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Background and Purpose: It is extremely important to predict the microvascular
invasion (MVI) of hepatocellular carcinoma (HCC) before surgery, which is a key
predictor of recurrence and helps determine the treatment strategy before liver
resection or liver transplantation. In this study, we demonstrate that a deep learning
approach based on contrast-enhanced MR and 3D convolutional neural networks (CNN)
can be applied to better predict MVI in HCC patients.

Materials and Methods: This retrospective study included 114 consecutive patients
who were surgically resected from October 2012 to October 2018 with 117 histologically
confirmed HCC. MR sequences including 3.0T/LAVA (liver acquisition with volume
acceleration) and 3.0T/e-THRIVE (enhanced T1 high resolution isotropic volume
excitation) were used in image acquisition of each patient. First, numerous 3D patches
were separately extracted from the region of each lesion for data augmentation. Then, 3D
CNN was utilized to extract the discriminant deep features of HCC from contrast-
enhanced MR separately. Furthermore, loss function for deep supervision was
designed to integrate deep features from multiple phases of contrast-enhanced MR.
The dataset was divided into two parts, in which 77 HCCs were used as the training set,
while the remaining 40 HCCs were used for independent testing. Receiver operating
characteristic curve (ROC) analysis was adopted to assess the performance of MVI
prediction. The output probability of the model was assessed by the independent
student’s t-test or Mann-Whitney U test.

Results: The mean AUC values of MVI prediction of HCC were 0.793 (p=0.001) in the
pre-contrast phase, 0.855 (p=0.000) in arterial phase, and 0.817 (p=0.000) in the portal
vein phase. Simple concatenation of deep features using 3D CNN derived from all the
three phases improved the performance with the AUC value of 0.906 (p=0.000). By
comparison, the proposed deep learning model with deep supervision loss function
produced the best results with the AUC value of 0.926 (p=0.000).
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Conclusion: A deep learning framework based on 3D CNN and deeply supervised net
with contrast-enhanced MR could be effective for MVI prediction.
Keywords: hepatocellular carcinoma, microvascular invasion, convolutional neural network, deeply supervised
network, contrast-enhanced MR
INTRODUCTION

Hepatocellular carcinoma (HCC) has become the fourth most
common cause of cancerous death in the world (1).
Microvascular invasion (MVI) of HCC has been shown to be a
key predictor of recurrence and poor prognosis. Furthermore,
preoperative knowledgement of MVI of HCC can be helpful in
deciding treatment strategy and patient management (2).
However, MVI is not similar to the macrovascular invasion,
which can be evaluated by radiologic images. The gold standard
of MVI information is generally determined by the
histopathological characteristics of HCC lesions (3, 4).
Therefore, it is desirable to develop a preoperative method for
MVI prediction with non-invasive assessments.

Many studies focus on imaging findings of preoperative
imaging to predict MVI of HCC. Numerous clinical features,
including tumor size, edge smoothness, capsule, tumor
peripheral enhancement, multifocality, apparent diffusion
coefficient (ADC), alpha-fetoprotein (AFP), 18F-deoxyglucose
(18F-FDG), have been shown to be helpful for the preoperative
prediction of MVI (5–7). However, these radiologic features for
MVI prediction were shown in inconsistent conclusions in
different studies (8). Recently, Wei et al. (9) prospectively
evaluated the potential role of intra voxel incoherent motion
(IVIM), and demonstrated that the D value obtained by the
IVIM model was better than the ADC used to evaluate the MVI
of HCC, while it is reported that the tumor edge, enhancement
mode, tumor capsule, and enhancement around the tumor have
no predictive effect on the MVI in MR imaging characteristics. In
addition, those radiologic findings are generally limited by
individual experience, which may have inter-observer errors
and be insufficient for MVI prediction.

Recently, radiomics has been widely utilized as non-invasive
predictive biomarker in clinical practice (10), which has also
been successfully applied in MVI prediction (10). Peng et al. (11)
proposed an imaging radiomics model to predict the MVI risk of
HCC before surgery, in which 980 candidate imaging radiomics
features were obtained from the arterial and portal vein phases
and significantly correlated with the MVI status. Bakr et al. (12)
also proposed a non-invasive imaging radiomics model,
including 717 quantitative features from arteries, portal veins,
and delayed phases of contrast-enhanced CT images for MVI
prediction of HCC. Feng et al. (13) developed a radiomics model
for preoperative MVI prediction. Ma et al. (14) also proposed
and validated an imaging radimoics model to use contrast-
enhanced CT images to predict preoperative MVI in HCC
patients. Xu et al. (15) recently analyzed the contrast-enhanced
CT based on radiomics analysis to predict MVI and outcome in
HCC, and demonstrated that the combination of radiological
and imaging radiomics features could produce better
2

performance in predicting MVI. In addition, there also have
been some reports about radiomics predicting MVI based on
ultrasound images (16, 17). As pointed out by the recent study
(8), researchers currently construct radiomics models based on
single modality image data, and the use of multimodality for
MVI prediction has not to be investigated. In addition, due to the
sensitivity of imaging radiomics features to acquisition methods
and reconstruction parameters, the imaging radiomics features
are very unreliable to be widely used in clinical practice (18).

The deep features obtained by direct learning from medical
imaging data have been shown to be superior to traditional
imaging radiomics features, which have been widely used in
medical imaging analysis and clinical lesion characterization
(19). As a new feature descriptor, deep feature is a result of
autonomous learning compared with the traditional
morphological texture feature, which avoids the typical
drawback in the design of manual features (20, 21).
Convolutional neural network (CNN) is currently the most
successful type of deep learning model in image analysis (22).
It has exhibited remarkably high performance in the diagnosis of
liver fibrosis and liver masses (23, 24). Therefore, deep feature
derived from CNN may be advantageous for tumor
characterization. Inspired by the work of deep learning with
multiple modalities combined to generate complementary
improvements than single modality (25), it can be anticipated
that the relationship between multiple phases of contrast-
enhanced images can be learned by deep convolutional
networks with multiple modalities and the learned deep
features presentation from multiple phases of contrast-
enhanced images may be useful for MVI prediction.

To this end, we preliminarily propose a deep learning
network structure based on 3D CNN, which extracts HCC
discriminant image features from multiphase images of
contrast-enhanced MR for MVI prediction. Specifically, we
first carefully evaluate the representation performance of 3D
deep features in each phase, and then use feature concatenation
to take advantage of the discriminative features from contrast-
enhanced MR. Finally, we design a loss function for deep
supervision of features from different phases of contrast-
enhanced MR to achieve the best MVI prediction.
MATERIAL AND METHODS

Dataset and Preprocessing
Study Population
The present study has been approved by the local institutional
review board, and the patient’s informed consent has also been
obtained. In the time from October 2012 to October 2018, a total
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of 1114 consecutive patients were diagnosed as HCCs based on
pathological results at our hospital. The inclusion criteria for this
study were as follows (Figure 1): a) without prior treatment
including microwave ablation (MWA), selective internal
radiation therapy (SIRT), radiofrequency ablation (RFA), or
transcatheter arterial chemoembolization (TACE); b) HCC was
confirmed by evaluating surgical specimens; c) MR imaging
examination should be performed no earlier than 1 month
before the surgery. In addition, the exclusion criteria of cases
are as follows: a) without MR imaging examination before
hepatectomy; b) without contrast-enhanced MR imaging
examination before hepatectomy; c) small HCCs lesions less
than 10mm in diameter; d) MR images with severe artifacts.
Specifically, we excluded small HCC with tumor diameter
smaller than 10mm because of the difficulty in determining its
3D region on MR. Furthermore, surgical resection is rarely used
for such small lesions and the pathological information is
often unavailable.

MRI Protocol
Gd-DTPA-enhanced MR imaging of patients were conducted by
two kinds of 3.0T MR scanners, including Signa Excite HD 3.0T
(GE Healthcare, Milwaukee, WI, USA) with breath-hold axial
LAVA (liver acquisition with volume acceleration, LAVA)
protocol and Achieva 3.0T (Philips Medical Systems,
Netherlands) with axial e-THRIVE (enhanced T1 high-
Frontiers in Oncology | www.frontiersin.org 3
resolution isotropic volume excitation sequence, e-THRIVE)
protocol. The bolus injection rate of the contrast agent Gd-
DTPA (Magnevist, Bayer-Schering Pharma AG) was set to
2.5ml/s, and the contrast dose of each patient was 0.025mmol/kg
body weight (0.1 ml/kg), and 15 ml of saline were subsequently
flushed through the power injector at a rate of 2 ml/s for each
patient. The contrast-enhanced MR image consisted of images of
arteries, portal veins, and delayed phases. Ideally, contrast-
enhanced MR images could be obtained at 25–30, 45, and 70 s
after Gd-DTPA injection during breath-holding. The parameters of
the two different scanners were shown in Table 1.

Clinical and Pathological Characteristics
Table 2 summarizes the baseline clinical and pathological
characteristics of all patients. The pathological diagnosis of
HCC was based on surgically resected specimens, and the
FIGURE 1 | Flow chart of patients’ recruitment for the study. TACE, transcatheter arterial chemoembolization; RFA, radiofrequency ablation; MWA, microwave
ablation; SIRT, selective internal radiation therapy.
TABLE 1 | Parameters of two MRI scanners.

Parameters GE Signa Excite Philips Achieva

Echo time (TE) (ms) 1.95 1.944
Repetition time (TR) (ms) 4.25 4.02
Field of view (FOV) (mm) 741´380 649´330
Slice thickness (mm) 2.2 6
Slice gap (mm) 1 3
Flip angle (degrees) 90 10
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histological information of HCC was retrieved from archived
clinical histology reports. The gold standard for diagnosis of
MVI was pathological diagnosis which was based on surgically
resected specimens. MVI positive was defined as tumor cells in
blood vessels lined by endothelium that was visible only under
the microscope. In addition, other pathological features were also
evaluated, such as Edmondson-Steiner tumor grade.

Volumetric Region Extraction and Data
Augmentation
All MR images were transferred to a workstation (Precision
T7610; Dell Inc, Austin, USA) for postprocessing. A radiologist
with 15 years of experience and another with 5 years of
experience separately analyzed the tumor regions of interest
(ROI) in medical images. The volumetric tumor regions were
manually extracted by the in-house software implemented by
Matlab (26). The training process of deep learning networks
usually requires thousands of samples to complete. Data
augmentation used the image resampling method (27) to
extract more 3D samples from the current limited tumor
sample area. First, the three-dimensional cube area of the
tumor was manually extracted, which was placed at the
center of mass of the 3D HCC. Note that the volumetric
region contains the whole tumor and it also includes the area
of non-tumor liver that outsides the tumor boundary to inside
the volumetric cube. Due to the different sizes of tumors, all
extracted cube tumor regions were normalized to a preset size
(for example, 32×32×32), and many relatively small cubes (for
example, 16×16×16) overlapping blocks can be extracted as the
sample to train the network. Specifically, a 3D block with a size
of 16×16×16 was centered on the centroid of the tumor, and
then a translation (2 pixels) was performed along the axial,
coronal, and sagittal directions within the normalized cube.
There were a total of Na * Nc * Ns translations, where Na, Nc,
and Ns were the times of translations along the axial, coronal,
and sagittal directions, respectively. Na, Nc, and Ns were set to
7 in this work, and finally 343 block samples were obtained
from each 3D tumor. Note that data augmentation was only
performed on the training tumor data, not on the test
tumor data.

The Proposed Method
The Overview of the Proposed Framework
Figure 2 shows the designed network structure, which uses 3D
CNN to extract deep features related to MVI characterization
from contrast-enhanced MR, and the loss function of deep
supervision is designed to better predict MVI. First, many 3D
block samples (16×16×16) were extracted in the tumor area via
image resampling method in the three phases of contrast-
enhanced MR. Then, the spatially corresponding 3D deep
features are extracted from those 3D block samples for MVI
prediction based on the 3D CNN. Subsequently, the 3D deep
features from the three phases are concatenated, and connected
with two fully connected layers and softmax layer for the final
classification. Finally, the loss function for deep supervision is
designed to combine the three loss functions corresponding to
Frontiers in Oncology | www.frontiersin.org 4
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the pre-contrast, arterial and portal vein phases and the loss
function related to the concatenated 3D deep features. The
following sections will introduce the details of the designed
network structure.

3D CNN
In this work, the 3D CNN architecture which is a straightforward
extension of typical 2D CNN architecture (28) is used to extract
the 3D deep features of each phase in the contrast-enhanced MR
images for MVI prediction of HCC. In detail, there are typically
several convolutional layers, pooling layers, fully connected
layers and a softmax layer in the 3D CNN architecture. For the
convolutional layer, a 3D convolution operation (3×3×3) is
performed on the extracted 3D block samples (16×16×16) to
obtain the convolution feature map. The pooling layer is
performed by image downsampling to reduce the size of 3D
block samples in order to obtain different scales of deep features.
In the fully connected layer, the neuron is connected to all the
activations in its previous layer, which is mainly used to reduce
the dimensionality of the acquired deep features. After the output
of the last fully connected layer is connected to the “softmax”
layer, the classification result will be output.

Loss Function
The deep supervision network (DSN) was originally proposed to
directly supervise the features of the hidden layer and improve
the effect of the hidden layer on the final performance during the
CNN learning process (29). In this work, we expect to directly
supervise the 3D depth features from the three phases of
contrast-enhanced MR, thereby constraining the feature
learning process of each phase to improve classification
performance. The cross-entropy is adopted as the loss function
for the concatenated features and the deep features corresponding
to the three phases. The loss function for the concatenated features
is defined as follows:
Frontiers in Oncology | www.frontiersin.org 5
LCON = −oky
’
k log   (yk)1

where yʹ is the ground-truth label of MVI information, and y
is the output probability of MVI prediction by the CNN.
Therefore, the deeply supervised loss function is the
summation of the cross-entropy loss function of the
concatenated feature and the cross-entropy loss functions of all
deep features corresponding to each phases of contrast-enhanced
MR, which can be defined as follows:

i = LCON + LPP + LAP + LPV2
where LPP, LAP, and LPV are the supervised loss functions of

3D CNN corresponding to the three phases of contrast-enhanced
MR, respectively.

The Implementation
The proposed network structure was implemented by
“Tensorflow” (https://tensorflow.google.cn/install), and training
and testing were performed under the configuration of GeForce
GTX1080 8G. The optimization process of the total loss function
of the deep network used the Adam algorithm (30). In order to
improve the generalization performance of the network and
reduce the risk of overfitting, we also adopted the “dropout”
(31) mechanism and the parameter was set to 0.5. In addition,
the neuron activation function “ReLU” (32) was used to
accelerate the convergence of the network. The parameters of
the network layer were set as follows: the size of the 3D
convolution filter was 3×3×3, the stride was 1, the maximum
buffered kernel size was 2×2×2, the stride was 2, and the learning
rate was initialized to 1e−4, the attenuation of the learning rate
was 0.98.

Statistical Analysis
For numerical variables, independent student’s t test or Mann-
Whitney U test was used, and for categorical variables, chi-square
FIGURE 2 | The flowchart of the proposed deep learning framework.
March 2021 | Volume 11 | Article 588010
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test, or Fisher’s exact test was used to evaluate the statistical
difference of age, gender, and HCC tumor diameter between MVI
and no MVI. In order to evaluate the stability of the learning
network and reduce measurement errors, the training and testing
process were repeated five times. Accuracy, sensitivity, and
specificity were expressed as the mean ± standard deviation of
five repeated measurements in the test set. Note that MVI positive
corresponds to the positive class, so sensitivity measured the ability
of the proposed model to detect MVI positive of HCCs, while
specificity measured the ability to differentiate MVI negative of
HCCs. The output probability value of the deep learning model in
the test set in differentiating the MVI present and MVI absent was
evaluated by independent student’s t-test. Receiver operating
characteristic curve (ROC) analysis was adopted to evaluate the
performance in predicting the MVI. P<0.05 was considered
statistically significant. Computer software packages (R software,
version 3.6.1) were used for the statistical analyses.
RESULTS

Training and Validation Dataset
Among the 117 lesions, 70 were pathologically determined as the
absence of MVI, while 47 were pathologically determined as the
presence of MVI. In order to verify the performance of the deep
learning model for MVI prediction, the dataset was divided into
two parts, including 77 HCCs for the training dataset and the
remaining 40 HCCs for the independent validation dataset.
Table 2 summarized the clinical characteristics of patients in
training and validation cohorts, in which 30 MVI positive lesions
and 47 MVI-negative lesions were chosen as the training set.

Performance of Clinical Information
As shown in Table 2, it can be found that tumor size, a-
fetoprotein level, and presence of hemorrhage have statistical
Frontiers in Oncology | www.frontiersin.org 6
significance to differentiate the MVI present and absent in both
training and validation cohorts. The performance of the three
clinical variables in the test cohort with cutoff values determined
in the training cohort was shown in Table 3. The AUC values of
the three clinical variables were 0.715, 0.705, and 0.664,
respectively. The AUC value of three-variables-model refers to
nodules long diameter + presence of hemorrhage + a-fetoprotein
level was 0.798.

Performance of Deep Learning Model
With respect to each phase of contrast-enhanced MR, we
separately assess the performance of 3D CNN for MVI
prediction in different phases. As tabulated in Table 4, it could
be found that the 3D deep features of the arterial phase had the
best performance in predicting MVI, which was better than the
portal phase and the pre-contrast phase. In addition, compared
to the single phase used for MVI prediction, the 3D deep feature
concatenation (CON) method (33) from pre-contrast, arterial,
and portal vein phases further improved performance. Clearly,
the proposed method of 3D deep feature fusion with deep
supervision net (DSN) yielded best performance. Finally,
Figure 3 also plotted the ROC curves based on 3D CNN for
single-phase and multi-phase combination for MVI prediction.

Detailed Study of the Deep Learning
Model
The learning process of the framework with limited number of
clinical HCCs for MVI prediction was shown in detail. In Figure
4, the total loss function curve and its corresponding accuracy
curve were shown for the test data. We could find that the test
loss was significantly reduced after iterations, which indicated
that the proposed deep learning framework had been successfully
optimized. In particular, the values of test loss were gradually
reduced, and the values of test accuracy were continuously
improved. Even if the amount of training tumor sample data
was small, the problem of network overfitting was not observed.
TABLE 3 | Performance of three clinical variables in the test cohort whereas cutoff is determined in the training cohort using Youden Index.

Characteristics Accuracy Sensitivity Specificity AUC Cutoff

Nodules long diameter 70% 70.59% 69.57% 0.715 (95% CI: 0.549–0.881) 43mm
a-Fetoprotein level 60% 82.35% 43.48% 0.705 (95% CI: 0.527–0.882) 14ng/ml
Presence of hemorrhage 67.50% 58.82% 73.91% 0.664 (95% CI: 0.512–0.815) 0.5*
Combination 72.50% 64.71% 78.26% 0.798 (95% CI: 0.649–0.947) 0.458*
March 2021 | Volume 11 | Article
*The cutoffs refer to prediction probability determined by logistic regression model.
TABLE 4 | Performance of microvascular invasion (MVI) prediction using 3D convolutional neural networks (CNN) in single phases and the combination of multiple
phases (%).

Framework Accuracy Sensitivity Specificity AUC p-value

Pre-contrast 72.00 ± 1.00 66.25 ± 5.00 75.83 ± 4.86 79.33 ± 1.67 0.001
Arterial 80.00 ± 1.58 80.00 ± 7.29 80.00 ± 3.12 85.47 ± 1.81 0.000
Portal vein 74.00 ± 1.22 71.25 ± 5.00 75.83 ± 1.67 81.72 ± 2.53 0.000
Concatenation 85.00 ± 1.58 86.25 ± 6.12 84.17 ± 3.12 90.57 ± 2.66 0.000
Proposed DSN 87.50 ± 1.58 86.25 ± 4.68 88.33 ± 3.12 92.55 ± 1.71 0.000
588010
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Figure 5 showed a case of HCCs in which the single models were
misdiagnosed, and the proposed fusion model made
correct decisions.
DISCUSSION

In the present research, we propose MVI prediction based on
3D CNN and contrast-enhanced MR images. This deep
learning framework may have the potential in use for the
precise medicine of neoplasm, especially in the application of
small data for lesion characterization. To evaluate the
Frontiers in Oncology | www.frontiersin.org 7
performance of each phase, our experimental results show
that the MVI produced in the arterial phase has the best
predictive performance, which is better than the portal vein
phase and the pre-contrast phase. The possible explanation
might be that the arterial phase of contrast-enhanced MR
images embedded MVI information of vascularity and
cellularity of HCC, which can be well characterized by the
deep learning framework with 3D CNN.

In this study, we have applied the 3D CNN for MVI
prediction rather than the conventional 2D CNN. In fact,
conventional 2D CNN has recently been used for liver
fibrosis staging (23) and liver mass diagnosis (24). Since 2D
CNN is based on a single slice and ignores the spatial
information of the third dimension, 3D CNN is a better
solution to characterize tumors, which can take advantage
of the three-dimensional spatial information in volumetric
data to more accurately characterize the lesion (34, 35).
Recently, Hamm CA et al. (36) used 3D CNN to classify 494
lesions from 6 types of liver tumor entities on multiphase MRI,
and demonstrated the high performance of 3D CNN for
lesion characterization.

Furthermore, our study also investigates the performance of
MVI prediction using 3D CNN with multiple phases of contrast-
enhanced MR. This study shows that deep feature fusion from
multiple phases of contrast-enhanced MR can significantly
improve the prediction performance of MVI. Conventional
multimodal fusion method with simple concatenation of 3D
deep features (33) outperforms the performance of MVI
prediction using 3D CNN in single phases, while our proposed
method of 3D deep feature fusion with DSN exhibits even better
performance than that of the simple concatenation. Deep
supervision loss function that integrates loss functions of
multiple phases and combines the three-loss functions
corresponding to multiple phases can yield the best performance
of MVI prediction. To our knowledge, very few studies had
considered multi-modality medical information for better MVI
prediction, while the proposed framework can simultaneously
make use of multiple phases of contrast-enhanced images for
better MVI prediction.
FIGURE 3 | ROC curves of 3D convolutional neural networks (CNN) for
microvascular invasion (MVI) prediction in single phases and multiple phases.
A B

FIGURE 4 | Test loss and accuracy (A) curves for different iterations (B).
March 2021 | Volume 11 | Article 588010
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Radiomics features have been widely used as the non-invasive
prognosis or predictive biomarker for MVI prediction. Peng et al.
(11) proposed an imaging radiomics model to predict the risk of
MVI by analyzing preoperative contrast-enhanced CT images
and obtained the performance with the AUC value of 0.844 in
the validation cohort. Feng et al. (13) proposed a radiomics
model to analyze the hepatobiliary phase in Gd-EOB-DTPA-
enhanced MRI for preoperative MVI prediction with the AUC
value of 0.85. Xu et al. (15) recently assessed the radiomics
characteristics for MVI prediction, and demonstrated that the
radiomics signatures of contrast-enhanced CT were less
important than the radiological features, with the AUC value
from 0.787 to 0.841. In addition, the radiomics nomogram has
also been used in the ultrasound images for MVI prediction with
the reported AUC value of 0.731 (16) and 0.806 (17),
respectively. Comparatively, our proposed deep learning
framework with 3D CNN yielded the performance with the
AUC value of 0.926, which is better than the reported radiomics
approaches. It should be noted the present study is totally
different from the radiomics approach. First, different medical
images were used for the assessment of MVI prediction. Second,
our proposed deep learning method with 3D CNN is based on
deep feature extracted from 3D patches from lesions, while the
radiomics approach is often based on radiomics features
extracted from 2D region of interest in tumors. Third, our
proposed deep learning method with 3D CNN assessed the
performance of MVI prediction in single phases as well as the
combination of multiple phases, while the radiomics approach is
generally conducted in single phases.

It has been reported that tumor size has a certain effect on
predicting MVI (37). In the present study, we find that there is
statistical significance of tumor size for MVI prediction. We also
used ROC analysis to calculate the predictive performance of
tumor size for MVI. However, its performance for MVI
prediction is not high enough (AUC=0.715, 95% CI: 0.549–
0.881), which is much lower than our proposed deep learning
framework. In addition, performance of clinical information has
been comparatively assessed for MVI prediction with the AUC
value of 0.798 (Table 3) in this study, which exhibits relatively
Frontiers in Oncology | www.frontiersin.org 8
lower performance than the deep learning method. The
combination of clinical characterization and radiomics feature
was shown to further improve the prediction performance (14,
15). Therefore, the combination of 3D deep features and clinical
features may be expected to achieve better MVI prediction.

This present study does not assess the performance of 3D
CNN in the delayed phase as 25 of the collection of clinical data
fluctuate in the delay period (1–3 min) and different positions
(coronal). In addition, we do not suggest that the delayed phase
yields promising results for MVI prediction. As the contrast
agent has overflowed from the tumor region in the delayed
phase, the tumor region becomes dark and the tissue cellularity
and vascularity within the tumor become to be unclear.
Therefore, the heterogeneous of intensity distribution within
the tumor may not be precisely represented by the deep feature.

There are several limitations to this retrospectively study.
First, the data set was collected in a single institution, and the
number of HCCs used in this study is limited. Although 1,114
HCCs were retrieved from the database, only 117 met the
inclusion criteria of this study. Large multicenter studies and
more samples are required to assess the predictive performance
of the deep learning framework precisely. Secondly, we did not
consider the influence of MR data slice thickness on prediction
performance. Since a larger slice thickness will affect the image
quality of the 3D block, future work will consider the influence of
slice thickness on the prediction performance of 3D CNN. Third,
simple image resampling is used for data augmentation to
increase the number of training sets. This is the most common
way of deep learning for small clinical samples. However, image
patches may contain large overlapping areas with homogeneous
features, which may result in a high risk of over-fitting for the
deep learning framework. More advanced data augmentation
methods, such as generative adversarial network (38), are
expected to increase the discrepancy of augmented samples.
Furthermore, other contrast agents or hepatobiliary phase with
Gd-EOB-DPTA enhanced MR imaging, have not been
comparatively evaluated in the present study. Finally, we only
derive 3D deep feature from contrast-enhanced MR images for
MVI prediction in this study. Embedding clinical information
FIGURE 5 | A case of hepatocellular carcinoma (HCC) with contrast-enhanced MR: a 51-year-old man with pathological confirmed HCC (white arrow) and
microvascular invasion (MVI) present. This neoplasm was misdiagnosed as the absence of MVI by the 3D CNN model with pre-contrast phase (A), arterial phase (B),
portal vein phase (C) images and concatenation (CON), while the proposed 3D convolutional neural networks (CNN) with deep supervision net (DSN) model made
correct diagnose as the present of MVI.
March 2021 | Volume 11 | Article 588010
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and radiological features into the current deep learning
framework for better MVI prediction will be an important
work in the future.

In conclusion, we propose a learning network based on 3D
CNN and contrast-enhanced MR for MVI prediction, which
extracts discriminative features from each phase of contrast-
enhanced MR and combines them to obtain better prediction
results. Although the current purpose of this task is to predict
MVI, we believe that the proposed framework can be widely used
in the description of many lesions in clinical practice.
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