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Research has demonstrated that the high capacity requirements of the heart are satisfied

by a preference for oxidation of fatty acids. However, it is well known that a stressed heart,

as in pathological hypertrophy, deviates from its inherent profile and relies heavily on

glucose metabolism, primarily achieved by an acceleration in glycolysis. Moreover, it has

been suggested that the chronically lipid overloaded heart augments fatty acid oxidation

and triglyceride synthesis to an even greater degree and, thus, develops a lipotoxic

phenotype. In comparison, classic studies in exercise physiology have provided a basis

for the acute metabolic changes that occur during physical activity. During an acute

bout of exercise, whole body glucose metabolism increases proportionately to intensity

while fatty acid metabolism gradually increases throughout the duration of activity,

particularly during moderate intensity. However, the studies in chronic exercise training

are primarily limited to metabolic adaptations in skeletal muscle or to the mechanisms

that govern physiological signaling pathways in the heart. Therefore, the purpose of

this review is to discuss the precise changes that chronic exercise training elicits

on cardiac metabolism, particularly on substrate utilization. Although conflicting data

exists, a pattern of enhanced fatty oxidation and normalization of glycolysis emerges,

which may be a therapeutic strategy to prevent or regress the metabolic phenotype of

the hypertrophied heart. This review also expands on the metabolic adaptations that

chronic exercise training elicits in amino acid and ketone body metabolism, which have

become of increased interest recently. Lastly, challenges with exercise training studies,

which could relate to several variables including model, training modality, and metabolic

parameter assessed, are examined.

Keywords: exercise training, lipid metabolism, metabolic remodeling, fatty acid oxidation, exercise adaptation,

heart failure, cardiac hypertrophy

INTRODUCTION

The physiological benefits of exercise training have long been appreciated. Research has
demonstrated enormous cardiovascular benefits including decreased blood pressure in
hypertensive individuals (1), improved glycemic control in diabetics (2), improved blood lipid
profiles (3), and improved quality of life in heart failure patients (4). Exercise has also been shown
to have beneficial effects on the vasculature including improvements in endothelial function (5) and
atherosclerosis and plaque stability (6, 7). Recent evidence has indicated that exercise may increase
cardiac myocyte proliferation (8, 9), even after myocardial infarction (9). Therefore, exercise
prescription remains an essential component of cardiac rehabilitation in patients after myocardial
infarction, coronary artery by-pass grafting (CABG) surgery, and heart failure with reduced ejection
fraction (HFrEF) (10–12). Surprisingly, although exercise intolerance is a primary manifestation of
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heart failure with preserved ejection fraction (HFpEF), a
disproportional amount of research has been performed on
this population (13). Despite the well-accepted benefits of
exercise training in diseased population, the precise molecular
adaptations that exercise elicits on the system are still
not understood. Because of this, the National Institutes of
Health (NIH) recently established a common fund aimed at
identification of the molecular benefits that occur due to chronic
exercise (14). Several excellent reviews on the cardiovascular
adaptations that result from chronic exercise training have
been published recently (15–17). However, these articles are
limited in the discussion of the adaptations that occur in
the cardio-metabolic pathways. Therefore, the purpose of this
review is to summarize the existing literature that report
adaptations in cardiac metabolism that result from chronic
exercise training. For this review, the focus will be primarily
limited to the adaptations that govern myocardial substrate
utilization. Systemic adaptations, particularly contributing to
oxygen delivery via enhanced coronary blood flow, are reviewed
elsewhere (18, 19).

METABOLIC REMODELING IN THE
PATHOLOGICAL HEART

A myriad of studies elucidated the major substrates that
supply the substantial energy requirements of the incessantly
contracting heart in both health and disease. In the healthy
myocardium, the literature demonstrates that fatty acids supply
approximately 50–70% of the necessary substrates to fuel
continual ATP resynthesis (20). Moreover, it is well accepted
that during ischemic conditions as well as the development
of pathological hypertrophy, the metabolic profile of the heart
converts to a glucose-dependent phenotype, where glycolysis is
markedly upregulated (21). The increased reliance on glucose
as a fuel is matched by a decline in fatty acid oxidation present
in both compensated and decompensated hypertrophy (22).
Conversely, conditions of lipid overload such as diabetes and
obesity, subjects the heart to a condition where the supply of fatty
acids exceeds oxidation, leading to the development of cardio-
lipotoxicity (23–25). In a diseased state, the chronic deviation
from the inherent cardio-metabolic profile may result in the loss
of metabolic flexibility that contributes to the development of
cardiac dysfunction (26). Therefore, novel strategies that target
metabolic therapies for the treatment of cardiac pathologies is a
focus of several research initiatives.

EXERCISE TRAINING AND CARDIAC
DISEASE

Exercise training has long been known to elicit positive
adaptations in both healthy and diseased populations. Up until
the early 1950s, 4–6 weeks of complete bed rest was the
traditional treatment for myocardial infarction (27). However,
the controversial ideas of Herman Hellerstein, followed by
seminal publications in the 1960s from Naughton (28) and Saltin
(29) as well as Hellerstein (30), provided the foundation for

the development of modern cardiac rehabilitation programs.
Since then, numerous studies investigating the consequences of
exercise-training, within the context of cardiac rehabilitation,
on mortality, risk factors, and psychosocial factors have been
conducted and are reviewed elsewhere (27).

The American Heart Association (AHA) declared physical
activity as a major modifiable risk factor for cardiovascular
disease (31). Moreover, low cardiorespiratory fitness levels are
associated with an elevated mortality risk from cardiovascular
disease (32). To this end, the AHA, the American College
of Cardiology, and the American College of Sports Medicine
put forth specific recommendations for the inclusion of
cardiorespiratory exercise at a moderate-intensity for 30–40min
at 3–5 times per week (33, 34). Exercise training results in a
condition of chronic volume overload, which induces myocardial
remodeling and increased end-diastolic volume. In addition,
myocardial contractility is also enhanced, reducing the end-
systolic volume. As a result, the major physiological adaptations
of exercise training is an increased stroke volume at rest (35).
Because cardiac output is unchanged at rest, an additional side
effect of chronic exercise training is a reduction in resting heart
rate. Since heart failure is defined as an inability of the heart to
maintain cardiac output to match systemic metabolic demands,
exercise training, due to its ability to modify both stroke volume
and heart rate, may be a promising therapeutic intervention.

Numerous studies tested the ability of chronic exercise
training to elicit positive benefits in both animal models of
heart failure as well as in patients with HFpEF or HFrEF.
Additional efforts have been undertaken to determine the
effectiveness of pre-operative exercise training for improving
outcomes from cardiac surgery (36–38). In smaller studies of
patients with dilated cardiomyopathy, 5–8 months of exercise
training at a moderate intensity was sufficient to improve
exercise performance and left ventricular function (39, 40).
In addition, positive changes in metabolism were also noted
with improved oxidative metabolism (40) or a tendency to
augment myocardial phosphocreatine levels (39). Recently, a
meta-analysis of 7 studies in patients with HFpEF determined
that exercise capacity, diastolic function, and quality of life
measures were all significantly increased with exercise training
(41). In addition, the Exercise Training in Diastolic Heart
Failure (Ex-DHF) reported improvements in exercise capacity
and diastolic function (42). The elevation in exercise performance
measures with exercise training are also echoed in studies of
HFrEF patients (43–45). Despite positive changes in cardiac
function in small population studies, larger studies including
the Exercise Rehabilitation Trial (EXERT), the Heart Failure: A
Controlled Trial Investigating Outcomes of Exercise Training
(HF-ACTION), and the Exercise Training Meta-Analysis of
Trials in Patients with Chronic Heart failure (ExTraMATCH)
do not consistently find improvements in cardiac function
or mortality (46–48). In accordance, inconsistent findings
in changes in cardiac function are also observed in animal
models as ejection fraction or diastolic function may increase
(49–51), decrease (52), or remain unchanged (53). Several
factors may contribute to the discrepant findings. In human
studies, the presence of additional co-morbidities, varied disease
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etiologies, and unknown side effects of medications could
hamper improvements in exercise performance. In animal
studies, sex differences and training protocols clearly contribute
to conflicting reports as discussed later in this review. This
certainly highlights the need for additional studies that account
for these numerous confounding factors.

THE EXERCISE PHYSIOLOGIST’S TAKE
ON METABOLISM

The typical undergraduate exercise physiology textbook discusses
major concepts regarding bioenergetics pathways during exercise
(54). One primary focus is the time and intensity dependent
contributions of the three major energy pathways. First, the
phosphagen system, the PCr to ATP reaction regulated by
creatine kinase, resynthesizes ATP during immediate, high
intensity work. Second, the short-term lactic acid system,
relies on glycogen-dependent glycolysis to fuel intermediate,
moderate to high intensity activity (55). Third, the long-term
aerobic system requires efficient oxidative metabolism to support
moderately intense, long-duration exercise. In parallel to the
energy systems, careful consideration of the oxygen demands and
time course of oxygen uptake are also necessary. In the early
course of exercise, an increase in the cellular energetic demand
occurs, requiring increased oxygen uptake. However, despite
constant intensity, there is a slight delay (up to several minutes)
in oxygen uptake to match the steady-state metabolic demands.
This phenomenon, deemed the “oxygen deficit,” represents the
mismatch between total oxygen uptake and the steady-state
oxygen requirement (56). During this time, ATP resynthesis is
supported by both the immediate and short-term energy systems
(i.e., PCr and glycolysis). In time, the oxygen uptake matches
the oxygen demand and the steady-state metabolic needs are
met primarily by long-term aerobic metabolism. Research has
shown that exercise-trained individuals have a reduced “oxygen
deficit” and reach steady-state, aerobic metabolism at a faster
rate compared to sedentary counterparts (57). In other words,
trained individuals have an increased capacity to utilize oxidative
pathways to fuel exercise. The enhancedmetabolic capacity of the
system is likely furnished by a combination of augmented oxygen
delivery and improved biochemical processes.

One long-standing dogma is that the failing heart is a
metabolically comprised organ the contributes dysfunctional
status, representing an “engine out of fuel” (58). Coinciding with
this concept, a heart subjected to pressure-overload hypertrophy
could be paralleled to the initial phase of intense exercise where a
new steady state aerobic metabolism has not yet been achieved.
In this case, the “oxygen deficit” is initially compensated by
phosphocreatine and glycolysis. Indeed, accelerated glycolysis is a
hallmark of the pathological myocardium (59) and alterations in
the PCr/ATP ratio have been reported (60, 61). In this scenario,
the hypertrophied heart would require a strategy to achieve
steady state aerobic metabolism and return to its preferred fatty
acid oxidation. Based on the ability to reduce the “oxygen deficit”
and promote aerobicmetabolism, perhaps exercise training could
serve as a suitable intervention.

CARDIAC METABOLISM IN RESPONSE TO
EXERCISE

When interpreting findings of exercise-based research, it is
important to elucidate the acute vs. chronic responses of the
physiological stress of exercise. Acute exercise, a single bout
typically lasting from several minutes to hours, results in a
host of cardiovascular and biochemical changes that return to
baseline in a short time after cessation of the activity. Conversely,
chronic exercise, or exercise training, refers to repeated bouts
of acute exercise that occur over an extended period time (i.e.,
weeks, months, years) that result in distinct cardiovascular and
biochemical adaptations that can be present for a prolonged
duration. In some instances, the changes between acute and
chronic exercise may be in opposition. For example, heart
rate increases with acute exercise but tends to decrease with
chronic exercise training. Therefore, it is critical to make these
distinctions.

Past research has clearly delineated the changes that occur in
the systemic usage of glucose and fatty acids in response to both
acute and chronic exercise Likewise, research performed in the
field of cardiac metabolism largely uncovered the relationship
between the utilization of glucose and fatty acids, particularly
during acute and chronic pathological stress. Although the
exercise literature explored skeletal muscle metabolism of both
amino acids and ketone bodies, these substrates are just starting
to gain prominence in cardiac metabolism. In the ensuing
section, an attempt to merge the two fields of exercise and cardiac
metabolism is taken in order to understand adaptations that
occur in metabolic pathways of the heart in response to chronic
exercise training.

CHANGES IN GLUCOSE AND FATTY ACID
METABOLISM

The systemic usage of glucose and fatty acids in the response to
acute exercise has been well established by the scientific literature
primarily by measuring the respiratory exchange ratio (RER) or
respiratory quotient (RQ). RER or RQ is a ratio of the output of
carbon dioxide divided by the intake of oxygen. RER values of
1.0 represent carbohydrate (i.e., glucose) while 0.7 represent fatty
acids. It is suggested that the typical human has a resting RER
of 0.85 representing a mixture of fuel usage (62, 63). During the
early course of an exercise bout, the RER value rapidly approaches
1.0, proportionate to intensity, indicating a rapid utilization of
glucose, presumably by the contracting skeletal muscle (64). This
abrupt increase in glucose uptake and oxidation during exercise
has been observed in the human heart as well in perfused hearts
during acute workload (65, 66). Moreover, a significant portion
of the myocardial glucose utilization is supplied by endogenous
glycogen stores (67, 68), which is similar to observations made in
skeletal muscle (69). If exercise intensity is moderate enough and
continues for an extended duration, the RER value will return
to values closer to 0.70, indicating a greater percentage of fatty
acid usage (64). This coincides with elevated plasma fatty acid
concentrations due to enhanced adipose tissue lipolysis (70). In
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summary, the relative usage of glucose vs. fatty acids during
acute exercise is based on the intensity and duration of the
activity.

Past research in exercise physiology has determined the
systemic adaptations that result from engagement in long-term
exercise training programs. These findings generally show that
chronic endurance exercise training results in an increased
capacity to oxidize fatty acids at rest and during sub-maximal
exercise, partly due to skeletal muscle adaptations (64, 71, 72).
However, the metabolic adaptations that occur in the heart in
response to chronic exercise are still not completely elucidated.
Despite numerous studies investigating various aspects of
metabolic responses to exercise training, a disproportionate
number of studies over the last 20 years directly assessed
changes in myocardial substrate utilization. Due to the logistical
and technological challenges with performing these analyses in
humans, most of these studies were performed in rodent models
and relied on data obtained from gene expression analysis or
enzymatic activity assays. However, several of the studies did
utilize more traditional methods of analyzing cardiac metabolism
including, isotopic tracing techniques in isolated perfused hearts
and positron emission tomography (PET). Table 1 summarizes
the major findings of these chronic exercise-training studies in
non-diseased mice.

Based on the data presented in Table 1, it is difficult to
determine the exact changes that occur in myocardial substrate
utilization due to chronic exercise training. Using small animal
PET scanning, glucose uptake was found to be decreased (73–
75) or unchanged (74) while fatty acid uptake was likewise

unaltered (74, 75) or increased (76). Using isolated rodent heart
perfusions, exercise training resulted in an elevation (77–80) or
no change (78, 81) in glucose oxidation while glycolysis was
increased (79, 80), decreased (77) or unchanged (81). With
likewise inconsistencies, fatty acid oxidation was found to be
increased (77, 80), decreased (78), or unaffected (78, 79) by
exercise training. The duration of training in the above studies
largely ranged from 4 to 10 weeks using both mice and rodents.
However, these differences do not appear to account for the
lack of agreement in the data. Interestingly, 5 weeks of swim
training resulted in significant increases in glucose oxidation,
fatty acid oxidation, and glycolysis suggesting that this mode of
exercise might be preferable for eliciting metabolic adaptations
(80). However, 15 weeks of swim training in rats did not result
in similar changes (83). Divergent results were also reported in
females (77, 84). One notable finding is the overall decrease or no
change in metabolic parameters in mice subjected to 15 months
of wheel running (75), which may suggest a potential aging effect
or a specific requirement to monitor the intensity of exercise.

Unfortunately, potential mechanistic targets for modulation
of cardiac metabolism are also lacking from the current
literature primarily due to limited exploration of the associated
pathways. The findings are summarized in Figure 1. Detailed
transcriptomic and metabolomics analyses of exercise-trained
mouse hearts yielded minimal changes except for a significant
upregulation of phosphofructokinase 2 (PFK2), accounting
for glycolytic remodeling (79). Swim training in mice
enhanced citrate synthase (CS) and hydroxyacyl-coenzyme
A dehydrogenase (HADH) activity and led to increased

TABLE 1 | Cardio-metabolic effects of chronic exercise training in healthy animals.

Species Sex Age Mode Intensity Time Length GLO FAO Glycolysis Data References

Mice M/F 5 weeks TM 15 m/min, 7◦ 90min 4 weeks M: ↔ M: ↔ ND PET mRNA (74)

F: ↓ F: ↔

Mice F 5 weeks TM 15 m/min, 7◦ 90min 4 weeks ↓ ↑ ND PET (73)

Mice M Adult TM 20.4 m/min, 10◦ 60min 4 weeks ↑ ↔ ↑ Isolated heart

Transcriptomics

Metabolomics

(79)

Mice M 6–7 weeks Swim N/A 90min (2x/day) 5 weeks ↑ ↑ ↑ Working heart (80)

Mice M 7–9 weeks TM MIT: 13 m/min,

25◦

HIT: 26 m/min, 25◦

MIT: 120min

HIT: 40min

10 weeks MIT: ↔

HIT: ↑

MIT: ↔

HIT: ↓

ND Working heart

mRNA

(78)

Mice M 12 weeks WHL N/A N/A 15 months ↓ ↔ ↓ PET Plasma

Western

(75)

Rat M 11 weeks TM 16–28 m/min, 0◦ 60min 6 weeks ND ↑ ND mRNA Western (82)

Rat M ND TM 18–32 m/min, 8◦ 80–100min 7 weeks ↑ ↑ ND Affymetrix (85)

Rat M ND TM 22–32 m/min, 8◦ 60min 10 weeks ↔ ND ↔ Working heart (81)

Rat ND 4 weeks Swim N/A 75min 15 weeks ↔ ↑ ↔ mRNA (83)

Rat F ND TM 25 m/min, 16◦ 90min 10 weeks ↑ ↑ ↓ Working heart (77)

Rat F ND TM 30 m/min, 15◦ 120min 6 weeks ↔ ↓ ↔ Enzyme activity (84)

Dog M/F ND TM 11.3 km/h, 8–16◦ 75min 9 weeks ↑ ↑ ↑ Enzyme activity (93)

The metabolic changes that occur in the heart during chronic exercise training in animal models are presented and organized according to species, sex, mode, intensity, time, and

duration of study. The changes that occur in glucose oxidation (GLO); fatty acid oxidation (FAO), and glycolysis are indicated as increased (↑), decreased (↓), or no change (↔). The

type of data collected to determine the change in metabolism is listed along with the associated reference. M, Male; F, Female; ND, no data presented; TM, treadmill; WHL, voluntary

wheel running; MIT, moderate-intensity training; HIT, high-intensity training; PET, positron emission tomography, Swim, swim training.
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FIGURE 1 | Changes in cardiometabolic pathways with chronic exercise

trainingx. There are limited reports that detailed the changes that occur in the

metabolic pathways associated with myocardial substrate utilization.

Summarized are the reported changes in enzymes or genes that are involved

in the processes: Fatty acid (FA) uptake, lipogenesis, FA oxidation,

mitochondrial function, and glycolysis. CD36, cluster of differentiation 36; CS,

citrate synthase; CPT1b, carnitine palmitoyltransferase 1b; DGAT1,

diacylglycerol acyltransferase 1; ETC, electron transport chain; FABP, fatty acid

binding protein; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; HADH,

hydroxyacyl-coenzyme A dehydrogenase; PPARα, peroxisome

proliferator-activated receptor, alpha; PGC1α, peroxisome

proliferator-activated receptor gamma coactivator 1-alpha; PFK2,

phosphofructokinase 2; PK, pyruvate kinase; PFK; SCD1, stearoyl CoA

desaturase 1; SREBP1c, sterol regulatory element-binding protein 1c.

expression of the carnitine palmitoyltransferase I (CPT1),
peroxisome proliferator-activated receptor gamma coactivator
1-alpha (PGC-1α), and subunits of the electron transport
chain (80). Treadmill training in mice also increased CPT1b
expression as well as regulators of lipid metabolism, peroxisome
proliferator-activated receptor (PPARα) and sterol regulatory
element-binding protein 1c (SREBP1c) (82). In addition,
gene expression of CD36 was shown to be upregulated (85).
However, other studies found no change in PPARα (75), CD36
(83), or CPT1b (83). Overall, these studies might suggest
the need to standardize training protocols including the
mode, time and duration of training, and other requirements,
such as intensity, in order for more solid conclusions to be
drawn.

High intensity interval training (HIIT) has traditionally
been utilized to increase exercise performance in athletes but
has gained mainstream and clinical attention recently. HIIT
incorporates exercises that require near-maximal efforts for
seconds to minutes interspersed with frequent longer duration
rest periods (86). Although the physiological benefits of HIIT
are apparent, there is debate whether HIIT is superior to
the commonly recommended moderate-intensity continuous
training (MICT) (76, 87, 88). Moreover, HIIT has been
considered for patients with heart disease [for review see (89)]
and is the focus of a current randomized controlled study in
the United Kingdom (90). However, a recent evaluation of
261 patients with heart failure found no benefit of HIIT over

MICT on left ventricular dimensions or aerobic capacity (91).
In regards to cardiac substrate utilization, HIIT training in
mice led to a reduction in myocardial fatty acid oxidation and
increased reliance of glucose oxidation, which was associated
with a decrease in the expression of PPARα and increase in
glycolytic genes (78), a metabolic profile more similar to the
pathological heart. Furthermore, 4 weeks of HIIT was not as
effective as MICT in reducing fibrosis or enhancing angiogenesis
in hypertensive rats (92). Certainly, additional research in both
animal and human models is needed before any conclusions can
be reached.

Despite the overall variability in the reported metabolic
adaptations, the most common reported change was elevated
fatty acid oxidation by isolated perfused heart experiments
(77, 80), gene expression (79, 82, 83, 85), or enzymatic
activities (93). These potential findings are significant based
on the known down-regulation of fatty acid oxidation that
occurs in the pathologically hypertrophied heart (60, 94).
Our recent work demonstrated that increasing myocardial
fatty acid oxidation, via cardiac-specific deletion of acetyl
CoA carboxylase 2 (ACC2), prevented the impairments in
fatty acid oxidation that occurred during pressure-overload
hypertrophy by transverse aortic constriction (TAC) or
chronic angiotensin II treatment (60, 95). In addition to
prevention of the metabolic remodeling process, systolic
(60) or diastolic (95) function was maintained. Overall, these
data suggested that targeting myocardial fatty acid oxidation
was a promising therapeutic intervention. Since the above
exercise training studies appear to indicate a potential to elicit
positive adaptations in myocardial fatty acid oxidation, perhaps,
exercise training either as a primary or secondary intervention
might demonstrate likewise results as in the ACC2 mouse
studies.

In addition to the decrements observed in oxidation of
exogenous fatty acids, a decreased ability of hypertrophied
hearts to oxidize endogenous fatty acids, from triacylglycerol
(TAG) stores, also exists (96). Interestingly, recent work
demonstrated that provision of unsaturated fatty acids improved
endogenous fatty acid oxidation and cardiac function parameters
in isolated perfused hypertrophied hearts (97). In conjunction,
enhancing myocardial triacylglycerol turnover via diacylglycerol
acyltransferase 1 (DGAT1) overexpression was sufficient to
prevent impaired functional recovery from ischemia (98) and
prevent cardiac dysfunction due to lipotoxicity (99, 100).
Previous research showed that several genes in the TAG pathway
are enhanced in exercise-trained skeletal muscle (101, 102)
which also appears to hold true in trained cardiac muscle
(82, 99). In this regard, exercise training might be beneficial
in upregulating both exogenous and endogenous fatty acid
metabolism and aid in the treatment of cardiac dysfunction,
although additional research is certainly required in support of
this hypothesis.

There are limited reports supporting the hypothesis that
exercise training may prevent the appearance of the fetal
metabolic profile in pathological cardiac hypertrophy. There
is also a paucity of data investigating the effects of exercise
training on the modulation of cardiac metabolism in the
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diabetic heart, which has been reviewed recently (103). Studies
performed in rats revealed that treadmill running led to a distinct
cardio-metabolic gene profile compared to aortic banding
(82) or myocardial infarction (85). Specifically, genes involved
in endogenous lipid metabolism (82) or beta-oxidation (85)
were upregulated in hearts from trained rats. However, these
studies did not test the interventional effects of training in the
pathological models. However, endurance exercise training was
effective in normalization of genes associated with glucose or
fatty acid metabolism in spontaneously hypertensive rats (83).
Likewise, exercise training was sufficient to partially normalize
glycolytic, beta-oxidation, or mitochondrial enzymatic activities
in volume overloaded rat hearts due to aortic regurgitation (104).
Despite these findings, future research in this area is certainly
warranted.

THE IMPORTANCE OF LACTATE
METABOLISM IN EXERCISE

As discussed previously, there is a significant upregulation
of glycolysis in skeletal muscle during the early course
of an exercise bout, which is proportional to intensity.
As a result, plasma lactate concentrations can increase
3- to 5-fold (105). Because of its omnivorous capacity,
the heart can readily utilize the excess lactate to satisfy
energetic demands. Previous studies demonstrated myocardial
oxidation of lactate is significant and may be proportional
to exogenous concentration within a physiological range
(106, 107) or during elevated workloads (108). Interestingly,
this elevated concentration of lactate can supplant fatty acid
oxidation in the heart (107), providing a mechanism to
preferentially oxidize the surplus lactate generated during
intense activity.

AMINO ACID METABOLISM AND
EXERCISE

In the exercise literature, amino acids are generally considered
a necessary nutrient for the post-exercise recovery period,
providing necessary substrate for skeletal muscle repair. Despite
numerous studies, the promotion of exercise capacity with
amino acid supplementation, particularly with branched-
chain amino acids (BCAAs), is still debated (109). Recent
evidence has correlated cardiovascular disease with elevated
plasma BCAAs levels (110). Moreover, disruption of BCAA
catabolism via genetic deletion of the mitochondrial localized
2C-type serine-threonine protein phosphatase (PP2cm)
has been linked to heart failure (111), cardiac dysfunction
after myocardial infarction (112), and impaired functional
recovery from ischemia (113). However, the contribution of
amino acid to overall cardiac metabolism has generally been
considered minimal, equating to less than 5% of the total,
although studies directly testing this assertion are limited
(114). Likewise, the metabolic adaptations in the cardiac
amino acid pathway after exercise training require additional
exploration.

KETONE BODY METABOLISM AND
EXERCISE

The contribution of ketone bodies to both cardiac and
systemic metabolism has become of increased interest in
the last several years. Recent work observed an increase in
the enzyme, mitochondrial β-hydroxybutyrate dehydrogenase
(BDH1), which coincided with elevated plasma levels of β-
hydroxybutyrate (BHB) in both rodent and human models
of heart failure (115, 116). In addition, increased measures
of BHB oxidation in isolated perfused hearts was also noted
(115). These studies suggested that an increased reliance on
ketone body metabolism could be an additional hallmark of
metabolic remodeling in the failing heart; however, whether
this is an adaptive or maladaptive response remains to be
seen (117). Of note, plasma ketone body concentrations and
myocardial uptake are also increased in Type II diabetic
patients without cardiac dysfunction (118), suggesting that
the pathological consequence is due to increased availability.
Indeed, it is known that ketone body uptake and oxidation in
brain, heart, and skeletal muscle is proportional to the delivery
(119).

In contrast to the pathological conditions of heart failure and
diabetes, nutritional provision of ketone bodies in the form of
ketone esters appears to improve exercise performance in both
humans and rodents (120, 121), and is likely to gain increased
scrutiny in the athletic performance field. In humans, ketone
body ester supplementation decreased the reliance of skeletal
muscle metabolism on glucose, evidenced by decreased glycolytic
intermediates and blood lactate accumulation (120). The ketone
body supplement also appeared to promote oxidation of
intramuscular triacylglycerol during exercise (120). Interestingly,
rodents fed a ketone body ester diet had improved cardiac
energetics when exposed to acute isoproterenol stimulation
(121). From these limited studies, the metabolic effect of ketone
bodies has the potential to reduce reliance on glycolysis, promote
endogenous lipid metabolism, and preserve energetics in actively
working muscle. However, more research is needed to support
these observations.

So, does exercise training result in any metabolic adaptations
of the ketone body pathway in the heart? In essence,
the answer remains unknown. There are limited reports
of ketone body metabolism in exercise with one report
demonstrating that 14-weeks of training in rats did not
significantly change activities of enzymes associated with ketone
body utilization (122). Interestingly, the cardiac activities
of various ketone body enzymes, including BDH1, were
2- to 5-fold higher than that of slow-red oxidative (i.e.,
Type I) skeletal muscle (122), suggesting a relatively high
robustness of myocardial ketone body metabolism. Overall,
cardiac oxidation of ketone bodies has been suggested to be
relatively minor (10–20%) in healthy hearts under physiological
concentrations (114, 123). In skeletal muscle, activities of
enzymes involved in ketone body hydrolysis have been reported
to be up-regulated with exercise training which corresponds
to both increased uptake and oxidation of ketone bodies in
trained vs. untrained skeletal muscle, for review see Evans
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et al. (124). Whether exercise training also confers increased
capacity of cardiac ketone body metabolism remains relatively
unexplored.

CHALLENGES WITH EXERCISE TRAINING
RESEARCH

Research statistics reveal that∼43% of adults in the United States
(∼31% worldwide) are physical inactive, defined as performing
less than 30min of moderately intense activity on 5 days per
week or 20min of highly intense activity on 3 days per week
(125). Therefore, the potential population for exercise related
studies might be biased toward active individuals. Because of this,
most of the existing literature focused on populations that were
easily recruited, i.e., athletes in various academic institutions. In
addition, performing molecular based inquiries requires invasive
data collection techniques, such as blood draws and muscle
biopsies, which tend to make participation in the study less
attractive.

Because of the above challenges, exercise-training studies
in animals, particularly rodents, are preferable. Beyond the
translational difficulties, numerous other factors need to be
considered. Several different modalities of exercise are often
employed: swim training, treadmill running, and voluntary wheel
running. All of these have their advantages and disadvantages.
For example, with swim training, appropriate temperature
control of the “pool” is critical. In addition, constant monitoring
to avoid mortality due to drowning is necessary. Rodents
tend to have unpredictable behaviors during swimming, (i.e.,
“floating”) which can make monitoring intensity difficult (126).
In treadmill running, many researchers employ an electric
shock grid to “motivate” the animals. This presents potential
ethical issues and may confound results particularly since the
sedentary animals do not receive this same stimulus. However,
less aversive motivational techniques exist, which can eliminate
this concern (127). Voluntary wheel running eliminates the
“forced” aspect of exercise but results in the inability to monitor
intensity closely and requires single housing of the animals (128).
However, voluntary wheel running may be preferred to treadmill
particularly considering the reproducibility in evaluation of
endurance exercise (127). Despite these issues, all of these
modalities are frequently used in the exercise literature for
training protocols and endurance capacity tests.

Regardless of the specific modality used, researchers must
also consider general parameters of exercise prescription, namely
intensity, frequency, and duration. Treadmill running presents
an advantage by allowing the researcher to set a constant
running speed that is equivalent to intensity. Although the
animals need to be monitored closely to ensure adherence to
the exercise period, some mouse strains have varied inherent
running capabilities, termed critical running speed, which needs
consideration (129). In general, the majority of exercise training
studies employ a frequency of 5 days per week. Duration for
treadmill running typically last for 60min per session whereas
swim training may encompass two 90-min sessions, for a total
of 3 h per day (80). Furthermore, the length of the exercise
training treatment period is traditionally from 4weeks (130) to 12

weeks (131). Although frequency and duration are usually similar
to humans, the determination of exercise intensity is difficult.
Therefore, a biochemical marker documenting that a training
effect has been achieved is necessary. Citrate synthase activity,
a surrogate marker of mitochondrial density, in skeletal muscle
is often used (80, 132). It should be noted that acute effects
of exercise might persist for up to 24 h (64), so it is advisable
to adjust the harvesting of animal tissues accordingly. A final
challenge with conducting exercise-training research is critical
in studies that use bioengineered mice. It is more frequently
noted that the mouse strain can greatly influence the treatment
response, including high fat feeding (133) and pressure-overload
hypertrophy (134). This is also true for exercise as recent studies
demonstrate a profound difference in exercise performance in a
variety of mouse strains. Of note, the FVB/NJ, commonly used
in transgenic colonies, significantly outperform the frequently
used strain for knockout models, the C57BL/6J (130, 135, 136).
Further complicating matters, there also appears to be a sexual
dimorphism as female mice exhibit greater exercise performance
and capacity (137–139) and more pronounced physiological
hypertrophy (74, 137, 138). Therefore, careful planning of
exercise training studies is definitely required.

CONCLUSIONS AND PERSPECTIVES

One potential critique with exercise training research is the
inability of dissecting a specific mechanism due to the intricate
systemic interactions that are caused by the exercise treatment.
However, any pathological model used in research ultimately
affects the entire system, so focusing on the outcomes of
any particular organ is viable in the research setting. Several
studies discussed above reported various positive outcomes in
response to exercise training. However, additional research is
required to conclude whether exercise training prevents or
reverses cardiac function in models of pathological hypertrophy.
Furthermore, although the precise metabolic adaptations that
occur in the heart from chronic exercise training are not
definitive, some evidence suggests that fatty acid oxidation
may be enhanced, although it is not clear whether this
represents a change in substrate preference or an increase
in the metabolic pathway. However, promoting myocardial
fatty acid oxidation, particularly in diseased models, is still
debated (140, 141). Therefore, more in-depth research focusing
on the cardio-metabolic adaptations that result from exercise
training may uncover a novel therapeutic intervention to combat
the metabolic derangements that occur in the pathological
heart.
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