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ABSTRACT
Objectives: Low tidal volume (TVe) ventilation
improves outcomes for ventilated patients, and the
majority of clinicians state they implement it.
Unfortunately, most patients never receive low TVes.
‘Nudges’ influence decision-making with subtle
cognitive mechanisms and are effective in many
contexts. There have been few studies examining their
impact on clinical decision-making. We investigated the
impact of 2 interventions designed using principles
from behavioural science on the deployment of low
TVe ventilation in the intensive care unit (ICU).
Setting: University Hospitals Bristol, a tertiary, mixed
medical and surgical ICU with 20 beds, admitting over
1300 patients per year.
Participants: Data were collected from 2144
consecutive patients receiving controlled mechanical
ventilation for more than 1 hour between October 2010
and September 2014. Patients on controlled
mechanical ventilation for more than 20 hours were
included in the final analysis.
Interventions: (1) Default ventilator settings were
adjusted to comply with low TVe targets from the
initiation of ventilation unless actively changed by a
clinician. (2) A large dashboard was deployed
displaying TVes in the format mL/kg ideal body weight
(IBW) with alerts when TVes were excessive.
Primary outcome measure: TVe in mL/kg IBW.
Findings: TVe was significantly lower in the defaults
group. In the dashboard intervention, TVe fell more
quickly and by a greater amount after a TVe of 8 mL/kg
IBW was breached when compared with controls. This
effect improved in each subsequent year for 3 years.
Conclusions: This study has demonstrated that
adjustment of default ventilator settings and a
dashboard with alerts for excessive TVe can
significantly influence clinical decision-making. This
offers a promising strategy to improve compliance with
low TVe ventilation, and suggests that using insights
from behavioural science has potential to improve the
translation of evidence into practice.

INTRODUCTION
The translation of evidence-based interven-
tions into clinical practice is inconsistent.1

The resulting variation in care can worsen
outcomes.2 It is often assumed that simply
presenting clinicians with information on
best evidence will lead to adoption into prac-
tice and improvements in care. However, it is
unlikely that this ‘rational’ model, which
assumes that clinicians can integrate and
hold in mind all the necessary information,
is valid. Instead, decision-making is likely
constrained by a range of cognitive, social
and emotional factors.3

In the current paper, we investigate this
problem with respect to low tidal volume
(TVe) ventilation in the intensive care unit
(ICU). Clinicians working in the ICU must

Strengths and limitations of this study

▪ There are few studies that examine impact of
behavioural insights (or ‘nudges’) on clinical
decision-making and, to our knowledge, this is
the first study to investigate the impact of default
settings on ventilation practice.

▪ We examined the effect of the interventions on a
large data set using hourly tidal volumes, a far
greater frequency of sampling than achieved in
most ventilation studies.

▪ The allocation of default ventilators was pragmat-
ically randomised according to the availability of
each ventilator.

▪ The dashboard evaluation was undertaken as a
before-and-after comparison, and may be influ-
enced by unmeasured factors.

▪ The study was undertaken in a single intensive
care unit and, therefore, should be repeated in a
large multicentre, randomised, controlled trial.
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make large numbers of time-constrained decisions in
order to deliver optimal care to individual patients. It has
been estimated that to comply with best available evi-
dence for a complex patient on the ICU, intensivists must
deliver 80–200 interventions daily,4 one of which is main-
taining low TVes for patients on mechanical ventilation.
Randomised controlled trials and meta-analyses have

shown that low TVes (ie, TVes<6 mL/kg ideal body weight
(IBW), combined with appropriate positive end expiratory
pressure (PEEP) adjustment, benefit ventilated patients,5–8

but the adoption of this strategy has been inconsistent.9 10

A recent study found that only 37% of eligible patients
received low TVes.11

Importantly, although physicians state they intend to
use low TVes and implement them frequently or always,
they often fail to deliver them in practice.12 13

In order to implement appropriate TVes, clinicians must
calculate IBW using the patient’s height. They must then
divide the volume of each breath by the IBW to give the
format mL/kg IBW. Given the conditions clinicians
operate under, it seems implausible that they have the cog-
nitive capacity to constantly integrate this information and
apply it to their patients as the rational model of decision-
making suggests.14 In a previous study, we demonstrated
that a large dashboard displaying TVes in real time, in a
format that reduces cognitive effort, reduced mean TVe.15

In this study, we examine the response of clinicians to indi-
vidual high TVe alerts over a 3-year period. We also
examine the effect of setting an initial default on the venti-
lators that is consistent with low TVe targets.

METHODS
This prospective observational study was undertaken in
the ICU at University Hospitals Bristol, UK, a closed-
format tertiary medical and surgical ICU. The unit has
used the Innovian Solution Suite clinical information
system (CIS) (Draeger, Germany) since 2008. The CIS
automatically collects all information relating to patient
care including data from ventilators. This information is
displayed on a computerised chart, and is also stored on
a database (Microsoft SQL server, 2008). Doctors, some
nurses and some physiotherapists can adjust the ventila-
tors. The interventions targeted the entire clinical team.
An entry on the staff communication book accompanied
the introduction of the interventions. No additional staff
training or education regarding low TVe ventilation was
undertaken. The ICU does not employ respiratory thera-
pists. The institutional review board waived the require-
ment for individual consent.

Patients
Consecutive patients undergoing controlled mechanical
ventilation were included in the study.

Data collection and preprocessing
We collected anonymised data from 2144 ventilated
patients between October 2010 and September 2014.

Ventilation data for these patients were automatically
recorded at least hourly in the CIS database. We prepro-
cessed these data to avoid issues introduced by missing
and irregularly sampled data. Irregularities in TVe time
series data can arise from system errors, but also from
changes in the clinical treatment of the patient. For
example, a patient may be taken off the ventilator for a
short time, or clinicians may request an increased sam-
pling rate. Additionally, many patients will only be venti-
lated for a very short time.
If there were gaps in the time series that were >2 hours,

we excluded these patients from further analysis. For
gaps in the time series that were 2 hours or less, the time
series were linearly interpolated. Sample rates higher
than 1 hour were down-sampled to the standard 1 hour
rate. Furthermore, to avoid biasing effects of ventilation
duration on TVe trends, we ensured that all time series
had the same length. We used a 20 hours continuous
ventilation criterion, which is long enough to detect
longer-term trends, while also including a substantial
number of patients (944, which is approximately 44% of
the total sample). In the default analysis, we used
20 hours from the initiation of ventilation. In the dash-
board analysis, we used 20 hours from the first time a TVe
breached 8 mL/kg IBW. Further analyses (not reported
here) show that the results reported below are robust to
changes in these preprocessing criteria.
TVe time series are asymmetrical about the mean and

do not meet the assumptions of normality, partly
because TVes are more strictly bounded at lower than
higher values. Therefore, we describe these time series
using robust statistics, plotting 50% trimmed means and
estimating the SE using bootstrapping. We inferred the
features of these time series by fitting parametric func-
tions to each time series using non-linear regression
(MATLAB, nlinfit, bisquare robust weighting function),
and compared the 95% CIs on the best-fitting para-
meters (β weights). Non-overlapping CIs imply signifi-
cantly different parameters. The entry of height is
mandatory in the CIS, and this was used to calculate
TVe in mL/kg IBW in all analysis.

Intervention
Defaults
To study the effect of Default settings, patients were
assigned to one of two groups—an Adjusted defaults
group comprising 125 patients and a Control group com-
prising 182 patients. Patients in the Adjusted defaults
group were ventilated using a Draeger Evita V500 ventila-
tor. This ventilator can calculate IBW automatically when
the patient’s height is entered. We configured this ventila-
tor to deliver TVes of 6 mL/kg IBW at the start of ventila-
tion. This meant that unless clinicians chose to manually
override this setting, a patient would be ventilated with
TVes compliant with best evidence. If the height was not
entered, the ventilator delivered TVes of 450 mL that is,
the IBW was assumed to be 75 kg. By contrast, the
patients in the Control group were ventilated using
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ventilators that did not have the ability to automatically
deliver TVes based on height or IBW at the initiation of
ventilation (Draeger Evita XL). The default ventilator set-
tings in the control group were left as the factory setting
which delivered TVes of 520 mL. Clinicians were able to
alter ventilator settings at any time in both groups. The
ICU had six of each type of ventilator during the duration
of the study. The ventilators were stored centrally after
use, and patients were allocated by nursing staff to the
next available ventilator. The two types of ventilators have
similar functions, modes and screen settings although
the V500 is the newer model.

Dashboards
The ‘dashboard intervention’ provided salient visual
cues to clinicians when TVes were high. Two large
display screens were configured to display TVes derived
from the CIS in the format mL/kg IBW (figure 1). Each
screen displayed a matrix where the rows corresponded
to patients and the columns corresponded to patient
state variables, such as TVe. The screens were mounted
on the wall at either end of the ICU and were easily
visible. We focus on warnings produced when TVe >8,
which resulted in the TVe cell for the patient in question
turning red (the system also warned at TVe>6, resulting

in a yellow warning) and analyse patients on controlled
breathing modes only.
We analysed the effect of the red warning appearing on

the dashboard by aligning (shifting) all time series to the
first point at which TVe>8. The crossing of this threshold
resulted in a warning on the dashboard display for the
‘post’ but not the ‘pre’ group. Thus, we compare time
series for which there was a real warning when the thresh-
old was crossed, to time series for which there was no
warning, but for which there would have been one, had
the dashboards been installed. We include only patients
for which we have 20 hours of ventilator data after the
threshold was first crossed (patients with <20 hours of
ventilation data were excluded). This procedure resulted
in a total of 553 TVe time series (76 pre and 477 post).
The dashboard intervention was introduced 1 year

before the default intervention, and from that point, the
interventions ran concurrently.

RESULTS
The baseline characteristics of patients included in the
study are summarised in table 1.
Defaults: Figure 2 compares the mean TVes for the

Adjusted defaults group with those of the Control
group. As can be seen, the average TVe was lower for
the Adjusted defaults group (grand mean Defaults: 6.10,
Control: 6.47).
We fitted the linear model, TVe ¼ b1 þ b2 � time, to

the two time series, where the β weights b1 and b2 are
the intercept and slope coefficients of the model. The
best-fit lines are shown in figure 2A, and the best-fit coef-
ficients are shown in figure 2B, C. The slope for both
time series is negative, showing that TVe tends to
decrease during the 20 hours after start of ventilation,
and the slope for mean Control TVe is significantly
larger than the mean Defaults TVe, showing a slower
decrease for patients in the Adjusted defaults group.
The fits from the linear model also suggest that the
TVes in the control group remain significantly higher
than in the Adjusted default group for the entire length
of the analysis. We also observed that, when the initial
TVe was low, there was a low deviation from the initial

Figure 1 Dashboard appearance.

Table 1 Study patient characteristics

Patient characteristic

Age (mean (SD)) 59.6 (±16.2)

Sex (%)

Male 65

Female 35

Admission type (%)

Emergency 82.4

Elective 17.6

APACHE II (mean (SD)) 16.8 (±6.2)

ICU mortality (%) 26.7

APACHE, Acute Physiology And Chronic Health Evaluation; ICU,
intensive care unit.
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TVe for both Adjusted default and Control groups.
However, when the initial TVe was high, there was a
large deviation from the initial value for the Control
group and a comparatively smaller deviation for the
Adjusted default group.
Dashboard: Figure 3A contrasts patients ventilated prior

to the dashboard intervention with patients ventilated
after the intervention (pre vs post). As can be seen, the
main difference between the two TVe time series, is that
the postgroup has lower TVe values following a thresh-
old crossing (TVe >8) than the pregroup (ie, lower
asymptotic TVe). Figure 3B shows an annual breakdown
of the postdashboard data. As can be seen, TVe follow-
ing a dashboard warning appears to decrease steadily
over several years, with improvements as long as 3 years
postintervention.
These trends were confirmed by exponential fits

TVe ¼ b1 þ b2 � e�b3�time, the best-fit β weights of which
are shown in figure 3C. As can be seen, the CIs for b1
do not overlap between pre and post, nor do the CIs for
b2. Thus, the two groups differ in both how quickly TVe
drops ðb2Þ, and how much it decreases ðb1Þ, following
dashboard warnings of high TVe values (TVe >8).
Each consecutive year resulted in lower TVe values

than the previous year (see non-overlapping CIs b1,
figure 3D). A significant increase in b2 is also evident
between year 1 and year 2 postdashboard, showing that
the latter resulted in faster TVe drops following a
warning. Using the model fits, we estimated the time it
takes the TVe values to drop below threshold again, and
this time decreases for each consecutive year: predash-
board =4.2 hours; year 1=1.4 hours; year 2=0.95 hours
and year 3=0.66 hours.

DISCUSSION
We assessed the association between TVe and two inter-
ventions designed to improve adherence to evidence-
based ventilation targets, finding (1) that nudging clini-
cians by using best-practise default-settings resulted in
improved best-practise compliance and (2) that alerting
clinicians to excessive TVes was associated with a marked
reduction in TVes.
Defaults are cognitively efficient, because the clin-

ician need only make complex choices in cases that
warrant a deviation from best practice. We know that
default options have a powerful influence on behaviour
in non-clinical settings including savings for retire-
ment,16 and organ donation.17 Perhaps the best under-
stood use of defaults in healthcare are those within
electronic prescribing systems. The careful design of
default options has been shown to dramatically change
prescribing behaviour and improve compliance with
evidence-based interventions.18–20 Although many
default settings exist within the ICU, their role is poorly
understood, and unless careful attention is applied to
them they can result in harm,21 The default settings on
ventilators lead patients to be ventilated on lower TVes
for a persistent period of time. Patients who were on
default ventilators had significantly lower TVes than
patients who were not. Importantly, this pattern was
evident from the initiation of ventilation. While the
adjustment of default ventilator settings to reduce TVes
has been recommended previously,22 to our knowledge,
this study is the first to demonstrate a change in clinical
practice as a result.
CISs offer an opportunity to reduce the cognitive effort

required to comply with evidence and guidelines. While

Figure 2 Effect of defaults and starting value on mean tidal volume. Tidal volume is displayed as a function of hours the patient

was on ventilation. Averages are 50% trimmed means, and shaded regions are bootstrapped SEs. The lines are best-fit lines fit

to the raw data. Intercepts ðb1Þ and slopes ðb2Þ are shown for the best-fit lines in the main figure. Error bars are 95% CIs.
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there is evidence for the use of computer-generated
reminder systems in healthcare,23–26 there is less clarity
about the effect on patient outcomes.26–28 As interven-
tions, settings and methodologies are heterogeneous, it is
difficult to conclude exactly which aspects of the systems
are effective and in what settings. We designed our dash-
boards using insights from behavioural science and
found that efficient display of routinely collected data
had a significant impact on clinical practice. Excessive
TVes triggered a visual alert in real time which, when
compared with a control group with no alert, resulted in
a more rapid fall in subsequent TVes and a lower asymp-
totic TVe. Interestingly, the data showed year-on-year
improvements in TVe, with year 3 of the intervention
showing markedly lower values than year 1.
A limitation of this study is that it involved only one

ICU, and the evaluation of the dashboard intervention
had a before-and-after design rather than a full

randomised, control trial. TVes are slowly falling in prac-
tise, and the findings of our analysis of the dashboard
intervention may be a reflection of this. However, note
that in the default intervention, patients were randomly
allocated to ventilators depending on the availability of
different types of ventilator, and the analysis was not
undertaken in a before-and-after fashion.

CONCLUSIONS
This study has demonstrated that the application of
simple interventions derived from behavioural science
can significantly influence clinical decision-making
regarding low TVe ventilation. The effect is stable with
time, and in the case of dashboards, seems to improve
year on year. Harnessing behavioural insights offers a
promising strategy to improve the translation of evidence

Figure 3 Tidal volume (TVe) following dashboard warning. Panels A and B show the average TVe as a function of the number

of hours since TVe first crossed the warning threshold. A Shows the data split by predashboard and postdashboard, and B splits

the dashboard data further into yearly postintervention periods. Averages are 50% trimmed means, and shaded regions are

bootstrapped SEs. The lines are best-fit three-parameter exponential functions fit to the raw data. The black dashed line

illustrates the threshold for dashboard warnings. C and D Show β weights for the best-fit lines in A and B respectively. Error bars

are 95% CIs.
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into clinical practice and deserves further study in ran-
domised trials.
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