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Abstract 
Male infertility is a multifactorial condition that is closely associated with chromosomal abnormalities. Reciprocal chromosomal 
translocation (RCT) is a significant structural genetic abnormality. The specific mechanisms of forms of RCT affecting male infertility 
include the product of chromosomally unbalanced gametes, thereby disrupting the structure and function of important genes 
responsible for spermatogenesis. RCT breakpoints have been found to disrupt gene structure and function in many medical fields 
However, the relationship between RCT breakpoints and male infertility remains to be determined. The purpose of this study is to 
describe 2 male carriers of RCTs 46,XY,t(8;22)(q13;q13) and 46,XY,t(8;14)(q13;q22). Both patients were collected from the second 
hospital of Jilin University. Semen parameters were detected using the computer-aided semen analysis system. Cytogenetic 
analysis was performed using standard operating procedure. Related genes on chromosomal breakpoints were searched using 
Online Mendelian Inheritance in Man. One man had semen parameters within the normal range, but the couple was infertile after 5 
years of marriage. The other man showed normal semen parameters, and his wife had experienced 2 spontaneous miscarriages. 
Using a literature search, the association between chromosome 22q13 breakpoint and fertility were investigated. The results 
suggest that physicians should focus on the clinical phenotype of the patients and the breakpoints of RCT in genetic counseling. 
An important gene related to human male infertility is clearly located in chromosome region 22q13, and its function is worthy of 
further study.
Abbreviations: RCT = Reciprocal chromosomal translocation.
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1. Introduction
Male infertility is a multifactorial condition, and it is closely 
associated with chromosomal abnormalities.[1,2] Reciprocal 
chromosomal translocations (RCTs) are genetic abnormalities 
observed in 0.4% to 1.4% of infertile men and are considered 
to be a cause of male factor infertility.[3,4] RCT carriers produce 
chromosomally unbalanced gametes, which increase the risk 
of recurrent spontaneous abortion.[5] Moreover, RCT break-
points can disrupt the structure and function of important genes 
responsible for spermatogenesis, and men affected by these can 
exhibit azoospermia, oligozoospermia, asthenozoospermia or 
teratospermia.[4,6,7] However, the underlying pathological mech-
anisms remain unclear.

RCT breakpoints have been found to disrupt gene structure 
and function in many medical fields. Yeates et al[8] reported that 
an RCT disrupting the sodium voltage-gated channel α-sub-
unit 5 gene is associated with Brugada syndrome and sudden 
cardiac death. Peng et al[9] reported that an RCT breakpoint 
disrupting the tumor protein p63gene is related to split hand/
foot malformation. Cacciagli et al[10] reported that a de novo 
t(10;13) balanced translocation disrupts the coding sequence 
and expression of the ATPase, class I, type 8A, member 2 gene, 
which causes a phenotype of mental retardation in humans. 
Wang et al[11] reported that several RCT breakpoints disrupt 

genes (Nucleoporin, 155-KD, Fibronectin type III domain-con-
taining protein 3A and Dpy19-like 1) related to male infertil-
ity. Chen et al[12] also reported that some RCT breakpoints can 
disrupt important genes involved in spermatogenesis. Although 
some RCT breakpoints have been reviewed,[13,14] the relationship 
between other RCT breakpoints and infertility remains to be 
determined.

The aim of this study was to identify clinical features of 2 
RCTs at t(8;22) and t(8;14), and to explore the relationship 
between such breakpoints and male infertility.

2. Materials and Methods

2.1. Patients

This study was approved by the Ethics Committee of the 
Second Hospital, Jilin University, P.R. China. Written informed 
consent has been obtained from both participants for the 
publication of these cases. The subjects of this study were 2 
male carriers of RCTs. Both patients had visited the Andrology 
outpatient department of the hospital. A questionnaire was 
completed by each patient, including age, marriage status, 
pregnancy history, genetic family history, anamnesis informa-
tion, smoking and drinking history, and any use of drugs. A 
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general physical examination was performed to record each 
patient’s height, weight, growth and development information, 
and testicular size.

Case 1 involved an apparently normal 29-year-old man. He 
visited the hospital for medical consultation because of infer-
tility after 5 years of marriage. Case 2 involved a 27-year-old 
male who presented to the andrology department because his 
wife had experienced 2 spontaneous miscarriages. Semen anal-
ysis and karyotyping were recommended for both patients. The 
clinical diagnosis and treatment information of both wives was 
collected, and karyotyping was also recommended. After both 
men were found to carry abnormal chromosomes, their parents 
were contacted for karyotyping.

2.2. Semen analysis

For each patient, semen analysis was performed using standard 
techniques recommended by the World Health Organization 
guidelines.[15] Semen samples were obtained by masturbation 
after 3 to 7 days of abstinence, collected in a sterile container 
and examined after liquefaction by 2 professional technicians. 
Semen parameters were detected using a computer-aided semen 
analysis system (Beion S3, Shanghai Beion Medical Technology 
Co., Ltd, Shanghai, P.R. China).

2.3. Cytogenetic analysis

For each patient and his family, peripheral blood (2 mL) was 
collected in sterile tubes containing heparin anticoagulant. 
Lymphocytes were cultured in RPMI-1640 culture medium with 
15% fetal bovine serum and stimulated by 2% phytohaemag-
glutinin (Yishengjun; Guangzhou Baidi Biotech, Guangzhou, 
China) for 72 hours at 37 °C. Then, G-banding was performed 
using standard procedures. The karyotypes were described 
according to the International System for Human Cytogenetic 
Nomenclature (ISCN 2020).

3. Results

3.1. Clinical profile

The clinical profile of both patients is shown in Table  1. 
Cytogenetic analysis revealed that the karyotype of Case 1 
was 46,XY,t(8;22)(q13;q13) (Fig. 1A) and that of Case 1 was 
46,XY,t(8;14)(q13;q22) (Fig. 1B). The karyotype of Case 1 had 
arisen de novo, while the karyotype of Case 2 had been inherited 
from his father. Semen parameters for both men were within the 
normal reference range.

3.2. Analysis of translocation breakpoints

Three breakpoints were involved in these 2 cases. Both of these 
RCT carriers exhibited a chromosome 8q13 breakpoint. Case 1, 
with a chromosome 22q13 breakpoint, showed infertility after 
5 years of marriage. The wife of Case 2 with a chromosome 
14q22 breakpoint had a history of 2 spontaneous abortions. 
To clarify the relationship between these breakpoints and the 
clinical phenotypes, genes and loci associated with infertil-
ity or sperm function were searched using Online Mendelian 
Inheritance in Man (https://www.ncbi.nlm.nih.gov/omim/). We 
identified that 9 important genes and their functions are associ-
ated with RCT breakpoints (Table 2). Of these, the chromosome 
22q13 breakpoint is closely linked to impaired reproductive 
function or male infertility.

To further explore the relationship between chromosome 
22q13 breakpoint and infertility, a literature search was per-
formed that identified 18 carriers. The karyotypes and clinical 
features of these cases were collected and are summarized in 
Table 3. Almost all the female carriers exhibited recurrent spon-
taneous abortions. However, the clinical manifestations of male 
carriers are varied. Of these male individuals, 3 chose to use 
intracytoplasmic sperm injection technology for conception, and 
a carrier with t(11;22)(q22.3;q13.3) had good semen quality.

4. Discussion
RCT is a significant structural genetic abnormality that is closely 
related to male infertility.[12] In clinical practice, the phenotypic 
characteristics of male RCT carriers are varied. Some carriers 
could have offspring with normal phenotypes without any fer-
tility problems.[13] Others were diagnosed with abnormal sperm 
parameters.[4,14,32,33] During spermatogenesis, spermatogenic 
cells complete meiosis. For translocation carriers, the 2 trans-
located chromosomes and their 2 homologous normal chro-
mosomes form a quadrivalent and subsequently segregate at 
anaphase I. For multiple meiotic segregation patterns: alternate 
segregation involves 2 normal non-homologous chromosomes 
and 2 translocated chromosomes that migrate to different spin-
dle poles; adjacent-1 or -2 segregated, homologous centromeres 
pass to the opposite or the same spindle poles, respectively; in 
3:1 or 4:0 segregation, 3 or 4 out of the 4 chromosomes move to 
1 pole, with the remaining chromosome(s) moving to the other 
1.[34] Spermatozoa produced by adjacent-1 or -2 segregation and 
3:1 or 4:0 segregation patterns have unbalanced chromosomes. 
Hence, the wives of these carriers showed recurrent spontaneous 
abortion.[35,36] Therefore, genetic counseling remains a challenge 
for RCT carriers. Here we report 2 men carrying 46,XY,t(8;22)
(q13;q13) and 46,XY,t(8;14)(q13;q22) karyotypes. Semen 
parameters of the former were normal but the couple was infer-
tile for 5 years after marriage. The wife of the latter had recur-
rent miscarriages.

Coincidentally, both patients carried chromosome 8q13 
breakpoints, but their clinical phenotypes were different. 
Therefore, breakpoints of 22q13and 14q22 are worthy of 
further study. Through a gene search in Online Mendelian 
Inheritance in Man, the relationship between these break-
points and infertility were reviewed. The Minichromosome 

Table 1

Clinical profile of both patients.

Item Case 1 Case 2 

Karyotype 46,XY,t(8;22)(q13;q13) 46,XY,t(8;14)(q13;q22)
Semen volume (mL) 1.8 2.0
Sperm concentration (106 

per mL)
16 22

Total motility (%) 42 46
Progressive motility (%) 35 38
Sperm morphology (normal 

forms, %)
5 10

Karyotype of spouse 46,XX 46,XX
Routine genomic 

examination of spouse
No abnormal changes 

were observed.
No abnormal changes were 

observed.
Paternal karyotype 46,XY 46,XY,t(8;14)(q13;q22)
Maternal karyotype 46,XX 46,XX Figure 1. G-banding karyotypes of 2 patients in this study.

https://www.ncbi.nlm.nih.gov/omim/
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maintenance domain-containing protein 2 gene is located on 
chromosome 8q13.1 and is expressed in the testis, particularly in 
spermatocytes.[37] Adaptor-related protein complex 5,mu-1 sub-
unit, mapping to chromosome 14 at 14q22.1 is highly expressed 
in maturing sperm cells.[38] The Protein interacting with C kinase 
1 gene located on chromosome 22q13.1 could disrupt acro-
some formation, causing male infertility.[39] The Acrosin gene 
is located on chromosome 22q13.33 and male carriers show 
reduced acrosin activity in their spermatozoa and have fertility 
problems.[40] Houston et al[41] reviewed the validated monogenic 
causes of human male infertility, and noted that the meiotic 
double-stranded break formation protein 1 gene (meiotic dou-
ble-stranded break formation protein 1) is located at breakpoint 
22q13.2 and is associated with nonobstructive azoospermia. 
However, the cases in the present study have semen parameters 
within the normal range.

We further explored the relationship between the chro-
mosome 22q13 breakpoint and infertility and identified 
7 genes. Kim et al[42] reported that chromosome 22q13 is 
associated with abnormal spermatogenesis. Hong et al[4] 
reported a carrier with 46, XY, t(9;22) (q22;q13) who exhib-
ited oligospermia and asthenospermia. Table  2 shows that 
the chromosomal 22q13 translocation is associated with 
high reproductive risks such as recurrent miscarriage, asthe-
nospermia or abnormal offspring carrying a chromosomal 
imbalance. For female carriers, almost of all are related to 
recurrent spontaneous abortion. For male carriers, the clin-
ical manifestations are varied. These results suggest that 
male RCT carriers inherited this from their mothers could 
be infertile. This phenomenon should be paid attention to in 
clinical genetic counseling. In addition, 1 case with t(11;22)
(q22.3;q13.3) was similar to Case 1 in this study, and had 
good semen quality, which might be related to the abnormal 
Acrosin gene structure. The significance of this disruption 
remains to be determined, and can be used for further anal-
ysis. However, such individuals can choose intracytoplasmic 
sperm injection to increase the chances of pregnancy follow-
ing clinical genetic counseling.

The limitation of this study is that there was no genetic anal-
ysis of the aborted tissues in Case 2. Therefore, clinicians should 
advise patients with recurrent abortion that aborted tissues 
should be collected for further testing to assist future genetic 
counseling.

5. Conclusions
In conclusion, we report 2 male carriers of RCT. The chro-
mosome 22q13 breakpoint is associated with male infer-
tility, and an important gene related to infertility is clearly 
located here. The function of this gene is worthy of further 
study. Taken together with the published literature, these 
results suggest that physicians should focus on the clinical 
phenotype of the patients and the RCT positions in genetic 
counseling.
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Table 2

The genes and their functions associated with translocation breakpoints.

Gene* Full name Loci Expression or Function 

MCMDC2 Minichromosome maintenance 
domain-containing protein 2

8q13.1 Expressed in testis, particularly in spermatocytes

AP5M1 Adaptor-related protein com-
plex 5,mu-1 subunit

14q22.1 Highly expressed in maturing sperm cells

PICK1 Protein interacting with C 
kinase 1

22q13.1 PICK1 deficiency causes male infertility in mice by 
disrupting acrosome formation

DMC1 DNA meiotic recombinase 1 22q13.1 Have a possible association between variation in the 
DMC1 gene and azoospermia

HYDM3 Hydatidiform mole, recurrent, 3 22q13.2 Recurrent hydatidiform mole-3 is caused by homozygous 
or compound heterozygous mutation in the MEI1 gene

MEI1 Meiotic double-stranded break 
formation protein 1

22q13.2 Polymorphic alleles of the human MEI1 gene are 
associated with human azoospermia by meiotic arrest

ACR Acrosin 22q13.33 Men with reduced acrosin activity in their spermatozoa 
have fertility problems

RABL2B RAB, member of Ras onco-
gene family-like 2b

22q13.33 Have redundant roles in intraflagellar transport and 
ciliogenesis

MOV10L1 MOV10-like 1 22q13.33 MOV10L1 is an RNA helicase that functions in the 
biogenesis of piRNAs

*From: https://www.ncbi.nlm.nih.gov/omim/

Table 3

Karyotypes and clinical features of carriers with a chromosome 
22q13 translocation.

Case Sex Karyotype Clinical Features Reference 

1 M t(1;22)(q41;q13) ICSI Gekas et al[16]

2 M t(6;22)(q13;q13) N/A Anton et al[17]

3 M t(6;22)
(q25.3;q13.31)

Fair semen quality, ICSI Mayeur et al[18]

4 M t(10;22)(q25;q13) Stillbirth Li et al[19]

5 M t(10;22)(q25;q13) Spontaneous abortion Zhang et al[20]

6 M t(11;22)
(q22.3;q13.3)

Good semen quality, 
ICSI

Mayeur et al[18]

7 M t(11;22)(q23;q13) Recurrent abortion Gaboon et al[21]

8 M t(11;22)(q25;q13) Asthenospermia Zhang et al[20]

9 M t(15;22)(q22;q13) PGD Escudero et al[22]

10 M t(15;22)(q13;q13.3) PGD Pundir et al[23]

11 F t(2;22)(p22;q13.2) Spontaneous abortion Ikuma et al[24]

12 F t(6;22)(q26;q13.32) Abnormal offspring Manvelyan et al[25]

13 F t(7;22)(q11;q13) Spontaneous abortion Bourrouillou et al[26]

14 F t(11;22)(q25;q13) PGD Gianaroli et al[27]

15 F t(11;22)(q25;q13) Spontaneous abortion Husslein et al[28]

16 F t(11;22)(q25;q13) Repeated miscarriage Iyer et al[29]

17 F t(11;22)(p11;q13) Recurrent abortion Portnoï et al[30]

18 F t(X;22)(p11.21;q13.3) Recurrent miscarriage Dutta et al[31]

ICSI = intracytoplasmic sperm injection, N/A = not applicable, PGD = preimplantation genetic 
diagnosis.

www.liwenbianji.cn
https://www.ncbi.nlm.nih.gov/omim/
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