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The paper concerns the development of methods of EEG functional connectivity
estimation including short overview of the currently applied measures describing their
advantages and flaws. Linear and non-linear, bivariate and multivariate methods are
confronted. The performance of different connectivity measures in respect of
robustness to noise, common drive effect and volume conduction is considered
providing a guidance towards future developments in the field, which involve evaluation
not only functional, but also effective (causal) connectivity. The time-varying connectivity
measure making possible estimation of dynamical information processing in brain is
presented. The methods of post-processing of connectivity results are considered
involving application of advanced graph analysis taking into account community
structure of networks and providing hierarchy of networks rather than the single,
binary networks currently used.
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INTRODUCTION

In the last years in the domain of brain research the problem of the determination of connectivity
patterns has been a subject of intense studies. The assessment of coupling between brain structures is
crucial for understanding of information processing in brain. The evidence about the activity of
neural populations supplied by scalp EEG is limited and corrupted by noise and volume conduction,
however an application of proper methods of analysis allows to extract from it a valuable
information. The large repertoire of connectivity measures encompasses linear and non-linear,
bivariate, and multivariate, directed and undirected methods.

We can distinguish anatomical, functional, and effective connectivity. Anatomical connectivity
informs about a network of physical or structural connections linking sets of neurons. Herein we will
not consider structural connectivity. The functional connectivity represents statistical
interdependence between brain structures, it does not provide an information concerning the
inference about the directed coupling between two brain regions. The effective connectivity
determines causal dependence, it refers explicitly to the influence that one neural system exerts
over another (Friston, 2011). When choosing a method of connectivity analysis we should take into
account, if it represents the optimal approach in respect of solving of a given problem, if it is robust in
respect of noise, common drive effect and volume conduction, and if it is not prone to arbitrary
choices.

In the paper, first we shall consider bivariate, then multivariate measures of connectivity, with an
impact on less popular multivariate methods based on Granger causality principle. Then we shall
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refer to time-varying connectivity. Next we shall consider
performance of different connectivity measures in respect of
noise, volume conduction and common source effect. The
post-processing of results by means of Graph Analysis will be
discussed. Finally we shall give some recommendations
concerning application of different connectivity measures.

BIVARIATE MEASURES OF CONNECTIVITY

The most commonly used measures of connectivity are
correlation and coherence. In case of EEG, which is
characterized by distinct rhythms, it is coherence, which is
commonly used. Ordinary (bivariate) coherence may be
treated as a normalized cross-spectrum. It is a complex
quantity. Its modulus measures the spectral power in a given
frequency common to both signals. The phase of coherence is
directly related to the time delay between signals. However the
phase is ambiguous, since it is circular modulo 2π.

Phases of two signals may be synchronized, even if their
amplitudes remain uncorrelated. This phenomenon is called
phase synchronization. Several indexes of phase
synchronization were introduced. Mean phase coherence, also
called phase locking value (PLV) is computed as the length of the
vector-average of a set of unit-length phase difference estimates.
Still another measure, the phase locking Index (PLI) is a metric
that evaluates the distribution of phase differences across
observations. Phase Slope Index (PSI) is computed from the
complex-valued coherence, and quantifies the consistency of
the direction of the change in the phase difference across
frequencies. The sign of the PSI informs which signal is
temporally leading the other one. However, under situations
where interactions are bi-directional, the PSI fails in describing
the directionality.

The repertoire of the non-linear measures of connectivity
involves methods derived from theory of chaotic systems and
these based on consideration of probability distribution.
Generalized Synchronization (GS) quantifies how well one can
predict the trajectory in phase space of the given systems knowing
the trajectory of the another; or alternatively, it quantifies how
neighborhoods in one attractor maps into the other (Quiroga
et al., 2002). Synchronization likelihood (SL) (Stam and van Dijk,
2002), similarly to generalized synchronization, is based on the
theory of chaotic systems and makes use of the embedding
theorem. SL is defined as the conditional likelihood that the
distance between embedded vectors x and y will be smaller than
some cutoff distance. The concept of SL is closely related to the
definition of the mutual information (MI).

There are several connectivity measures, which are based on
the concept of entropy and involve calculation of probability
distributions of given time series e.g., Kulback-Leibler entropy or
joint probability distributions e.g., Mutual Information (MI) and
Transfer Entropy (TE). TE was introduced by Schreiber (2000)
who proposed to use the Kullback-Leibler entropy to quantify a
deviation of the transition probabilities from the generalized
property of a stationary finite-order Markov processes evolving
in time. Non-linear connectivity measures are bivariate except of

TE, which was extended to multivariate version by Montalto et al.
(2014), so they suffer from common source effect as all bivariate
measures.

MULTIVARIATE MEASURES OF
CONNECTIVITY

Partial Coherences
EEG is recorded from multiple channels and some of them may
be connected directly and some connections can be indirect. To
distinguish between these situations partial coherences were
introduced. The computation of partial coherence involves
calculation of cross-spectral matrix S(f) between all channels
and relies on subtracting from given two channels influences
from all other channels under consideration. It is similar to
ordinary coherence, but it is nonzero only for direct relations
between channels. If a signal in a given channel can be explained
by a linear combination of some other signals in the set, the
partial coherence between them will be low.

MVAR Model and Granger Causality
Multivariate Autoregressive Model (MVAR) for k channels can
be expressed by the formula:

X(t) � ∑p
j�1
A(j)X(t − j) + E(t). (1)

Where X(t) is a vector of signals, A(j) is a k×k matrix of model
coefficients, E(t) is a k-size vector of white noises, p—model order
(the number of samples we take into account in the regression).

Granger causality principle is equivalent to 2-channels MVAR,
namely it states that for two time series, if the variance of the
prediction error for the second time series is reduced by including
past measurements from the first time series in the linear
regression model, then the first time series can be said to
cause the second time series (Granger, 1969). Connectivity
measures Directed transfer Function (DTF) and Partial
Directed Coherence (PDC) are based on the Granger causality
principle extended to an arbitrary number of channels.

Multivariate Measures of Effective (Causal)
Connectivity
In the frequency domain MVAR can be expressed as a black-box
model with noises on input and time series on the output. In the
transfer function of the modelH(f) =A−1(f) the relations between
the signals are incorporated.

DTF is formulated in terms of matrixH(f) elements (Kaminski
and Blinowska, 1991):

DTFij(f) �
∣∣∣∣Hij(f)∣∣∣∣2
∑k
m�1

∣∣∣∣Him(f)∣∣∣∣2
. (2)

and describes causal influence of channel j on channel i at
frequency f normalized in respect of inflows to the destination
channel i.
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The modifications of DTF include NDTF (non-normalized
DTF), which is directly proportional to the strength of coupling in
the given system (Kaminski et al., 2001) and dDTF (direct DTF),
which does not show cascade, but only direct flows
(Korzeniewska et al., 2003).

Another multivariate estimator based on MVAR is Partial
Directed Coherence (PDC) expressing direct interactions
(Baccala and Sameshima, 2001):

PDCij(f) � Aij(f)����������
apj(f)aj(f).√ (3)

where Aij (f) denotes an element of Fourier transformed MVAR
coefficients A(t). The aj (f) denotes the jth column of the matrix A
(f), and an asterisk marks the operation of complex conjugation
and transposition. Unlike DTF, PDC value shows a ratio between
transmission from channel j to channel i and the summarized
outflow from channel j, so it tends to emphasize sinks rather than
sources. In practice PDC power spectrum weakly depends on
frequency and does not have a direct correspondence to the
power spectra of the channels of a process.

More comprehensive description of directed connectivity
measures may be found in Blinowska (2011). DTF and PDC
are available in major toolboxes for biomedical signal analysis.
Other connectivity estimators based on Granger causality:
Granger Causality Index and (GGC) Granger-Geweke
Causality are not widely used for EEG analysis.

Time-Varying Connectivity
The information processing in brain is a dynamic process of short
time scale and EEG accompanying it is a time-varying signal. Its
analysis requires use of short data epochs. Fitting of MVAR
model to the data epochs is limited by the fact that the number of
model parameters has to be preferably one magnitude smaller
than the number of the data points. Namely: pk2 ≤ 0.1NS for k =
pk/NSwhere p is the model order, k number of channels, andNS is
the epoch length.

In order to overcome this limitation the short-time DTF
(SDTF) was introduced in the following way. We divide a
nonstationary recording into shorter time windows, short
enough to treat the data within a window as quasi-stationary,
but long enough to capture the slowest considered frequency. We
calculate the covariance matrix of the model for each short
window and then we perform ensamble averaging over
realizations of the process. Note, that the averaging concerns
correlation matrices for short data windows - data are not
averaged in the process. By application of the sliding window
we can obtain time-varying MVAR and hence short-time DTF
(SDTF) yielding directed dynamic connectivity (Blinowska and
Zygierewicz, 2021). The examples of the animations of EEG
propagation obtained by means of SDTF for: movement,
Constant Attention Test and working memory task may be
found at http://fuw.edu.pl/~kjbli.

The alternative method of getting time-varying connectivity is
Kalman filter algorithm. However this method is much more
computationally demanding (Kaminski et al., 2010) and is not
suitable for a big number of channels.

COMPARISON OF CONNECTIVITY
MEASURES

Influence of Noise
EEG signals are characterized by a strong noise admixture. The
influence of noise on non-linear and linear connectivity
estimators was studied by Netoff et al. (2006). They reported
low robustness to noise of non-linear measures in comparison to
the linear ones. The conclusion of the seminal study by Pereda
et al. (2005) was that linear measures of connectivity are superior
in comparison to non-linear ones in respect of robustness to noise
and authors recommended the use of non-linear methods only in
case when the non-linearity was found in the data or relations
between them. The test for non-linearity relies on comparison of
the results obtained by original data with surrogate data (signals
with randomized phases). For resting state EEG the degree of
non-linearity was estimated by means of surrogate data as 4.4%
(Päeske et al., 2018). This finding was close to the one of Orgo
et al. (2017), who reported 6.1% and to the result of (Breakspear
and Terry, 2002) who detected statistically significant evidence of
non-linear interactions as 4.8%. The presence of non-linearity were
found in certain epochs of epileptic seizure (Pijn et al., 1997). It is
worth mentioning that even for nonlinear time series the directed
connectivity is correctly estimated by Granger-based multivariate
estimators (Winterhalter et al., 2005). Connectivity measures based
on MVAR are robust to noise, since they explicitly assume its
existence. It was demonstrated by simulation that even in case of
noise three times as big as EEG signal the connectivity scheme was
well reproduced by DTF (Kaminski and Blinowska, 1991).

Considering information processing in brain interesting nonlinear
measures are the ones estimating cross-frequency coupling and
phase-amplitude coupling (Blinowska and Zygierewicz, 2021).
However, calculation of these measures requires high quality data.

Volume Conduction
Volume conduction concerns effects of propagation of the
electromagnetic field on the results of EEG analysis (Hassan
and Wendling, 2018; Marinazzo et al. (2019); Van de Steen
et al., 2019). Several methods were developed to project the
activity recorded from scalp to the source space, e.g.,: see
review by: Grech et al. (2008); among them Loreta (Frei et al.,
2001) gained popularity. However solution of the inverse
problem is not unique, it involves certain assumptions and it
might disturb the phases between the signals. Electromagnetic
field propagates with a speed of light, so volume conduction does
not produce phase differences between EEG channels. Therefore
its influence is to the large degree mitigated in case of the
connectivity measures based on the phase difference—among
them DTF and PDC (Kaminski and Blinowska, 2014). Still, there
might be some effects connected with mixing of sources activity,
but they are limited by the fact that the electric field of the dipole
layer decays practically to zero at the distance of ~7 cm (Nunez
and Srinivassan, 2006). Connectivity results accompanying finger
movement based on the “source” data obtained by application of
Loreta were compared with those based on scalp signals
(Kaminski and Blinowska, 2018). It was found that in case of
cortex projected signals the changes in connectivity in time and
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space during the movement were hardly observed, which might
be due to disturbance of phases in computation of inverse
solutions. In case of scalp electrodes the connectivity estimated
by means of DTF exactly reflected known topographic effects of
desynchronization and resynchronization in relevant brain
structures. The excellent topographic agreement of connectivity
results obtained by DTF and based directly on scalp recordings,
with anatomical, physiological and imaging evidence (Kaminski
and Blinowska, 2018) indicate that for estimators based on phase
differences the projection to the source space seems not to be
necessary, however debate concerning the mitigation of volume
conduction effects is still going on.

Effect of Common Source
The effect which may critically corrupt connectivity measures is
the common drive effect. Namely, if the EEG activity from a given
source is detected at, sayN electrodes, bivariate measure will show
not only N true connections outgoing from the source but also
N(N−1)/2 connections between all electrodes recording the
source activity (see insert in Figure 1). In this way the false
connections outnumber the true ones, since they increase as N2

(Blinowska et al., 2004) (Kaminski & Blinowska, 2013). Because
of the common drive effect connectivity obtained by means of all

bivariate measures yield dense, disorganized patterns, contrary to
multivariate measures such as DTF and PDC which show sparse
EEG networks.

As an example may serve the determination of the connectivity
during sleep. In Figure 1 EEG connectivity patterns obtained
during sleep are shown: A- by means of bivariate measure—SL
(Leistedt et al., 2009), and B—by multivariate measure—DTF
(Kaminski et al., 1997). Networks yielded by means of SL look
almost random, the authors qualified them as “small world”. It is
difficult to unravel obtained patterns and understand why such
disorganized pattern occurs in case of slow wave sleep (Figure 1A)
when whole brain works synchronously. The networks shown in
B are characterized by distinct features compatible with the
physiological knowledge. In stage 1 pattern is similar to the
one connected with wakefulness, but more ordered, in stage 2
two main sources of activity are connected with two sources of
spindles (frontal and posterior), in stage 3, characterized by a
global synchronization in delta band, there is practically one
source located above corpus callosum, where from all major
neural tract diverge. It is easy to see that multiple connections
in Figure 1A are due to common source effect, which produces
multiple false connections. More comprehensive comparison
of networks obtained by means of bivariate and multivariate

FIGURE 1 | Connectivity patterns during sleep. (A) Connectivity obtained by means of bivariate measure (SL) in delta band (slow wave sleep- SWS); b) for healthy
subjects, c) for depressed subjects, d) differences between healthy and depressed subjects. (Leistedt et al., 2009). (B). Connectivity patterns obtained in three sleep
stages averaged over 9 healthy subjects (Kaminski et al., 1997). Stage 3 (SWS) corresponds to image A picture c), Adapted from (Kaminski et al., 1997; Leistedt et al.,
2009) with permission. (C)—image at left shows simulated scheme of propagation (this kind of scheme is obtained by multivariate methods: DTF or PDC). Image at
the right represents the connectivity scheme obtained by bivariate methods.
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connectivity measures may be found in (Blinowska and
Kaminski, 2013).

POST-PROCESSING OF CONNECTIVITY
RESULTS

In order to quantify the results obtained by means of bivariate
measures usually graph analysis (GA) is applied in its classical
binary form. It assumes a network consisting of nodes
(corresponding to the electrodes) and edges (connections).
Networks should be fully connected (every node with every
other node). Connections above some threshold are set to
equal values. Mostly used parameters describing a network are
clustering coefficient, path length, node degree, global efficiency.
Clustering coefficient (CC) is a measure of local
interconnectedness of a graph, path length (PL) is the shortest
path between two nodes expressed as the number of traversed
nodes. So-called “small-world” (SW) networks are characterized by
a high CC and a short PL. Common practice is that to distinguish
between the experimental conditions or groups of subjects CC and
PL are determined and “small world” topology is searched.
However the results obtained by different researchers are often
divergent as is the case for schizophrenia (Rutter et al., 2013) and
Alzheimer disease (Tijms et al., 2013). The information obtained by
GA binary networks is strongly dependent on the density of nodes
and setting of the thresholds. It has very global character neglecting
weights and topographical specificity of the networks. The results
of binary GA hardly conform with known anatomical and
physiological evidence (Kaminski and Blinowska, 2018).

In the last years we can observe accumulating criticism
concerning binary GA application to EEG/MEG signals: e.g.,:
(Hilgetag and Goulas, 2016), (Papo et al., 2016). The evidence

that binary conventional GA are extreme simplification of brain
networks was brought by the tract-tracing experiments indicating
that large-scale neuronal networks of the brain are arranged as
globally sparse hierarchical modular networks e.g., (Oh et al.,
2014). The experts in “smallworldness” had to admit that binary
unweighted networks are not adequate for description of brain
networks (Basset and Bullmore, 2017).

In fact, multivariate methods such as DTF since nineties of 20th
century provided in multiple applications sparse, weighted,
directed networks compatible with modern evidence of
topologically segregated and anatomically localized networks
(Blinowska and Zygierewicz, 2012; Blinowska and Zygierewicz,
2021). This kind of connectivity patterns may be quantified by
means of more advanced version of GA based on assortative
mixing (Newman and Girvan, 2004). This approach takes into
account weights and directions of connections. The connectivity
matrix Ekl, is defined to be a fraction of edges in a network that
connects a node of group k to one of group l. Indexes k and l do not
necessary refer to the channels, but to the modules (region of
interest—ROIs) defined in the framework of assortative mixing.
For directed networks matrix Ekl is asymmetric. Mixing is highly
assortative when the diagonal elements of matrix Ekl are
significantly higher than the off-diagonal ones. It corresponds to
the situation of strongly connected modules, with weaker bonds
between them.

Assortative mixing approach was applied for quantification of
networks active during visual Working Memory task (Blinowska
et al., 2013) and comparison of networks patterns active during
visual and auditory Working Memory tasks (Kaminski et al.,
2018). During both kinds of task similar patterns of connectivity
were found with tightly connected modules in frontal and parietal
(visual task) and parietal/temporal locations. These modules were
connected reciprocally by weaker links acting intermittently
(Figure 2). The location of active modules was coincident
with fMRI imaging (Brzezicka et al., 2011).

CONCLUSION

The accumulated body of evidence points out that bivariate
connectivity measures do not represent adequately the
connectivity structure of brain networks, since the obtained
network patterns are blurred by the large number of spurious
connections. The notion of “smallworldness” is too general
and imprecise to describe in satisfactory way the topologically
segregated and physiologically specific brain networks. The
problem standing now before a scientific milieu concerns how
to reconcile most popular today approach of connectivity
assessment with physiological evidence showing modular
structure of networks, weights heterogeneity and
directionality of information transfer. Our aim should be to
find richer and more meaningful model describing brain
connectivity. The questions and challenges to be faced
include: 1) which connectivity measure is the most
appropriate to solve a given problem? 2) which approach
may overcome binary graph limitations towards
incorporating weights and directionality to describe

FIGURE 2 | Snapshots from animation showing propagation in the teta
frequency band during working memory task obtained by time-varying DTF
(SDTF). The time lapse between the pictures is 0.75 s. The color scale shows
flow intensity (red is the strongest). The engagement of the frontal and
posterior/temporal regions can be observed. Long-range transmissions from
frontal to posterior locations and vice-versa occur intermittently. Adapted from
Kaminski et al., 2018.
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topologically specific connectivity structure? The tools to
overcome the above mentioned limitations are at hand;
they involve application of multivariate measures of
connectivity and more advanced graph analysis methods
(Kaminski and Blinowska, 2017; Imperatori et al., 2019).
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