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Simple Summary: Parkinson’s disease is a neurodegenerative disorder characterized by the death
of a specific subset of dopamine-producing neurons. This triggers problems with movement as
dopamine is key in regulating motor control. To date, available treatments compensate for dopamine
deficiency but are not able to reverse the progressive neuronal cell damage. The exact cause of
the loss of these neurons remains to be determined, although it has been linked to environmental
factors, genetic predisposition and modifications to vital molecular pathways. Recent evidence
shows that events causing reductions in oxygen supply (hypoxia) to these neurons might also be
related to PD development. This review explores the link between hypoxia and Parkinson’s disease
as well as promising new therapeutic strategies based on HIF-1α, a protein that controls the cellular
response to hypoxia. Parkinson’s disease affects around 6 million people, and it constitutes the fastest
growing brain disorder worldwide. Therefore, it is of paramount importance to define its causes and
investigate new therapies.

Abstract: Hypoxia is a condition characterized by insufficient tissue oxygenation, which results in
impaired oxidative energy production. A reduction in cellular oxygen levels induces the stabilization
of hypoxia inducible factor α (HIF-1α), master regulator of the molecular response to hypoxia,
involved in maintaining cellular homeostasis and driving hypoxic adaptation through the control of
gene expression. Due to its high energy requirement, the brain is particularly vulnerable to oxygen
shortage. Thus, hypoxic injury can cause significant metabolic changes in neural cell populations,
which are associated with neurodegeneration. Recent evidence suggests that regulating HIF-1α may
ameliorate the cellular damage in neurodegenerative diseases. Indeed, the hypoxia/HIF-1α signaling
pathway has been associated to several processes linked to Parkinson’s disease (PD) including gene
mutations, risk factors and molecular pathways such as mitochondrial dysfunction, oxidative stress
and protein degradation impairment. This review will explore the impact of hypoxia and HIF-1α
signaling on these specific molecular pathways that influence PD development and will evaluate
different novel neuroprotective strategies involving HIF-1α stabilization.

Keywords: Parkinson’s disease; hypoxia; HIF-1; autophagy; proteasome; mitochondria; oxidative
stress

1. Systemic and Cellular Response to Hypoxia

Oxygen is required for most organisms to produce the energy necessary to fulfil
cellular metabolic demands. Thus, when facing hypoxic stress, cells and organisms undergo
several molecular and systemic modifications resulting in adaptation and survival.

Low oxygen saturation within the blood circulatory system is sensed by neuron-like
glomus cells located in the carotid body [1], whilst neuroepithelial body cells, situated in
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pulmonary airways, detect oxygen fluctuations in inspired air [2]. Detection of hypoxia
triggers a cardiorespiratory response within seconds, consisting of increased pulmonary
ventilation and vasoconstriction, elevated heart rate and general vasodilation in order to
maximize gas exchange and facilitate oxygen delivery to tissues [3].

The swift systemic adjustment is followed by a specific cellular response, directed
by the principal regulator of the transcriptional response to hypoxia, HIF-1. HIF-1 is
a basic helix-loop-helix (bHLH) PAS heterodimer comprising a nuclear constitutively
expressed HIF-1β subunit and a HIF-1α subunit, whose expression is precisely modulated
by cellular oxygen tension [4] (Figure 1). The bHLH domain mediates HIF-1 dimerization
along with the PAS domain and both subunits contain transactivation domains (TAD),
necessary to switch on HIF-1 [5]. The α subunit of HIF-1 presents a distinct oxygen-
dependent degradation domain (ODDD), which controls its stability [6]. In normoxia,
HIF-1α has a remarkably short half-life, as it is continuously synthesized de novo and
degraded via the ubiquitin-proteasome system (UPS). HIF-1α is ubiquitinated by Von
Hippel Lindau factor (pVHL), the recognition component of an E3 ubiquitin-protein ligase,
which interacts with HIF-1α by recognizing two conserved hydroxylated proline residues
on its ODDD (P402 and P564 in human HIF-1α) [7]. These prolines are hydroxylated by
HIF-1 prolyl hydroxylases (PHDs) that require a significant oxygen concentration to carry
out their enzymatic function [8]. Therefore, insufficient oxygen impairs PHD hydroxylation
function, disrupting HIF-1α interaction with pVHL and allowing accumulation of HIF-1α,
which is then able to enter the nucleus and bind HIF-1β to assemble transcriptionally
active HIF-1. In hypoxia, HIF-1 acts as a transcription factor mainly by binding to hypoxia
response elements (HRE) in gene promoters, typically containing the consensus sequence 5′-
(A/G)CGTG-3′, in the presence of the transcriptional coactivators CBP and p300, facilitating
the expression of several genes [9]. However, when oxygen is available, factor inhibiting
HIF-1 (FIH), hydroxylates an asparagine residue in the C-TAD of HIF-1α (N803 in human
HIF-1α), blocking its interaction with the coactivators, thereby preventing HIF-1 mediated
gene expression [10]. Although both FIHs and PHDs, are inactivated by hypoxia, their
activity can be inhibited by iron chelators like deferoxamine (DFO) even in the presence of
oxygen since both enzymes contain Fe2+ at their catalytic sites [11].
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Figure 1. Regulation of HIF-1α stability. In normoxia, HIF-1α is hydroxylated at two proline resi-

dues (P402 and P564) by PHDs and at one asparagine residue (N803) by FIHs. Both enzymes utilize Figure 1. Regulation of HIF-1α stability. In normoxia, HIF-1α is hydroxylated at two proline residues
(P402 and P564) by PHDs and at one asparagine residue (N803) by FIHs. Both enzymes utilize oxygen
and 2-oxoglutarate (2-OG) and require iron and ascorbate as cofactors. The hydroxyl group linked to
the asparagine impairs HIF-1α interaction with its transcriptional cofactors while the hydroxylated
prolines are recognized by pVHL, ubiquitin ligase that ubiquitinates HIF-1a, which is consequently
degraded by the proteasome. In hypoxia, oxygen shortage hinders PHDs and FIHs activity and
therefore HIF-1α is not hydroxylated and can escape degradation. HIF-1 accumulates and is then
able to enter the nucleus, forming a complex with HIF-1β referred to as HIF-1. HIF-1 interacts with
the transcriptional cofactors CBP and P300 and binds to the HREs present in the promoters of HIF-1
target genes, thereby inducing their expression.
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As a result of this rigorous HIF-1α regulation, changes to oxygen concentration are
precisely translated into adjustments in HIF-1α degradation rate and transcriptional activity.

2. Transcriptional Response to Hypoxia: HIF-1 Target Genes

Hypoxia interferes with many crucial molecular pathways, severely compromising
cell viability. The role of HIF-1α is to promote the expression of several genes key to cell
homeostasis preservation during hypoxic events. To date, over 70 known HIF-1α target
genes have been validated and >250 HIF-1α targets have been proposed based on an
integrative approach (Table 1) [10,12].

Table 1. HIF-1α-target genes. Table summarizing HIF-1α transcriptional targets adapted from Dengler et al., 2014. There
are over 70 known direct HIF-1α target genes that function in cell physiological processes. The table is not an exhaustive list
of all HIF-1α targets. A more comprehensive list of these genes can be found in Dengler et al., 2014.

HIF-1α-Target Genes

Oxygen transport and
angiogenesis

ADM ANGPT1 ANGPT2 ANP BRCP CP
CXCL12 EDN1 EPO FECH FLK1 FLT1

GPI
PDGFb

HMOX1
PGF

LEP
SERPINE1

NOS2
TF

NOS3
TFRC

NOX2
VEGF

Stemness/self-renewal
ADM EDN1 EPO1 GPI ID2 IGF2
PGM OCT4 TERT TGFA VEGF

Proliferation
CD73 MYC CTGF ENG CDKN1A CDKN1B

IGFBP3 ITF MET NR4A1 REDD1 RORα4
STK15 TERT TGFβ3 WT1

Apoptosis BNIP3/3L NDRG NIX NOXA PP5 MCL1
NPM

Oxidative stress COXAI2 GPX3 HMOX1 LONP1 NDUFA4L SOD2

Energy
metabolism

ALDOA ALDOC CA9 COXAI2 ENO1 GAPDH
GLUT1
LONP1
PFKL
TPI

GLUT2
MCT4
PGK1

GPI
NDUFA4L

PGM

HK1
NHE1
PKM2

HK2
PDK1
TKT

LDHA
PFKFB1-4

TKTL2

Mitochondrial
homeostasis

BHLHE40 BNIP3/3L CHCHD4 HIGD1A MGARP MXI1
NIX PPARGC1

Autophagy AMPK BNIP3/3L NIX

Dopamine metabolism DAT TH

When oxygen levels drop, cellular energy production, which is heavily reliant on
oxygen, sharply decreases, provoking an energy crisis. Cells primarily obtain energy from
different carbon fuels, such as glucose, that are metabolized and converted to pyruvate and
subsequently to acetyl-CoA upon entering the mitochondria. This metabolite enters the
tricarboxylic acid (TCA) cycle that is coupled to the electron transport chain (ETC), where
the succinate and NADH produced in the TCA cycle will be oxidized. This process provides
the high-energy electrons necessary for oxygen breakdown, which generates a proton
gradient that powers the ATP synthase. The reduction of oxygen and the synthesis of ATP
constitute oxidative phosphorylation (OXPHOS) [13]. In order to maintain cellular ATP
levels, HIF-1α elicits a complete metabolic rewiring favoring alternative ATP synthesis via
glycolysis instead of through OXPHOS to reduce oxygen consumption. Firstly, HIF-1α will
induce the expression of glucose transporters GLUT1 and GLUT3, which facilitate glucose
uptake [14]. HIF-1α then stimulates the oxygen-independent energy production through
transformation of glucose in lactate via glycolysis by activating gene expression associated
to this pathway [15]. Consequently, this reduces oxidative respiration by decreasing
pyruvate entry into the TCA cycle [16]. Intriguingly, HIF-1α activity is closely coupled
to the TCA cycle, as PHDs and FIHs use the TCA metabolite 2-OG as substrate for their
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activity, producing succinate as by-product [17]. Thus, high concentrations of 2-OG or its
synthetic analogs such as dimethyloxalylglycine (DMOG), can inhibit PHDs and FIHs,
promoting normoxic HIF-1α stabilization [18]. Oxygen deficiency also induces a burst
in mitochondrial reactive oxygen species (ROS) production, which regulates hypoxic
signaling and HIF-1α activation [19]. To mitigate against excess ROS production and
further minimize oxygen consumption, the mitochondrial ETC slows down by HIF-1α-
mediated downregulation of complexes I and III [20,21]. However, mitochondria that
are heavily damaged through hypoxic stress are subsequently targeted for degradation
via HIF-1α [22].

HIF-1α promotes cell survival during hypoxia by counteracting the leakage of mito-
chondrial ROS from the ETC and upregulating oxygen-independent energy production.
HIF-1α activates a specific cell-rescue program, inducing the expression of an array of
survival factors. HIF-1α facilitates highly efficient transport and delivery of nutrients and
oxygen through the expression of erythropoietin (EPO) [23], which stimulates red blood
cell production, and vascular endothelial growth factor A (VEGFA) [24], which promotes
angiogenesis. In addition, HIF-1α controls the expression of several other angiogenic and
survival factors, including angiopoietin-2 and 4 (ANG-2, ANG-4) [25], heme-oxygenase 1
(HO-1) [26], transforming growth factor (TGF-α) [27] and transferrin (TF) [28]. Conversely,
if an energy crisis occurs, HIF-1α can impair cell proliferation by regulating the expression
of c-myc, p21 and p27 [29], triggering cell cycle arrest, reducing energy consumption and
maintaining cell viability. Defective cells, in a similar manner to mitochondria, are elimi-
nated by apoptosis through HIF-1α mediated control of BNIP3, NIX and NOXA [30,31]. In
conclusion, HIF-1α-mediated gene expression results in enhanced protection of viable cells
and clearance of hypoxia-injured cells.

3. Hypoxia in the Nervous System: Links to Neurodegeneration

The nervous system requires high energy levels, sustained by an elevated OXPHOS
rate, to function properly. Indeed, energy consumption by the mammalian brain accounts
for approximately 20% of the oxygen pool present in the body [32]. This oxygen availability
is dependent on constant gaseous delivery through the circulation, as the brain oxygen
stores are severely limited [33]. Neurons depend upon oxygen to support cellular oxidative
respiration as the resultant ATP produced is used to power synaptic action potentials and
neurotransmitter trafficking, processes that are crucial for brain function [34]. Thus, it
comes as no surprise that the nervous system and particularly the brain are exception-
ally sensitive to oxygen shortage. The oxygen supply to the brain can be compromised
by deficient oxygen levels in the circulation (hypoxia) or an interruption of blood flow
(ischemia), events that can cause death within minutes. Failure of oxygen to reach neurons
results in increased free radical generation, reduced antioxidant capacity, rapid ATP deple-
tion and increased intracellular Ca2+ levels, followed by generalized synaptic depression,
dendritic atrophy and hypoxic depolarization accompanied by hyperexcitability, finally
causing death of neural populations (Figure 2) [35]. These changes in the hypoxic brain
are analogous with the neurodegenerative and aging brain. Indeed, hypoxic events are
linked to the development of neurodegenerative diseases such as Alzheimer’s disease (AD)
and Amyotrophic Lateral Sclerosis (ALS) [36,37]. Whilst the mechanism via which hypoxia
contributes to ALS progression remains unknown, the impact of hypoxia in AD develop-
ment has been investigated. AD models have shown that hypoxia can cause amyloid-β
accumulation, disruption of Ca2+ homeostasis and neuroinflammation [36,37]. However,
it has been demonstrated that neurons are able to adapt to hypoxia through activation
of the HIF-1α signal transduction pathway, which provides protection against diverse
neuronal injuries [38]. Therefore, the broad gene expression profile controlled by HIF-1α
has emerged as a valuable neuroprotective candidate due to its ability to regulate cell
survival pathways. In fact, targeted induction of moderate HIF-1α levels has neuroprotec-
tive benefits in experimental models of neurodegenerative disease [39]. To date, hypoxia
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has not been directly implicated the pathogenesis of Parkinson’s disease (PD), although
therapeutic strategies for PD based on HIF-1α stabilization are beginning to emerge.
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neurons, facilitating neurodegeneration.

4. Parkinson’s Disease

PD is the second most prevalent neurodegenerative disease in the world [40], posing
a significant burden on healthcare and economic systems. The principal neuropathological
hallmark of PD is the loss of dopaminergic (DAergic) neurons in the substantia nigra pars
compacta (SNpc) in the midbrain [41]. Dopamine (DA) deficiency arising from this neu-
ronal destruction causes the characteristic PD motor impairments, including bradykinesia,
resting tremor, rigidity and postural instability [42]. In most cases, PD origin is idiopathic,
resulting from a complex interaction between genetic susceptibility, behavioral influences
and environmental factors, although in a small percentage of patients, PD can be caused by
specific inherited genetic polymorphisms [43]. The identification of these genes, as well
as the discovery of risk factors for PD development, facilitated the identification of key
molecular pathways that are disrupted in the neurodegenerative process. Several of these
genes and pathways can be linked to—and are regulated by—hypoxia and the HIF-1α
signaling cascade.

5. Crosstalk between Hypoxia, HIF-1α and PD Related Genes

To date, over 20 PD-linked genetic mutations have been identified, accounting for
about 5–10% of PD cases [44]. Although quite rare, these PD-specific mutations have
been extensively studied to unravel the signaling pathways responsible for monogenic
PD development and assess the frequency of disruption of related molecular cascades
in sporadic PD. Intriguingly, a connection exists between several of these genes and the
hypoxic response.

α-Synuclein (PARK1) is widely expressed in the neuronal cells, specifically in presy-
naptic terminals, where it controls membrane curvature, thereby contributing to synaptic
trafficking, vesicle budding and neurotransmitter release [45]. Impaired α-synuclein func-
tion due to mutations or multiplication of the SNCA gene cause autosomal dominant (AD)
PD [46]. Indeed, the characteristic Lewy bodies that can appear in the brain of PD patients
contain aggregated α-synuclein and are thought to arise from a transition to fibril forma-
tion driven by posttranslational modifications and structural rearrangement [45]. This
process can be induced by hypoxia, contributing to neuronal dysfunction and death [47].
Interestingly, exogenous α-synuclein oligomers facilitate HIF-1α accumulation in normoxic
primary microglia, promoting their migration [48].
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Leucine-rich-repeat kinase 2 (PARK8; LRRK2) is involved in diverse cellular processes
including autophagy, mitochondrial function and cytoskeletal dynamics, consistent with
its multiple enzymatic and protein-interacting domains [49]. Mutations in LRRK2 that
link to AD PD cluster within two catalytic domains, and often result in increased LRRK2
kinase activity [50]. HIF-1α has emerged as a LRRK2 phosphorylation target in normoxia in
human breast cancer cells. This phosphorylated HIF-1α isoform presents greater affinity for
its transcriptional cofactor p300, which facilitates the expression of HIF-1α target genes [51].
Conversely, upon traumatic brain injury, HIF-1α can directly bind the LRKK2 promoter
and induce LRKK2 expression in the brain, which exacerbates neuronal injury [52].

ATP13A2 (PARK9) is a P-type ATPase that localizes to intracellular vesicles and
regulates cation homeostasis. This, in turn, impacts on endosomal-lysosomal homeostasis
and ensures correct autophagy processing, mitochondrial maintenance and heavy metal
detoxification [53]. Loss-of-function mutations that disrupt ATP13A2 activity result in
development of autosomal recessive (AR) PD [54]. As ATP13A2 gene promoter contains
HREs, HIF-1α stabilization induces ATP13A2 expression in DAergic neurons [55,56]

DJ-1 (PARK7) protects cells against oxidative stress through a variety of signaling
pathways [57]. Mutations causing defective DJ-1 activity lead to an increased vulnerability
to ROS and can trigger early onset AR PD development [58]. Reduced DJ-1 expression
correlates with impaired HIF-1α stabilization in hypoxia in several cancer cell lines, MEFs
and primary neurons [59–62]. Similarly, lymphoblasts derived from DJ-1 deficient PD
patients also exhibit reduced HIF-1α levels. However, DJ-1 knockout has been related to
normoxic HIF-1α stabilization in SH-SY5Y cells and MEFs [63,64].

PTEN-induced kinase 1 (PARK6; PINK1) is a serine/threonine kinase mainly involved
in maintaining mitochondrial quality and fitness via control of ROS production, oxidative
respiration, mitochondrial dynamics and mitobiogenesis. In addition, PINK1 plays a piv-
otal role in the regulation of mitophagy. During severe mitochondrial stress, mitochondrial
depolarization facilitates PINK1 accumulation, which triggers a cascade of events, includ-
ing Parkin recruitment, leading to mitophagy [65]. Characteristically, PINK1 mutations
result in loss-of-function and are linked to juvenile AR PD [66]. Hypoxia can significantly
alter mitochondrial homeostasis and OXPHOS. As a consequence, MEFS and primary
murine cortical neurons lacking PINK1 present elevated ROS and HIF-1α stabilization [67]
but fail to accumulate HIF-1α under hypoxic conditions [68]. Low oxygen environments
can alter PINK1 expression, reducing mitobiogenesis in tumor cell lines [69] indicating
PINK1 expression can be altered as an adaption to change of oxygen levels.

Parkin (PARK2) is a E3 ubiquitin ligase whose interplay with PINK1 controls mito-
chondrial homeostasis through regulating mitophagy as well as mitochondrial dynamics
and biogenesis [70]. Genetic mutations resulting in the loss of Parkin function lead to a
failure of mitochondrial quality control and trigger accumulation of defective mitochondria,
which can manifest as early onset AR PD [71]. Cell line specific studies show that Parkin
can target HIF-1α for degradation in HeLa and breast cancer cell lines, MEFs and human
keloids [72–74]. In contrast, the Parkin/PINK1 pathway promotes HIF-1α expression in
SH-SY5Y and HeLa cells by promoting the degradation of Inhibitory PAS domain protein
(IPAS), an effective suppressor of HIF-1α transcription [75]. In glioblastoma-derived cell
lines, Parkin knockout facilitates HIF-1α accumulation in normoxia while blocking hypoxic
HIF-1α stabilization [76].

Intriguingly, DJ-1, PINK1 and Parkin knockouts show impaired HIF-1α stabilization
in hypoxia, indicating that the HIF-1α-mediated response to hypoxic episodes may be
defective if loss-of-function mutations in these genes are present. As HIF-1α can directly
influence the expression of two PD-related genes, LRRK2 and ATP13A2, through the HREs
present in their promoters, and hypoxia can trigger α-synuclein accumulation, it would
be of interest to explore the impact of hypoxia and HIF-1α in the expression of other
PD-related genes to elucidate possible common mechanisms. Since the aforementioned
studies have been performed in a variety of cell lines and animal models, it is of paramount
importance to investigate the impact of hypoxic stress and HIF-1α stabilization on PD-
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related genes in SNpc DAergic neurons and PD animal models in order to adequately
establish the role of these pathways in PD.

6. Hypoxia and HIF-1α Signaling in Pathways Linked to PD

Genetic mutations in PD can be broadly classified within three distinct pathways:
protein clearance, ROS control and mitochondrial function [77]. Dysregulation of these
pathways, also found in sporadic PD patients, is believed to be the underlying cause of
DAergic neuronal death in the SNpc. Hypoxia significantly affects these specific pathways
and HIF-1α-mediated transcription can precisely modulate them. Below we evaluate how
hypoxia and HIF-1α signaling can interact with PD-related genes and potentially regulate
these key pathways.

6.1. Protein Degradation

Protein degradation is carried out by the autophagic pathway and the UPS. Autophagy,
divided in macro-autophagy, chaperone-mediated autophagy (CMA) and micro-autophagy,
promotes the proteolytic degradation of cellular substrates and organelles through lyso-
some involvement [78] while the UPS targets proteins by adding ubiquitin residues, which
directs damaged and redundant proteins for degradation via the proteasome [79].

Macro-autophagy (referred to as ‘autophagy’) is a homeostatic process comprising
the degradation of intracellular components through their engulfment by double mem-
brane vesicles, the autophagosomes, which ultimately fuse with lysosomes, facilitating
substrate degradation. The autophagic pathway begins with ULK1 activation to initiate
autophagosome formation, driven by LC3-II, Beclin-1, numerous ATG proteins and p62,
which acts as an anchor for proteins targeted for degradation [78]. In CMA, selected pro-
teins bind to chaperones forming a complex that is recognized by the lysosomal receptor
LAMP2A [78]. Deficiencies in both types of autophagy types have been detected in PD
patients’ peripheral blood mononuclear cells [80] and lysosomal vacuole accumulation was
detected in DAergic SN neurons [81]. Several of the known PD-related gene mutations
can directly and indirectly influence the autophagic process. For example, autophagy
impairment facilitates α-synuclein accumulation in the brain [82] and, in turn, α-synuclein
aggregation can further hinder autophagy [83]. A loss of function of PINK1 or DJ-1 re-
sults in blockade of autophagy and CMA respectively [84,85] while overactivation of
LRKK2 reduces both autophagy and CMA [86,87]. Furthermore, inhibition of ATP13A2
function also causes lysosomal dysfunction, accompanied by decreased autophagosome
clearance [88–90]. Therefore, autophagy induction, as well as modulation of autophagic
proteins, have been considered as possible therapeutic strategies for PD, with a primary
purpose of promoting α-synuclein clearance [91].

It is well established that hypoxia can trigger autophagy through several mechanisms
(Figure 3). HIF-1α upregulates BNIP3/NIX activity, promoting Beclin-1 release from Bcl-2
or Bcl-xL and initiating a signaling cascade [92]. In addition, HIF-1α can facilitate LC3-
I conversion to LC3-II leading to the formation of autophagosomes [93]. Both HIF-1α
stabilization and hypoxia-mediated ATP depletion activate the master energy sensor of
the cell, AMPK, capable of inhibiting mTORC1 and phosphorylating ULK1, triggering
autophagy [94,95]. Recent studies point to the involvement of hypoxia-induced ROS in
autophagy activation [96]. In addition, hypoxia increases LAMP2A expression, promoting
CMA [97]. Basal autophagy is essential for neuronal homeostasis with several studies
showing that an autophagy blockade can induce neurodegeneration [98,99]. Despite
autophagy playing a key role in maintaining cell viability through substrate clearance,
hypoxia-mediated autophagy is considered a double-edged sword, as it is also involved
in provoking apoptotic cell death [100]. In the event of a hypoxic episode affecting the
brain, hypoxia-induced autophagy can govern cell fate. Upon hypoxic/ischemic (H/I)
brain injury, autophagy is activated, promoting either cell survival [97,101,102] or cell
death [103,104], dependent on the extent of the hypoxia-mediated damage.
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Figure 3. Impact of HIF-1α on autophagy in mammalian cells. Macro-autophagy is controlled by the energy sensor AMPK,
induced by HIF-1α. AMPK promotes ULK1 activity while blocking mTOR, inhibitor of ULK1. ULK1 triggers the start
of the macroautophagic pathway, facilitating the recruitment of several ATG proteins, Beclin-1 and LC3-II, necessary for
the formation of the double membrane, termed phagophore, where the cytoplasmic components targeted for degradation
are attached through anchor proteins such as p62. HIF-1α promotes this process by increasing LC3-I lipidation to form
LC3-II and inducing the expression of BNIP3 and NIX, which separate Beclin-1 from its inhibitor Bcl-2. Macro-autophagy
progresses as the autophagic cargo is enclosed in a double membrane organelle called autophagosome, which fuses with
the lysosome, forming the autophagolysosome. The lysosomal enzymes are responsible for degrading the substrates.
HIF-1α has not been linked to Chaperone-mediated autophagy, which starts with the unfolding of a damaged proteins by
chaperones. The unfolded substrate is detected by the lysosomal LAMP2 receptor, which translocates this substrate to the
lysosome for its degradation.

Evidence suggests that the UPS is impaired in PD patients, compromising α-synuclein
degradation [105] which accumulates, further hindering proteasome activity [106]. In-
deed, treatment with proteasomal inducers promotes α-synuclein clearance in PD mod-
els [107,108]. Besides targeting proteins for proteasomal degradation, Parkin can also
directly enhance proteasome activity [109]. Contrarily, hypoxic stress reduces proteasome
activity [110]. Since HIF-1α is predominantly degraded by the proteasome, inhibition of
proteasomal activity leads to its accumulation.

HIF-1α-mediated induction of BNIP3 and the autophagic machinery can compensate
for impairments in protein degradation and constitutes a potential therapeutic strategy to
resolve the protein aggregation caused by aberrant proteostasis in PD patients.

6.2. Mitochondrial Function

Mounting evidence suggests defective mitochondrial function, including biogenesis,
dynamics, energy production and mitophagy, in the SN and other selected peripheral
tissues of PD patients [111].

Mitochondrial biogenesis (mitobiogenesis) is primarily induced upon energy shortage
or increased metabolic demand by PGC-1α, a co-transcriptional regulation factor that
promotes Nrf1 and Nrf2 transcription, facilitating TFAM expression [112]. Whilst still an
area of active research, the PINK1/Parkin pathway appears to participate in this process
by regulating the phosphorylation and ubiquitination of PARIS, a known repressor of
PGC-1α and Nrf1, in murine SN DAergic neurons and DAergic neurons derived from
both hESCs and PD patients’ iPSCs [113,114]. Interestingly, hypoxia induces a stimulatory
response to mitigate mitochondrial defects and promotes mitobiogenesis via induction of
PGC-1α, Nrf1 or TFAM through pathways involving AMPK, HMGB1 or NOS dependent
on cell type [115–117]. Hypoxia-induced PGC-1α directly upregulates VEGF and EPO
expression [118] and the increased oxygen consumption due to PGC-1α -mediated biogen-
esis can promote HIF-1α stabilization [119]. Consequently, HIF-1α exerts a compensative
response, reducing mitochondrial biogenesis in order to save energy by inhibiting both the
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expression of PGC-1α either directly or via its repressor DEC1 and c-myc, positive regulator
of PGC-1α expression, via upregulation of c-myc inhibitor MXI1 [120,121] (Figure 4a).
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Figure 4. Effect of HIF-1α on mitochondrial number, shape and distribution in mammalian cells. (a) Mitochondrial
biogenesis. HIF-1α represses mitochondrial biogenesis by preventing activation of the main effector of this process, PGC-1α,
either directly or via induction of DEC1, a direct inhibitor of PGC-1α or MXI1, or indirectly through repression of c-myc,
which activates PGC-1α. (b) Mitophagy. HIF-1α induces mitophagy mainly through BNIP3 and NIX. HIF-1α can also
promote mitophagy via PINK1/PARKIN directly or through BNIP3. FUNDC1 and E2F3d mitophagic pathways are induced
by hypoxia, although the involvement of HIF-1α has not been demonstrated. (c) Mitochondrial dynamics. HIF-1α is capable
of inducing fission by promoting Drp1 activity. Fission can be both induced and inhibited by HIF-1α. Fission is promoted
by HIF-1α by BNIP3/NIX activation, which promotes Mtf1 function, as well as via HIF-1α-induced Higd-1a, which triggers
OPA1 activation. Conversely, BNIP3 can prevent OPA1 activity, hindering mitochondrial fission. (d) Mitochondrial transport.
HIF-1α induces perinuclear mitochondria accumulation by activating CHCHD4 expression. Additionally, HUMMR, whose
levels are controlled by HIF-1α, interacts with Miro to promote anterograde transport of mitochondria.

Excessive mitochondrial injury triggers mitochondrial membrane depolarization re-
sulting in mitochondrial degradation. Dissipation of membrane potential activates PINK1,
which phosphorylates both Parkin and ubiquitin to stimulate their interaction and ini-
tiate the Parkin-dependent ubiquitination of mitochondrial substrates. This ultimately
triggers mitochondrial clearance through mitophagy [122]. As expected, PD related muta-
tions in Parkin or PINK1 affect mitochondrial degradation and clearance via mitophagy
resulting in the accumulation of dysfunctional mitochondria [123]. Despite being able
to induce PINK1/Parkin mediated mitophagy in certain conditions [124,125], hypoxia
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promotes mitophagy via alternative pathways. Low oxygen induces the activation of
two mitochondrial membrane proteins, FUNDC1 and E2F3d, capable of interacting with
LC3-II and triggering mitophagy [126,127]. Although the involvement of HIF-1α in these
pathways has not been studied, HIF-1α can induce mitophagy through the canonical
BNIP3/NIX-dependent pathway [22,128], which in turn promotes PINK1/Parkin-mediated
mitophagy [129] (Figure 4b).

Mitochondria undergo continuous morphological modifications, including fission,
driven by Drp1, and fusion, controlled via mitofusins (Mfn1 and Mfn2) and OPA1 [130].
These processes protect against excessive ROS production and prevent accumulation of
defective mitochondria within the cell. LRRK2 directly interacts with Drp1, promoting
its recruitment to mitochondria and therefore stimulating fission [131]. Similarly, overex-
pression of α-synuclein promotes fission independently of Drp-1 [132]. In contrast, the
PINK1/Parkin pathway promotes mitochondrial fusion with PINK1/Parkin knockouts
exacerbating Drp1-mediated mitochondrial fragmentation [133,134]. Interestingly, upon
mitochondrial depolarization, PINK1/Parkin can promote fission prior to mitophagy via
regulation of Mfns and Drp1 [135,136]. Hypoxia can promote mitochondrial fission through
Drp1 induction via HIF-1α-dependent and independent pathways [137,138]. BNIP3, a
HIF-1α target gene, can inhibit OPA1-mediated fusion, causing mitochondrial fragmenta-
tion [139]. Conversely, hypoxia facilitates the expression of Hypoxia-induced gene domain
protein-1a (Higd-1a), which binds to OPA1 promoting fusion [140] to generate enlarged
mitochondria as a compensatory mechanism in a process driven by HIF-1α-mediated
expression of BNIP3 and NIX, which promote Mfn1 function [141] (Figure 4c). In addi-
tion, hypoxia can induce Parkin-mediated degradation of both Mfns and Drp, potentially
suppressing mitochondrial dynamics [142].

Mitochondrial transport is essential in neurons as it responds to regional modifications
in ROS and ATP levels by shuttling mitochondria to sites with high energy demand or
increased degradation. Therefore, mitochondrial trafficking has been extensively studied
in neuronal axons, where retrograde and anterograde transport are regulated by dynein
or kinesin respectively [143]. These motor proteins bind mitochondria by means of the
adaptor proteins Miro and Milton, which can form a complex with PINK1 [144]. It has
been shown that PINK1 can phosphorylate Miro, promoting its degradation via Parkin,
thereby inhibiting mitochondrial movement and segregating damaged mitochondria be-
fore mitophagy [145]. PD-associated LRRK2 and α-synuclein mutations interfere with
mitochondrial transport along the axon [146,147]. Hypoxia has a very specific effect on
mitochondrial trafficking, as it induces the accumulation of mitochondria in the perinuclear
region. This precisely targeted concentration of mitochondria induces high local ROS
production with increased oxygen consumption, which contributes to HIF-1α stabilization
and stimulates oxidation of the HRE in the VEGF gene to allow its activation [148]. HIF-1α
stabilization through hypoxia facilitates the expression of CHCHD4, further promoting
a perinuclear mitochondrial shift [149] while inducing Hypoxia-upregulated mitochon-
drial movement regulator (HUMMR), which can interact with Miro, fostering anterograde
transport [150] (Figure 4d).

Mitochondrial oxidative respiration and subsequent ATP production have been found
to be reduced in PD. PINK1 loss has been linked to impaired activity of several ETC
complexes as well as low ATP synthesis, and it has been hypothesized that this respi-
ratory dysfunction causes the collapse of mitochondrial membrane potential [151,152].
As discussed, hypoxia has a heavy impact on mitochondrial energy production, as re-
duced oxygen availability impairs the ATP synthesis powered by the ETC. Thus, HIF-1α
switches off oxidative energy production, favoring glycolytic metabolism. HIF-1α facili-
tates the expression of hexokinase (HK) and enolase 1 (ENO1), thereby accelerating the
production of pyruvate, which is converted to lactate by HIF-1α-induced lactate dehy-
drogenase (LDHA) [153] instead of being transformed to Acetyl-CoA. This is facilitated
by HIF-1α-mediated inhibition of pyruvate dehydrogenase (PDH) activity by promoting
the expression of pyruvate dehydrogenase kinase (PDK1) [154] (Figure 5). By lowering
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Acetyl-CoA levels and decreasing the flux of substrates into the TCA cycle, substrate
availability for ETC-mediated ATP synthesis is reduced. Thus, HIF-1α indirectly regulates
the deceleration of the ETC. Indeed, HIF-1α induces the expression of NDUFA4L2, which
downregulates complex I activity [21] and facilitates the expression of LON, a mitochon-
drial protease that degrades cytochrome c oxidase COX4-1 subunit. The action of LON
facilitates the exchange of COX4-1 for the more efficient COX4-2, whose expression is
also controlled by HIF-1α [20] (Figure 5). In addition, HIF-1α can directly translocate to
mitochondria upon oxidative damage to downregulate the transcription of mitochondrial
genes, further suppressing ETC activity [155] (Figure 5).
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Figure 5. Influence of HIF-1α on mitochondrial energy and ROS production. Due to the limited oxygen availability under
hypoxia, HIF-1α promotes alternative ATP synthesis via glycolysis by upregulating the expression of HK and ENO1,
which facilitate the conversion of glucose in pyruvate. HIF-1α boosts lactate production from pyruvate by inducing LDH
expression while blocking PHD-mediated lactate transformation in Acetyl-CoA through enhancing PDK1 expression.
Consequently, the TCA cycle is slowed down and production of ETC substrates NADH and FADH2 is dampened. In order
to attenuate ETC activity and reduce ROS, HIF-1α downregulates the activity of complex I by facilitating NDUFA4L2
expression. Additionally, HIF-1α promotes the expression of LON, a protease that degrades cytochrome c oxidase COX4-1
subunit, which is then substituted for COX4-2, whose expression is controlled by HIF-1α. To further diminish ETC activity,
HIF-1α blocks mtDNA expression when recruited to mitochondria following oxidative stress damage.

6.3. Oxidative Stress

ROS are routinely produced by cells, principally through mitochondrial oxidative
respiration, and although they have a physiological role in cell signaling, excessive ROS
levels can trigger the destruction of intracellular components [156]. To avoid oxidative
damage, cells rely on a range of antioxidant enzymes and mechanisms. Accumulation of
ROS is associated with increased SNpc DAergic neuron death in PD [157]. Indeed, PD
patients exhibit a widespread reduction of antioxidant defenses in the SNpc [158] and
lower antioxidant protein levels in peripheral blood [159]. DJ-1 is a major regulator of the
antioxidant response, able to induce the expression of several antioxidant genes trough
Nrf2 dependent and independent functions [160]. Subsequently, PD-related DJ-1 mu-
tants present reduced antioxidant activity and impaired interaction with the Nrf2/Keap1
pathway [161]. Hypoxic events can exacerbate mitochondrial ROS (mtROS) production,
mainly by reducing oxygen availability for complex III [19], but also through modulation
of antioxidant gene expression [162,163]. These mtROS seem to contribute to HIF-1α stabi-
lization, although an alternative theory suggests that ETC oxygen consumption has a more
significant role in this process. It is possible that HIF-1α stabilization in hypoxia results
from a combination of low oxygen and ROS, and the contribution of each could depend on
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the cell type or other variables. Despite the fact that mtROS-mediated HIF-1α modulation
remains a controversial issue, oxidative stress can contribute to HIF-1α accumulation in
diverse ways, including the inhibition of PHD activity by Fe2+ oxidation [164]. In addition,
it has been shown that the application of antioxidants can reduce HIF-1α levels [165]
whereas treatment with ROS-producing compounds increases HIF-1 α stabilization even
in normoxia [166]. Interestingly, increased ROS due to DJ-1 loss create a pseudohypoxic
environment that stabilizes HIF-1α [167]. HIF-1α counteracts ROS production through re-
organization of oxygen consumption by the mitochondrial respiratory chain complexes, as
well as by downregulating the expression of mtDNA-encoded mRNAs, as previously dis-
cussed (Figure 5). Therefore, HIF-1α-mediated control of ROS could prove to be beneficial
for neuroprotection against aberrant oxidative stress present in PD.

7. PD Risk Factors and Hypoxic Stress

Age is the predominant predisposing risk factor for PD [168]. Whilst aging alone
is not responsible for the significant increase in SNpc DAergic neuronal death, it causes
reduced DA availability and α-synuclein accumulation that contribute to the dysfunction of
several pathways regulating protein degradation, oxidative stress and inflammation [168].
Deregulation of these signaling cascades can be exacerbated by hypoxia via crosstalk
with molecular aging mechanisms involving ULK1, AMPK or mTORC1 [169]. Indeed,
advancing age is associated with cerebral hypoperfusion which reduces cerebral blood flow
(CBF) potentially creating a permanent mild hypoxic state in the brain. Interestingly, the
ability of cells to respond to hypoxia declines during aging. Impaired HIF-1α expression
and stabilization with a consequent decrease in HIF-1α target genes, accompanied by
increased PHD levels was demonstrated by several independent studies in both human
and murine aging tissues [170–174]. Of note, HIF-1α has been shown to have an anti-aging
role in C. elegans [175] and can induce the expression of human telomerase, which protects
against cellular senescence [176].

Exposure to pesticides, like rotenone or paraquat, or toxins such as MPTP is an
extensively studied risk factor for PD [177]. This has been attributed to their capacity to
damage mitochondria by blocking the ETC and producing exacerbated ROS along with
their ability to suppress proteasome activity [178]. Indeed, both ROS production and
UPS state can modulate HIF-1α state, as discussed previously. Furthermore, complex I
inhibitors, including rotenone, are reported to impair HIF-1α stabilization [179]. This could
be attributed to the reduction in oxygen consumption within mitochondria due to ETC
dysfunction, which elevates cytosolic oxygen levels. Together these mechanisms provide a
potential link between hypoxia and PD pathogenesis.

Several other PD risks factors exist but exhibit weaker predictors of PD development.
For example, obstructive sleep apnea (OSA) has been identified as predisposing factor for
PD development, particularly in the elderly [180]. These patients exhibit increased levels of
α-synuclein in their plasma [181]. Interestingly, OSA is characterized by repeated episodes
of breathing impairment during sleep, which causes chronic intermittent hypoxia (CIH), a
known inducer of oxidative stress in the SN [182].

Traumatic brain injury (TBI), which causes regional brain H/I injury with concomi-
tant neuronal death, is also associated with an increased risk of PD development [183].
The resultant hypoxia can accelerate the accumulation of protein aggregates, contributing
to the chronic process of neurodegeneration. This evidence is supported by the iden-
tification of elevated α-synuclein levels in cerebrospinal fluid and neuronal axons of
TBI patients [184,185].

8. Evidence of Hypoxic Injury in the PD Brain

Further indications that hypoxia may play a role in PD pathogenesis come from
analysis of hypoxia related events in the PD brain. Chemodetection of systemic hypoxia
and resultant initiation of a ventilatory adjustment [186] alongside brain perfusion deficits
exist in PD patients, resulting in a reduced oxygen supply to the brain [187]. This could
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encourage a hypoxic brain environment that can be further depleted of oxygen due to the
ventilatory dysfunction arising from reduced DAergic innervation of respiratory muscles
in PD patients [188]. Furthermore, SNpc DAergic neurons have long arborized axons, are
abundant in synapses and retain spontaneous activity to trigger DA release, features that
require continuous energy input, which makes these neurons especially susceptible to
factors that compromise energy production, such as hypoxia [189]. Although the selective
vulnerability of these neurons to hypoxic stress has not been studied, it appears that
H/I events can trigger severe neuronal injury in the SN [190,191]. Intriguingly, HIF-
1α is involved in the development and survival of SNpc DAergic neurons via VEGF
signaling [192] and can induce the expression of tyrosine hydroxylase (TH), the rate-
limiting enzyme for DA synthesis, and the DA transporter (DAT), key proteins for DAergic
neuronal function [193].

If hypoxia can influence PD pathogenesis, modulating HIF-1α activity could be es-
sential as a neuroprotective strategy for DAergic survival. However, HIF-1α signaling
appears attenuated in PD patients, as gene expression profiling analyses show reduced
levels of HIF-1α and its target genes, including VEGF and HK, and upregulation of PHD2
in post-mortem SNpc homogenates of PD patients when compared to age-matched con-
trols [194–196]. Several factors could explain this impairment of HIF-1α activation and
signaling. For example, the SNpc of PD patients exhibits elevated Fe2+ concentrations that
contribute to DAergic neuron degeneration [197]. Excess Fe2+ promotes PHDs activity,
resulting in sustained HIF-1α degradation, which subsequently blocks HIF-1α-mediated
expression of iron homeostasis genes such as transferrin, HO-1 and ferroportin [198].
Moreover, the protein levels of HIF-1α transcriptional inhibitor IPAS were increased in
the SNpc DAergic neurons of sporadic PD patients [75]. As noted previously, several
genetic mutations and disrupted signaling pathways characteristic of PD can block HIF-1α
expression and its stabilization. This could have wide ranging effects on HIF-1α mediated
signaling in SNpc DAergic neurons and would, not least, functionally impact on param-
eters of iron homeostasis, antioxidant capacity, mitochondrial fitness, proteostasis and
metabolic function.

Thus, insufficient oxygen supply in conjunction with an impaired capacity to trigger
the systemic and cellular response to hypoxia may contribute to PD development.

9. HIF-1α-Based Therapeutic Strategies for PD

Existing PD medications contain DA precursors, such as levodopa or L-DOPA, DA
agonists or monoamine oxidase B (MAO-B) inhibitors, which ameliorate DA deficiency
in the SN [199]. Replacement of the lost DA can transiently mitigate PD motor symptoms
although progression of the disease continues. Thus, the search for a definitive and effective
PD cure is still ongoing. HIF-1α has gained recent attention as potential candidate due
to its ability to influence DA production, iron metabolism, mitochondrial function, ROS
generation and autophagy. Indeed, a growing number of studies are exploring direct and
indirect PHD inhibitors, as well as other molecules that induce HIF-1α stabilization, as
novel therapies to modulate aberrant pathways to treat PD (Table 2). Current studies
have limitations as some have solely been performed in cell models and mainly target
acute cell death and dysfunction. Since PD is a chronic disease, investigations that employ
models that mimic the long-term neurodegeneration, such as the rAAV-α-synuclein and
the preformed fibril α-synuclein models, should be considered for further research. Use
of PD animal models should also be contemplated to test the compounds that have been
exclusively investigated in cell culture paradigms.
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Table 2. HIF-1α-based therapeutic strategies in PD. Summary of studies involving HIF-1α-
stabilizing drugs, including the research models utilized and the mechanisms responsible for HIF-1α-
mediated neuroprotection.

Chemical PD Model Effects References

Indirect PHD inhibitors

Deferoxamine
(DFO)

Cell model
(SH-SY5Y cells)

↑HIF-1α expression
↓Cell death
↓cleaved-PARP, cleaved-CASP3
↑ATP
↓ROS
↑ Autophagolysosomes
↑Cathepsin, Beclin-1 expression

[200]
[201]
[202]

Animal model
(6-OHDA rat;
α-synuclein
rAAV rat)

↑Striatal DA
↑SN DAergic neurons
↓ROS
↑Motor behaviour
↓α-synuclein inclusions

[203]
[204]
[205]

Animal model
(MPTP mouse)

↑HIF-1α expression
↑SN DAergic neurons
↑DAT expression
↑Bcl-2/Bax ratio
↑GAP43 expression
↑p-ERK/p-p38 MAPK expression
↓p-JNK1/2 expression
↓astrocyte activation
↑Motor behaviour

[206]

M30
Animal model
(Mouse, MPTP
mouse)

↑HIF-1α expression
↑SN DAergic neurons
↑DA levels
↑TH expression and activity
↑TfR expression
↑Neurotrophic factors
↑Antioxidant enzymes
↑Pro-survival signaling

[207]
[208]

Clioquinol (CQ)

Animal model
(MPTP mouse;
α-synuclein
hA53T mouse)

↑HIF-1α expression
↑SN DAergic neurons
↓α-synuclein inclusions

[209]
[210]

Animal model
(MPTP monkey)

↑Motor behaviour
↓Non-Motor deficits
↑SN DAergic neurons
↑TH, DAT expression
↓ROS
↓SN iron content
↑AKT /mTOR pathway

[211]

Lactoferrin (Lf)
Cell model
(SH-SY5Y cells;
MN9D cells)

↑HIF-1α expression
↓Cell death
↓cleaved CASP3
↑Bcl-2/Bax ratio
↑VEGF, BDNF expression
↑p-ERK expression
↓p-JNK1/2, p-p38 MAPK
expression
↑Bcl-2/Bax ratio

[212]
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Table 2. Cont.

Chemical PD Model Effects References

Lactoferrin (Lf)
Animal model
(MPTP mouse)

↑HIF-1α expression
↑Motor behaviour
↑SN DAergic neurons
↑TH expression
↓α-synuclein expression
↑Bcl-2/Bax ratio
↓cleaved CASP3
↓glial activation
↓SN iron content
↑GAP43, BDNF, p-ERK expression
↓p-JNK1/2 and p-p38 MAPK
expression

[212]

FG-0041

Cell model
(PC12 cells;
LUHMES cells;
primary rat
mesencephalic cells)

↑HIF-1α expression
↓Cell death
↑TH expression and activity
↑DA release
↑ Mitochondrial membrane
potential

[200]
[213]
[214]

Animal model
(rat)

↑TH expression
↑DA levels [213]

Competitive PHD inhibitors

Dimethyloxallyl
Glycine
(DMOG)

Cell model (DJ1-KO
MPTP primary
cortical neurons;
SH-SY5Y cells)

↑HIF-1α expression
↓Cell death [61]

Animal model
(MnCl2 mouse)

↑SN DAergic neurons
↑Motor behaviour
↓DNA methylation

[215]

FG-4592

Cell model
(SH-SY5Y cells)

↑HIF-1α expression
↓Cell death
↑Bcl-2/Bax ratio
↑TH expression
↑Mitochondrial respiration
↑Mitochondrial membrane
potential
↓p62, Cathepsin, LC3-II expression
↑ PGC-1α expression
↓ROS
↑Antioxidant proteins expression

[216]

Animal model
(MPTP mouse)

↑SN DAergic neurons
↑Motor behaviour
↑TH expression
↑DA levels

[216]

JNJ-42041935 Cell model (SH-SY5Y
cells; PC12 cells)

↑HIF-1α expression
↑ATP
↑DA release

[200]

IOX2

Cell model
(iPSC-derived
DAergic neurons;
primary mouse
mesencephalic cells;
differentiated
SH-SY5Y cells)

↑HIF-1α expression
↑Mitochondrial membrane
potential
↓Iron content
↑ATP13A2 expression

[56]
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Table 2. Cont.

Chemical PD Model Effects References

Atypical HIF-1α inducers

Albendazole
(ABZ)

Animal model
(rotenone rat)

↑HIF-1α mRNA
↑VEGF mRNA
↑SN DAergic neurons
↑Motor behaviour
↓α-synuclein expression
↑DA levels
↑TH expression
↑TH mRNA, GDNF mRNA
↓NFκB, TNF-α

[217]

Agmantine
Cell model
(differentiated
SH-SY5Y cells)

↑HIF-1α expression
↑HIF-1α mRNA
↓Cell death
↓CASP3 activity
↓ROS
↑Mitochondrial membrane
potential

[218]

Hydralazine Cell model
(SH-SY5Y cells)

↑HIF-1α expression
↑VEGF, TH, DAT expression
↓Cell death
↑Antioxidant capacity

[219]

Orexin-A Cell model
(SH-SY5Y cells)

↑HIF-1α expression
↑EPO, VEGF expression
↓Cell death
↓cleaved-PARP, cleaved-CASP3

[220]

Baicalein Animal model
(MTPT mouse)

↑HIF-1α mRNA
↑Motor behaviour [221]

Gedunin

Cell model
(iPSC-derived
DAergic neurons,
N27 cells)

↓Cell death [222]

Adaptaquin
(AQ)

Cell model (PC12
cells; primary rat
ventral midbrain
DAergic neurons)

↓Cell death
↓Trib3, ATF4, CHOP expression/
mRNA
↑Parkin expression [223]

Animal model
(6-OHDA mouse)

↓Trib3, CHOP mRNA
↑SN DAergic neurons
↑Motor behaviour

9.1. Indirect PHD Inhibitors

PHDs are indirectly blocked through iron deprivation. The widely used DFO can
trigger iron depletion with consequent HIF-1α accumulation and has been shown to
be protective against PD features in DAergic cells and PD murine models. In DAergic
SH-SY5Y neuroblastoma cells, DFO treatment reduces apoptosis, oxidative stress and
ATP loss triggered by 6-OHDA, a compound that selectively destroys DAergic neurons,
whilst promoting autophagy through increased autophagolysosome formation and lysoso-
mal enzyme expression [200,201]. DFO treatment also increases the autophagic flow via
HIF-1α/Beclin-1, protecting SH-SY5Y cells from rotenone and MPP+, a toxic MPTP metabo-
lite [202]. In the 6-OHDA rat model, intranasal, local or systemic DFO administration has a
widespread neuroprotective effect, promoting SN DAergic neuron survival, reducing DA
loss in the striatum, controlling ROS production and improving motor behavior [203,204].
Besides attenuating movement deficits, intranasally delivered DFO reduces α-synuclein
aggregation in a α-synuclein rAAV rat model [205]. Although the involvement of HIF-1α
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was not examined in these in vivo studies, DFO-mediated HIF-1α induction drives neuro-
protection and motor improvement in a MPTP murine model, and thus HIF-1α is likely to
play a role in other in vivo DFO treatment paradigms [206]. Non-invasive intranasal DFO
administration represents a promising approach to attenuate the loss of DAergic neurons
as DFO readily crosses the blood brain barrier and arrives swiftly to the brain, reducing
off-target effects.

Oral administration of M30, an iron chelator, also offers positive results, as it attenu-
ated MPTP-mediated loss of striatal DA and its metabolites, increased TH expression and
activity and diminished DAergic neuron death in mice [207]. The neuroprotective role of
M30 has been linked to its ability to promote HIF-1α-mediated expression of prosurvival
genes [208]. Similarly, the iron chelator clioquinol (CQ) can also stabilize HIF-1α, provid-
ing protection against SN DAergic neuron loss caused by MPTP [209]. CQ reduces the
formation of α-synuclein inclusions and protects against α-synuclein mediated cell death
in the SN in transgenic mice expressing the α-synuclein hA53T mutation [210]. Addition-
ally, CQ mitigates motor deficiencies in a MPTP-induced monkey model of PD. In this
model, CQ decreases iron uptake via TfR and efflux through ferroportin while reducing
ROS levels [211].

Lactoferrin (Lf), an iron-binding glycoprotein, mitigates MPTP-mediated DAergic
neuronal damage and subsequent dyskinesia in mice through reductions in iron uptake and
ROS production [212]. Lf elicits its neuroprotective function by upregulating HIF-1α, VEGF,
and brain derived growth factor levels and modulating several signaling cascades. Further-
more, experiments performed in SH-SY5Y and MN9D cells showed that stabilization of
HIF-1α via Lf was responsible for the induction of TH and several neuroprotective factors
leading to increased neuronal viability against MPP+ toxicity. The non-competitive PHD
inhibitor FG-0041 can induce HIF-1α stabilization in DAergic cells through iron chelation.
FG-0041 induces DA synthesis and metabolism through induction of TH expression in PC12
cells and rat mesencephalic neurons as well as in vivo in the rat striatum [200,213,214]. Fur-
thermore, FG-0041 attenuates 6-OHDA-mediated dissipation of mitochondrial membrane
potential and ATP depletion while preserving cell viability in PC12 cells [214]. Together,
this data implicates PHD block via iron chelation and subsequently HIF-1α regulation as
targets to enhance neuronal function and viability.

9.2. Competitive PHD Inhibitors

Competitive PHD inhibition is achieved by directly blocking the interaction of PHDs
with its cofactor 2-OG through 2-OG mimicking drugs. One of the first compounds
identified was DMOG, which can ameliorate motor impairments and DAergic neuron
death associate with parkinsonism caused by manganese toxicity in mice [215]. Increased
MPTP-mediated apoptosis of murine cortical neurons, in both WT and DJ-1 KO, can also
be rescued by DMOG pretreatment via its ability to stabilize HIF-1α [61]. The anemia drug
FG-4592 inhibits PHDs and can protect against MPP+-induced apoptosis in SH-SY5Y cells
through the restoration of mitochondrial membrane potential, oxygen consumption, ATP
production and mitochondrial biogenesis. Similarly, MPP+-mediated autophagy blockade
caused by MPP+ is alleviated by FG-4592 treatment, through a mechanism that enhances
LC3-II levels. Furthermore, FG-4592 induces the expression of a range of antioxidant
genes including Nrf2, HO-1 and superoxide dismutase, reducing MPP+-mediated ROS
production. In MPTP-treated mice, FG-4592 administration restores striatal TH and DA
content and preserves DAergic neurons in the SN, alleviating locomotor impairment [216].
In addition, the 2-OG competitive drug JNJ-42041935 can induce HIF-1α stabilization and
restore ATP loss provoked by 6-OHDA in SH-SY5Y cells [200]. Similarly, IOX2, which can
displace 2-OG from PHDs, suppresses MPTP-induced iron accumulation and apoptosis
and restores mitochondrial membrane potential in human iPSC-derived DAergic neurons.
These processes depend on HIF-1α activity and ATP13A2 levels [56]. This evidence further
highlights how PHD inhibition has the potential to improve neuronal outcomes.
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9.3. Atypical HIF-1α Inducers

Several compounds have been shown to induce HIF-1α through different mecha-
nisms other than PHD inhibition. In fact, the antiparasitic medication Albendazole (ABZ)
promotes HIF-1α and VEGF mRNA expression and diminishes PHD transcription in
the presence of rotenone in the rat SN. ABZ counteracts rotenone toxicity by reducing
α-synuclein levels, inhibiting the expression of proinflammatory cytokines and enhancing
DA synthesis. This ultimately results in reduced rotenone-mediated neuronal injury and
motor dysfunction [217]. Protection against rotenone-induced apoptosis is also provided
via agmatine, a biogenic amine with neuromodulation properties, which has been shown to
promote HIF-1α activation in differentiated SH-SY5Y cells. Additionally, Agmatine restores
the loss of mitochondrial membrane potential provoked by rotenone, thereby reducing
ROS levels [218]. The hypertension drug hydralazine increases antioxidant capacity and
SOD activity and minimizes 6-OHDA induced oxidative stress in SH-SY5Y cells while
preserving TH and DAT expression and maintaining cell viability. Interestingly, through an
undefined mechanism, Hydralazine can upregulate HIF-1α and VEGF protein levels [219].
Similarly, orexin-A, a neuropeptide released by hypothalamic neurons, promotes HIF-1α
accumulation resulting in induction of downstream target genes VEGF and EPO. These
are essential for orexin-A mediated mitigation of apoptosis of SH-SY5Y cells triggered
by MPP+ [220]. The flavonoid baicalein significantly improves motor performance of
MPTP-treated mice. Of interest is that gene expression profiling studies show that baicalein
rescues the MPTP-mediated reduction of HIF-1α expression, triggering a neuroprotective
effect in these mice [221].

Intriguingly, it appears that PHDs can be inhibited via alternative mechanisms. Upon
MPP+ exposure, the hsp90-p23 chaperone complex interacts with PHD2, blocking its
degradation. Thus, the p23 inhibitor gedunin reduces PHD2 stabilization, which protects
N27 cells and human iPSC-derived DAergic neurons from MPP+-mediated cell death [222].
In addition, adaptaquin (AQ), a selective inhibitor of HIF-PHDs through an unknown
mechanism, maintains cell viability by inhibiting the Trip3 prodeath pathway triggered
by either MPTP or 6-OHDA in PC12 cells and mice. Interestingly, AQ prevents 6-OHDA-
mediated depletion of Parkin levels in PC12 cells. In a mouse model, AQ protected TH+
neurons and their projections to the striatum against 6-OHDA toxicity, thereby maintaining
motor performance [223]. Therefore, a growing body of evidence exists that identifies how
modulation of PHD and HIF-1α can improve DAergic neuronal function and survival.

10. Conclusions

As the world population ages due to increased life expectancy, the burden of PD is
set to rise dramatically. It is therefore imperative to gain a deeper understanding of this
disease and determine the exact causes of SNpc DAergic neuronal death. Since hypoxia is
already associated with brain disorders, it is plausible to propose that it also impacts on
PD. In order to conclusively report the existence of a hypoxic environment in the brain of
PD patients, it would be necessary to measure oxygen levels in the PD-damaged SNpc.
This is difficult to achieve with current technologies. However, hypoxic stress is at the
center of several PD risk factors and is especially detrimental to SNpc DAergic neurons.
The involvement of hypoxia in genetic cases of PD is less clear, as the relationship between
these genes and hypoxia in SNpc DAergic neurons is still to be elucidated. Nevertheless,
these genetic mutations broadly target three main pathways that are profoundly affected
by hypoxia and HIF-1α regulation can effectively modulate them. Indeed, pharmacological
stimulation of the HIF-1α-mediated response remains a promising therapeutic strategy
(Figure 6). HIF-1α activates a wide and diverse transcription program, encompassing
genes involved in mitochondrial function, oxidative stress, autophagy, DA production and
iron metabolism, which would allow multiple pathways to be targeted that are specifically
disrupted in SNpc DAergic neurons in PD. This approach would alleviate neuronal damage
through stabilizing HIF-1α levels. However, the broad extent of the HIF-1α transcriptional
response is a double-edge sword, as it can cause off-target effects. Concerns exist on the
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safety of promoting a complete HIF-1α transcriptional response. Consequently, selective
induction of downstream effectors would be advantageous. Thus, future research should
focus on the design of safe and selective HIF-1α stabilizing drugs and develop appropriate
administration strategies to direct these to the brain.
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