability of having diabetes for a person. M-65SNPs is
based on fixed-effect estimates. For this model, we observe that each SNP has stronger effect
than the same SNP in the G-BLUP model because a fixed effect is a value close to the condi-
tional mean of all the samples with that SNP (jointly with deviations given by other factors);
while the RKHS predicts random effects where the SNP effect is pushed towards zero. The re-
sulting estimates for a person that has all the high-risk SNPs (of the 65) accumulate into a very
large estimated overall risk, while in the RKHS, the estimated effects of these SNPs are mitigat-
ed and predicted risk is thus lower.

Fig 2. SNP estimated effects ordered by effect for G-BLUP. This is re-parameterized with a Bayesian Ridge Regression. Dots show the effects of the 65
SNPs are and are on a gray scale; the darker the dot, the more significant is its association with the response.

doi:10.1371/journal.pone.0123818.g002
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Bayes Cπ estimates. The estimated proportion of SNPs with a genetic signal (1- π) was
quite large at 0.579± 0.114. Thus, this result suggests that more than 50% of the total number
of SNPs contributed to the overall genetic variation, although the individual contribution of
most of these SNPs is likely to be a miniscule proportion of the total genetic variation.

Genomic Heritability of Type 2 Diabetes. The G-BLUP model results in an estimate of
genetic variance associated with common SNPs in the full training sample of 0.92 ± 0.26. Con-
sidering that the residual variance was fixed at 1, the estimate of genomic heritability for Type
2 Diabetes was 0.492±0.066. Previous studies demonstrated that in family datasets genomic
heritability from G-BLUP yielded similar results [3,21].

Predictive Ability of the Models
Models were also evaluated for their predictive ability using a 10-fold cross-validation. We ran-
domized families and assigned entire families to folds. The number of families per fold and the
size of the families can be seen in S1 Table. The number of subjects per fold was between 364
and 727 individuals, contained within 147 to 181 families.

Table 1 shows the predictive AUC of the models (in the testing sets of the cross validation).
The predictive ability of all the models that included genetic information improved with

Fig 3. Probability of diabetes for M-65SNP and G-BLUP. These are classified by the presence or absence of diabetes: a) healthy and b) diabetic people.

doi:10.1371/journal.pone.0123818.g003

Table 1. Area Under the Receiver Operating Characteristic Curve (AUC) for the CBM, M-65SNP, BRR,
BA, BC, B-LASSO and G-BLUP.

Model AUC-CV (Mean ± S.D.)

CBM 0.668 ± 0.025

M-65SNP 0.684 ± 0.041

BA 0.678 ± 0.027

BC 0.680 ± 0.027

B-LASSO 0.681 ± 0.027

G-BLUP 0.678 ± 0.027

doi:10.1371/journal.pone.0123818.t001
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respect to the model only with covariates. However, the improvement was moderate and there
were not important differences between models.

Discussion
Diabetes increases morbidity and mortality significantly, even when the condition is treated
[51]. Diabetes is expected to rise from 171 million in 2001 (globally) to 366 million by 2030
[52]. Thus, it is imperative that we understand the underlying causes of diabetes, enhance our
ability to identify those at risk, and mitigate that risk. We found that both genetic and non-
genetic factors are associated with diabetes. In the Framingham study, gender is associated
with developing T2D and has an odds ratio of 0.77 for females. Age also clearly matters, as evi-
denced in our study by the odds ratio of 0.68 for the Offspring cohort (that is younger) and the
odds ratio of 1.02 per year of exposure for the effect of age at last contact. The Framingham co-
horts are primarily Caucasian and are of European descent [53] (see Fig 1), and T2D suscepti-
bility did not vary with ancestry in this population. This is contrary to findings for conditions
such as skin cancer, which may be influenced by differences in ancestry even among those of
European descent [54] and may indicate that risk alleles for T2D among those of European de-
scent are relatively homogeneous. Although diabetes prevalence is not consistent across ethnic-
ities, we found no evidence of origin differences within Caucasians. Genetic factors also appear
to play a substantial role in T2D susceptibility. In our paper we estimated a genomic heritability
which is within the range of what has been reported in the literature. Additionally, there are
several reports of uncovered SNP variants associated with diabetes, and in our study we con-
firmed evidence of association between individual genetic score and T2D.

The predictive ability of the WGR models was moderately improved in comparison to the
model based only on clinical covariates. It is known that prediction accuracy will greatly de-
pend on the genetic distance between training and testing sets [55–57]. Several animal and
plant studies [17,43,55,58]; [59,60] and some human studies where training and validation
samples are closely related [18,20,61] have shown that WGRs can achieve high predictive
power and sometimes even produce better predictions than those based on pedigrees [54]. For
unrelated individuals, theoretical formulae for the prediction accuracy of G-BLUP [62,63] sug-
gest that achieving reasonably good accuracy of estimates of effects for dense marker panels
will require using extremely large samples. According to [62] the prediction accuracy of a
WGRs depends on two main factors: (a) the proportion of variance that can be explained by re-
gression on markers, and (b) the accuracy of effects estimates. As more markers are added to a
model, genomic heritability increases; however, the more markers we include in the model the
lower the accuracy of estimates of individual effects. Consequently, for any given sample size,
adding large numbers of markers to the regression may increase the estimated genomic herita-
bility but will not necessarily result in higher predictive power.

In our study, most models evaluated did not differ in the shrinkage of the SNP estimates or
in the prediction accuracy. In agreement with our results in humans, Daetwyler and coauthors
in a review paper report that there are not major differences in the predictive ability of WGR
methods in several animal and plant studies [22]. Most traits of interest are highly complex
and the benefit of heavy tailed distribution or mixtures is expressed more in traits where few
genes explain a sizable proportion of the genetic variance [40]. Our results suggest a highly
complex genetic architecture of T2D; in this situation there are no markers that could improve
the modeling by capturing a greater signal since there is no greater signal to be captured. Mod-
els that are able to do selection selected approximately 50% of the markers. However, our result
may also be affected by population substructure in the training sample since the training set
has families. In these samples of related subjects, causal SNPs will be in long regions of high
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LD, whereas in samples with unrelated subjects these regions will be shorter; thus, within that
region any SNP would be an equally good predictor to capture the effect of the causal SNP.
Consequently, this ‘more complex’ architecture mitigates differences between the models. Hav-
ing training sets with families is equivalent to reducing the sample size of the training set,
which we know is essential to achieve good prediction accuracy[43,62]. Still, among all the
methods, the Bayesian LASSO had slightly thicker tails, allowing for more markers to have
higher effects, while also achieving higher prediction accuracy.

Nevertheless, the AUC and performance achieved with 65 known markers was the same as
the one achieved with Bayes Cπ and the G-BLUP. In the case of diabetes, BMI, height, and sev-
eral other complex traits or diseases, mega consortiums are pulling thousands of genotyped
subjects and their phenotypes to find the SNPs highly associated with the phenotype. However,
for several phenotypes these resources are not available, and will probably never be (e.g., rare
diseases), and significant SNP markers are unknown. Hence it is worth using the G-BLUP or
Bayes Cπ, both of which achieved the same performance relative to the model using informa-
tion of the well-established SNPs without using any prior information from large GWAS
consortiums.

In summary, we found evidence of genetic effects in T2D, which reflects in the heritability
estimates; additionally, existing genetic variation can be captured by high-density markers. Re-
sults from different WGR methods did not differ. We can find similar reports in the animal sci-
ence literature; the improvement in AUC using cross validation was positive, albeit poor.
Finally, the AUC from 65 well-known variants affecting diabetes was similar to that obtained
from including all variants. However, these 65 SNPs were found in a large consortium study.
Most complex traits and diseases do not have large consortiums data available, and in rare dis-
eases, it is possible that there will never be large amounts of phenotypic and genomic data.
WGRs could be important for diseases where no large consortium is available. Bayes LASSO
and G-BLUP models are alternative methodologies using dense arrays of markers.
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