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In electron and proton radiotherapy, applications of patient-specific electron bolus 
or proton compensators during radiation treatments are often necessary to accom-
modate patient body surface irregularities, tissue inhomogeneity, and variations in 
PTV depths to achieve desired dose distributions. Emerging 3D printing technolo-
gies provide alternative fabrication methods for these bolus and compensators. 
This study investigated the potential of utilizing 3D printing technologies for the 
fabrication of the electron bolus and proton compensators. Two printing technolo-
gies, fused deposition modeling (FDM) and selective laser sintering (SLS), and two 
printing materials, PLA and polyamide, were investigated. Samples were printed 
and characterized with CT scan and under electron and proton beams. In addition, a 
software package was developed to convert electron bolus and proton compensator 
designs to printable Standard Tessellation Language file format. A phantom scalp 
electron bolus was printed with FDM technology with PLA material. The HU of 
the printed electron bolus was 106.5 ± 15.2. A prostate patient proton compensator 
was printed with SLS technology and polyamide material with -70.1 ± 8.1 HU. 
The profiles of the electron bolus and proton compensator were compared with 
the original designs. The average over all the CT slices of the largest Euclidean 
distance between the design and the fabricated bolus on each CT slice was found 
to be 0.84 ± 0.45 mm and for the compensator to be 0.40 ± 0.42 mm. It is recom-
mended that the properties of specific 3D printed objects are understood before 
being applied to radiotherapy treatments.                                                                                              

PACS number: 81.40

Key words: electron bolus, proton compensator, 3D printing

 
I.	 INTRODUCTION

During radiation therapy treatments, compensators or bolus are often used to achieve desired 
dose distribution. In electron therapy, customized bolus is particularly useful for the treatment 
of shallow tumors(1-5) at various sites. The patient-specific bolus reduces irradiation to healthy 
tissues and increases dose homogeneity for patients with complex surface contours and varying 
target depths.(3,6,7) The bolus is usually made of water-equivalent material, such as wax, and 
applied directly over patient skin surface. Patient-specific electron bolus design algorithms have 
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been developed.(8,9) Vyas et al.(10) provided a comprehensive review and guidance of various 
bolus materials used in electron radiation therapy. 

In proton radiotherapy, a series of monoenergetic proton beams are delivered to form a 
spread-out Bragg peak (SOBP) to provide adequate target coverage in the treatment beam  
direction.(11) With the proton double scattering treatment technique, patient-specific compensa-
tor is a necessary beam modifier to shape the dose distribution to the distal end of the tumor 
target.(12) The proton compensator is designed in the treatment planning system, and can be 
fabricated out of paraffin wax or acrylic material. The compensator is usually mounted on the 
treatment nozzle and aligned with beam axis. To achieve desired precision, the electron bolus 
and proton compensator has been traditionally fabricated on a milling machine. However, a 
large amount of the material is milled out during the milling process and gets wasted. The 
quality assurance of the electron bolus usually involves checking the electron dose distribu-
tion based on the fabricated bolus and the patient CT images. Several literatures presented the 
proton compensator QA from the CT scan of the fabricated compensators to verify its geometry 
against the designs.(13,14,15)

Three-dimensional (3D) printing technologies are becoming popular that can be used to 
build complex volumetric objects in virtually any shape.(16) The technologies print designed 
3D objects through successive very fine layers. The resolution of the printed objects can be 
less than 100 μm.(17) Various materials including plastic, ceramics, and metals can be used for 
printing. 3D printing is in fact a general term for several printing technologies. These tech-
nologies differ in their processes of the 3D layer deposition and the printing materials. Popular 
technologies include fused deposition modeling (FDM) and selective laser sintering (SLS). The 
fine resolution and the capability of printing objects of virtually any shapes make the 3D print-
ing technologies suitable for the fabrication of bolus and compensators in electron and proton 
radiotherapy. The 3D printing technologies have since been utilized in radiotherapy. Kim et 
al.(18) 3D-printed a mouse stereotactic body mold using SLA technology for CyberKnife QA 
studies. Nie et al.(19) 3D-printed 192Ir-based small animal apparatus. Cundra et al.(20) printed 
a customized brachy applicator. Fisher et al.(21) pioneered the clinical flow of the patient skin 
lesion treatment with the 3D-printed bolus from patient face profiles acquired with a Kinect 
camera. Su et al.(9) printed from MakerBot printer the electron bolus with their developed design 
algorithm. Ju et al.(15) evaluated 3D-printed proton compensator using stereolithography (SLA) 
3D printing technology. The material used in this study was ultraviolet curable acrylic plastic. 
Other proton radiotherapy applications include 3D printed range spreading filter(22) and patient-
specific bolus for proton.(23) Our study focused on the fabrication process and characterizations 
of 3D-printed patient electron bolus and proton compensator using FDM and SLS technologies 
with PLA and polyamide materials, respectively. The printed materials were characterized for 
their printed qualities with CT scans and dosimetric effects under the electron and proton beams. 
The fabricated electron bolus and proton compensator were also characterized for their printed 
qualities and physical dimension accuracies.

 
II.	 MATERIALS AND METHODS

A. 	 Material characterization
To assess the 3D printing materials used for electron and proton radiotherapy, 3D-printed 
cubes were prepared with FDM and SLS 3D printing technologies. Two 3 × 3 × 3 cm3 cubes 
were printed with the FDM technology with PLA material on a consumer model MakerBot 
Replicator II printer (MakerBot Industries LLC, Brooklyn, NY). Two 4 × 4 × 4 cm3 cubes 
were printed with SLS technology with polyamide PA2200 material on a commercial EOS 3D 
printer (EOS, Krailling, Germany). These samples were CT-imaged on a GE LightSpeed 16 
CT scanner (GE Healthcare, Waukesha, WI) at 0.625 mm slice spacing. The region within the 
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cube that was 1.25 mm from the air/cube interfaces was used to examine their Housefeld units 
(HUs) and internal uniformity. 

The materials were further characterized under electron and proton beams. Under electron 
beams with 10 × 10 cm2 cone, the samples were placed at 100 cm SSD surrounded by Solid 
Water phantom (Fig. 1(a)). In the setup, one horizontal and one vertical Gafchromic EBT2 films 
(ISP, Wayne, NJ) were inserted underneath the cube sample to collect the dose distributions. 
The vertical film was aligned with the midline of the 10 × 10 cm2 field. Such setup was rebuilt 
in Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA) and the dose 
distributions calculated with eMC algorithm with 0.2 cm grid size. The dose distributions at 
the film planes were output to compare with the film measurements.

To assess the proton stopping power, these samples were placed on an 8 mm thick Plexiglass 
board above a water tank (Fig. 1(b)). A monoenergetic proton pencil beam with 15.0 cm range 
was used to irradiate the sample. The depth-dose curve change was collected using  Bragg peak 
ionization chambers (PTW, Freiburg, Germany). GEANT4 Monte Carlo simulation was also 
performed to compare the depth-dose curve with the experiment. In the Monte Carlo simula-
tion, the experimental setup was structured in the model. The 3D-printed material composition 
and their measured density was built-in. The dose was collected in a series of scorers the size 
of the Bragg peak chamber along the water depth. The measured depth-dose distributions were 
then compared with the GEANT4 Monte Carlo simulations.

B. 	 3D-printed bolus and compensator fabrication
3D-printed bolus and compensator design were performed based on patient CT images that were 
acquired for treatment planning purpose. The CT HU corresponds to the electron density or the 
proton stopping power. The contours of patient external body surface, planned treatment volume 
(PTV), and organs at risk (OARs) were drawn on the CT images. Incorporating the material 
electron density, the electron bolus can be designed with the procedures provided by Low et 
al.(8) and Su et al.(9) or with commercial software, such as p.d software (.decimal, Sanford, FL). 
In this study, an electron bolus was designed for contoured PTV in an anthropomorphic head 
phantom. The design was performed in p.d software with the input of the material property 
measured from the section above. The resulting bolus design was embedded in the DICOM 
structure file in the Eclipse treatment planning system. Dose calculation was carried out to ensure 
adequate dose coverage to the PTV. The proton compensator was designed for a prostate patient 
receiving two lateral proton beams. The stopping power ratio of the 3D printing material was 
input into the Eclipse beam configuration. Based on the proton ray tracing algorithm and proton 

a)   b)  

	
  

Fig. 1.  Characterization setup for 3D printed cubes under (a) electron beam with a field projection of 10 × 10 cm cone at 
100 cm SSD, and (b) proton monoenergetic pencil beam.
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stopping power ratio to water of the tissues and the printing material, the compensator design 
was performed by TPS to provide sufficient CTV/PTV coverage. The compensator profile was 
embedded in the Eclipse proton plan DICOM file. 

The bolus and compensator design, as saved in the digital DICOM files, consisted of a 
series of points with their corresponding Cartesian coordinates. An in-house program written in 
MATLAB was developed to generate a mesh to interconnect these points to define the surfaces 
of the bolus and compensator. To increase the resolution of the printed part, interpolation was 
applied to the surface profiles to be less than 1 mm before meshing. The contours of the elec-
tron bolus structure had fine resolutions usually < 1 mm on each CT axial slice. Therefore, the 
interpolation was performed between the CT slices to reduce the CT slice spacing to be 1 mm. 
Different from electron bolus, digitally exported proton compensator design from Eclipse TPS 
was in 1 mm resolution; therefore, no additional interpolation was performed. 

To generate the mesh interconnecting the surface points, the Delaunay triangulation was 
selected for meshing reconstruction.(24) The triangulation process sorts through the bolus and 
compensator surface point clouds and builds triangles with the provided points in such a way 
that no residual point exists in the circumcircle of any triangulation. The built-in Delaunay 
triangulation in MATLAB software was selected for this task. After meshing, the vertices 
and normals of the triangles were written into the Standard Tessellation Language (STL) file 
format(25) which most commercial 3D printers accept and can generate machine code (g code) 
for printing. The file was then transferred to a 3D printer for printing.   

In this study, the electron bolus was designed and printed with PLA material from the 
MakerBot ReplicatorII 3D printer with FDM technology. The proton compensator was printed 
in polyamide material PA 2200 with laser sintering SLS technology on the EOS 3D printer. The 
compensator printing dimension was scaled by 0.5 in each direction from the design to save 
printing time. The printed objects were printed with 100% solid fill inside.

C. 	 3D-printed bolus and compensator characterization
The dimensions of the printed electron bolus and proton compensators were measured and 
compared with the design model. The overall dimensions were measured with a caliper. For 
proton compensator, a Mitutoyo QA-height gauge (Mitutoyo Corp., Aurona, IL) was employed 
to measure several known points at relatively flat regions from the design. The measured heights 
from the bottom of the compensator were compared with the design. Such measurement was 
not performed for the electron bolus as there were no identifiable flat regions in the design.

In addition, the electron bolus and proton compensator were then CT scanned. The surface 
profile of the printed objects were derived from CT images and compared with the design. The 
Euclidean distance was calculated between the profile points between the physical printed 
bolus/compensator and the design. The largest Euclidean distance was recorded as an index of 
the conformity of the printed bolus/compensator profiles with the design. The dose distribution 
on the anthropomorphic phantom was also calculated with the printed electron bolus in place 
to examine the dose coverage.

 
III.	 RESULTS 

A. 	 Material characterization
The average and standard deviation HU of the PLA cubes were determined to be 130.1 ± 10.1, 
and for the polyamide cubes -72.1 ± 5.3. The density of the printed PLA cube and polyamide 
cubes were measured to be 1.19 ± 0.03 g/cm3 and 0.97 ± 0.02 g/cm3, respectively.

With the setup in Fig. 1(a), 300 MU electron beams with various energies were delivered. The 
films were then scanned and converted to the dose distribution with the OD vs. dose calibration 
curve for the same film batch. Figure 2 shows the comparison of the film measurements with 
the TPS dose calculations for the PLA cube irradiated with electron beam under 10 × 10 cm 
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cone. Due to the higher density of the PLA material compared to water, lower dose regions were 
observed underneath the cube. The depth dose distribution also showed the larger attenuation 
effect of the PLA cube compared to water. Good dose agreements were observed for both the 
horizontal and the vertical planar dose distributions. 

Figure 3 shows the relative proton dose in water collected by the PTW Bragg peak chamber 
with and without the printed cubes intercepting the proton pencil beam. The measured dose 
curves were in agreement with the GEANT4 Monte Carlo simulated curves. The depth curves 
were also measured with different orientation direction of the printed cube relative to the proton 
beam axis. The depth-dose shift due to the cube orientation was undetectable. This result showed 
that the proton beam is insensitive to the 3D printing directions. The pull-back of the Bragg 
peak on the depth-dose curves can be used to calculate the proton stopping power relative to 
water. The obtained average proton stopping power relative to water was 1.10 for printed PLA 
material and was 0.98 for printed polyamide material.

a)     b)  

     c)    d)  

	
  

Fig. 2.  Comparison of the film measurements with the TPS dose calculations for the PLA cube irradiated with 300 MU 
12 MeV electron beam. The horizontal planar dose distribution at 3 cm depth underneath the cube (a) on the film and  
(b) TPS calculation. The vertical dose distribution beyond 3 cm depth under the cube (c) on a film and (d) from TPS 
calculation. The black line in (c) and (d) marks the 5 cm depth. The color bar shows dose in cGy.

 

	
  

Fig. 3.  Proton depth0dose curves under monoenergetic pencil beam with and without the 3D printed cubes intercepting 
the beam. Sample A was the 4 cm polyamide cube, B was the 3 cm PLA cube. Solid lines correspond to measured depth-
dose curves and dashed lines correspond to Monte Carlo-simulated curves. 
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B. 	 3D-printed bolus and compensator fabrication
An electron bolus was designed from .decimal software with the correct input of the PLA 
material for an anthropomorphic head phantom. The bolus structure interpolation and mesh-
ing were performed, as described in Materials & Methods section B. The generated STL file 
following the meshing process was examined with the CAD software netfabb (netfabb GmbH, 
Parsberg, Germany) for the integrity of the STL model. Figure 4(a) shows the 3D rendering of 
the designed electron bolus. This PLA electron bolus was printed from a MakerBot Replicator II 
printer, as shown in Fig. 4(c).

The proton compensator was designed with the input of the proton stopping power obtained 
from previous section. The compensator had a concaved surface to shape the dose distribution 
to the distal end of the prostate target volume. The design was then meshed and the printable 
STL file was generated. Figure 4(b) shows the 3D rending of the proton compensator. This 
proton compensator was printed with polyamide from an EOS printer, as shown in Fig. 4(d). 

C.	 3D-printed bolus and compensator characterization 
The electron bolus and proton compensator were first CT scanned to examine the uniformity 
in the printing processes. The internal HU for the printed electron bolus was shown as 106.5 ± 
15.2. The mean HU differs from the printed PLA cubes by about 14 HU with larger standard 
deviation. The mean HU from the printed polyamide proton compensator was determined 
-70.1 ± 8.1, very close to the HU from the printed cube. The mass density was estimated from 
the bolus and compensator weight divided by the design volumes. This commercial EOS SLS 
technology shows more consistent printing qualities compared with the MakerBot II FDM 

 

a)                                                                       b) 

 

c)                                                                   d) 

 

 

 

Fig. 4.  3D rendering of (a) electron bolus and (b) proton compensator from the model STL files. The printed (c) electron 
bolus (d) proton compensator.
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technology. Nine identifiable flat regions on the proton compensator were characterized with a 
Mitutoyo QA-height gauge to compare with the design. The measured deviations were less than 
1.0 mm with the uncertainties of the whereabouts of measurement points taken into account. 

To examine the entire bolus profiles, the bolus and compensator profiles were extracted from 
the scanned CT images. The profiles were compared with the design profile and are shown in 
Fig. 5. The average over the CT slices of the largest Euclidean distance between the design and 
the fabricated bolus was found to be 0.84 ± 0.45 mm and between the design and fabricated 
compensator 0.40 ± 0.42 mm. 

 
IV.	 DISCUSSION

In most of current practice, the electron bolus and proton compensators are fabricated on mill-
ing machines where a drilling bit drills out a pattern on a solid piece of material. The pattern 
can be limited by the stepping and the drilling bit size. Different from milling machines, the 
3D printing technologies print layer by layer with fine resolution and can be used to print much 
finer patterns on the compensator. It can also be used to print certain irregularly shaped patterns 
that cannot be fabricated with a milling machine due to the blocked access of the drilling bit to 
certain locations. Compared to the traditional milling machine technologies, 3D printing can 
realize more complex bolus and compensator designs and provide potentially more flexibility 
in developing patient treatment plans. This is a great advantage of using 3D printing technolo-
gies for bolus and compensator fabrications.

   

a)                                                                 b) 

 

                      c)            d)   

 Fig. 5.  Example of a CT slice of the 3D-printed (a) electron bolus, (b) proton compensator; and the scanned profiles of 
(c) electron bolus and (d) proton compensator in comparison with the design.  
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The electron bolus and the PLA cubes were printed with solid infill with the FDM 3D 
printing technology on a MakerBot Replicator II printer. This technology involves melting 
a fine strand of PLA material during extrusion and depositing it at desired spatial position. 
During the extrusion and curing of the PLA material, slight inhomogeneity happens which 
could be due to the heat dissipation during the deposition. Variations were observed among 
samples, evidenced by the measured HU variations between the printed cubes to the printed 
electron bolus. The standard deviations of the HUs within these samples were also larger than 
the samples printed with polyamide material (Table 1). In TPS calculation, the variations in 
HU create less than 1 mm change in the depth of 90% isodose line of electron beam. Such 
deviations in depth-dose coverage are usually acceptable in electron radiotherapy. Therefore, 
we recommend good knowledge of the printed subjects in terms of its homogeneity before 
applying to electron radiotherapy.

Due to the significant dose effect from material heterogeneity in proton radiotherapy,(26) 
cautions should be taken when applying the FDM printing technology with the MakerBot II 
printer. Thorough dosimetric evaluation on the printing variations is suggested before apply-
ing this technology to proton radiotherapy. The SLS printing technology produced more 
uniform polyamide proton compensator. Very small variations in HUs were observed within 
and among the samples. This printing technology should be suitable for the fabrication of the 
proton compensators. 

3D printing technologies provide an affordable alternative process for fabricating electron 
bolus and proton compensator. Although the cost of the printing materials is usually low, the 
price of the printer and the quality of the printed objects combined should be taken into con-
sideration. 3D printing technology can also have size limitation. For example, the consumer 
model MakerBot II printers have size limit to 28.5 × 15.3 × 15.5 cm3 and might not be suit-
able for printing large bolus, such as chest wall bolus. The other concern is its long printing 
time compared with milling. The electron bolus and proton compensator in this study took 6 
to 9 hrs to print. And the printing time and cost increase with the printing size. Although the 
printing process needs little personnel attention, such long printing time should be taken into 
consideration during patient treatment planning and scheduling. 

 
V.	 CONCLUSIONS

This paper presents an alternative fabrication process for radiotherapy electron bolus and proton 
compensators with 3D printing FDM and SLS technologies. It is demonstrated and confirmed 
that the electron bolus and proton compensators fabricated with appropriate 3D printers can 
be used in radiotherapy without introducing significant dose deviations. Both technologies can 
produce fairly uniform geometry to be used in electron and proton therapy. However, due to the 
random slight inhomogeneity in the FDM printing, the properties of the printed object should 
be understood before being applied to proton therapy. 

 

Table 1.  List of measured CT HUs and corresponding material properties.

						     Proton
					    Electron	 Stopping
				   Mass	 Density	 Power
				   Density	 Relative to	 Relative to
		 Samples	 HUs	 (g/cm3)	 Water	 Water

	1	 Electron bolus with PLA	 106.5±15.2	 1.19±0.01	 1.068±0.004	 1.093±0.007
	2	 3 cm3 PLA cube	 130.1±10.1	 1.19±0.03	 1.073±0.002	 1.102±0.004
	3	 Proton compensator with polyamide	 -70.1±8.1	 0.97±0.02	 0.940±0.006	 0.979±0.009
	4	 4 cm3 polyamide cube	 -72.1±5.3	 0.97±0.02	 0.939±0.004	 0.977±0.006
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