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The cystic fibrosis lung is a complex milieu comprising multiple factors that coordinate its physiology. MicroRNAs are regulatory
factors involved in most biological processes and it is becoming increasingly clear that they play a key role in the development
and manifestations of CF lung disease. These small noncoding RNAs act posttranscriptionally to inhibit protein production. Their
involvement in the pathogenesis of CF lung disease stems from the fact that their expression is altered in vivo in the CF lung
due to intrinsic and extrinsic factors; to date defective chloride ion conductance, endoplasmic reticulum stress, inflammation, and
infection have been implicated in altering endogenous miRNA expression in this setting. Here, the current state-of-the-art and
biological consequences of altered microRNA expression in cystic fibrosis are reviewed.

1. Introduction

Cystic fibrosis (CF) is a multifaceted autosomal recessive dis-
ease caused by mutations in the CF transmembrane con-
ductance regulator (CFTR) gene. Although its pulmonary
manifestations are responsible for the major morbidity and
mortality associated with the disease, CF is also characterised
by a multitude of clinical extrapulmonary manifestations.
In addition, the great heterogeneity in disease severity
among people with CF means that the design of therapeutic
interventions is particularly challenging. Ultimately, a move
toward personalised therapy will greatly enhance our treat-
ment of CF. MicroRNAs (miRNA) are a class of regulatory
biomolecules with important functions in numerous biolog-
ical processes and are aberrantly expressed in many human
diseases. Therefore, it is important to elucidate the roles of
these molecules in CF pathophysiology.

2. MicroRNA

miRNAs are 20–25 nucleotide RNAs involved in the transla-
tional regulation of gene expression [1]. Although the term
“microRNA” was first coined in 2001, the first miRNA, lin-
4, was discovered eight years earlier by Lee and colleagues,
in the nematode Caenorhabditis elegans [2]. Having been
initially discovered to play important roles in developmen-
tal biology, interest in these small RNAs has dramatically

increased since this time as they have been found to have
significant roles in a range of other biological processes such
as proliferation and apoptosis. The latest version of miRBase
(http://www.mirbase.org/, v21 [3]), the most comprehensive
microRNA bioinformatics repository, contains entries from
223 species corresponding to over 35,000 microRNAs. The
database now contains over 2,000 human microRNA entries.
Expression levels of miRNAs vary greatly between cells and
tissues, and aberrant levels of miRNA are associated with
many diseases in humans.

As a rule, mammalianmiRNAs are initially transcribed in
the nucleus into longer primary miRNA (“pri-mir”) of up to
1000 nucleotides in length. These stem-loop structured pri-
mirs are generally transcribed by RNA Polymerase II and
subsequently undergo cleavage in two sequential steps. The
initial processing occurs in the nucleus by the RNA endonu-
clease (RNase) type III enzyme Drosha with the involvement
of other proteins, as part of the “microprocessor complex.”
Drosha cleaves the pri-mir liberating shorter hairpin pre-
miRNA structures (“pre-mir”), which are approximately 70–
100 nucleotides in length [4], and these are actively trans-
ported into the cytoplasm via a process involving the protein
Exportin 5 [5]. Once in the cytoplasm, the pre-mir is further
processed by the RNase III enzyme Dicer, resulting in a
maturemiRNA duplex with 5󸀠 phosphate and two-nucleotide
3󸀠 overhangs [6]. Duplexes consist of a mature miRNA
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“guide” strand and a “passenger” miRNA∗ strand which, in
general, is degraded.

Generally, microRNAs regulate gene expression post-
transcriptionally by binding in a sequence-specific manner
to miRNA responsive elements (MREs), particularly in the
3󸀠 untranslated region (UTR), of a target mRNA. They are
recruited by Argonaute (Ago) proteins, particularly Ago2 [7]
to form the multiprotein RNA induced silencing complex
(RISC) [8, 9]. miRNAs can guide the RISC to a target mRNA
which then induces cleavage degradation or translational
repression of that mRNA [10, 11]. Although most miRNA
studies have largely focused on miRNA-mRNA interactions
in the 3󸀠UTR of target mRNA, these interactions can also
occur in the 5󸀠UTR and coding sequence (CDS) [12, 13].

As a single miRNA can regulate many target mRNAs and
each mRNAmay harbour several MREs, validation of targets
can be difficult and time consuming. Since miRNA target
interactions are complex, predictions are difficult. However,
many computational tools are currently available for predic-
tions and these are continuously improving. Peterson et al.
[14] summarises the four approaches common to the target
prediction tools currently used. These are the quality of seed
match, evolutionary conservation of a particular microRNA,
thermodynamics (specifically free energy) ofmiRNA::mRNA
target binding, and site accessibility or mRNA secondary
structure. Various online tools aid in these predictions and
some well-known examples include TargetScan, PicTar,
DIANA-microT, microrna.org, rna22, and RNAhybrid, which
all utilise different algorithms and different sources of mRNA
sequences. Yet, bioinformatic target prediction databases
have high false positive and false negative rates, and exper-
imental validation is ultimately required to truly determine
miRNA::target mRNA binding and biological function.

It has been proposed that the expression and function
of microRNAs themselves are regulated at three levels: tran-
scription, processing, and subcellular localization [15]. At the
level of transcription,miRNA expression can be controlled by
many factors such as chromatin modifications, DNA methy-
lation, and activity of transcription factors to name a few.
miRNA processing can be affected by intrinsic or acquired
alterations in themiRNAmicroprocessormachinery, thereby
controllingmiRNA function. A role for long noncoding RNA
transcripts in the sequestration ofmiRNAs is emerging.These
are termed “miRNA sponges,” given their ability to soak up
miRNAs and reduce their interactions with target mRNAs.
Additionally, single nucleotide polymorphisms (miRSNPs)
that affect miRNA binding and function are being increas-
ingly reported.

2.1. miRNAs in Lung Inflammation and Cystic Fibrosis. Anal-
ysis of multiple organs and tissues suggests that miRNAs
have dual roles as both regulators of development and in
maintenance of homeostasis [9, 16, 17]. Their importance
in lung development is undisputed. Widespread changes in
miRNA expression have been observed during lung devel-
opment, and Dicer knockout mice, who have disrupted
miRNA processing, display a lethal phenotype as a result of
impaired lung growth [18]. Various studies demonstrate that
miRNA expression remains relatively constant over time

in the adult lung [19], supporting the notion that miRNAs
play a central role in maintenance of lung homeostasis in the
developed lung [16].However, expression ofmiRNA is altered
in pathological states, such as lung inflammation and disease.
miRNAs have been shown to play important roles in the
regulation of innate immunity and inflammation. At themost
basic level, miRNAs are important in haematopoiesis and
differentiation of immune cells [20, 21]. Numerous miRNAs
are induced in innate immune cells, with miRs-155, -146,
and -21 being expressed at particularly high levels [22, 23].
With known roles in regulation of inflammation,miRNAs are
increasingly being examined within the context of inflamma-
tory lung diseases such as CF.

The CF airway lumen is a unique milieu (Figure 1).
Lining the airway epithelium in the CF lung is a depleted
airway surface liquid layer (ASL) and more mucus than
normal. Impaired mucociliary clearance promotes bacterial
colonisation and generates a highly proinflammatory envi-
ronment wherein innate immune responses are frequently
activated. Another characteristic of the CF airway lumen
is the high numbers of infiltrating neutrophils which are
inherently dysfunctional and contribute to the preexisting
protease-antiprotease imbalance. Accumulation of misfolded
CFTR may contribute to endoplasmic reticulum (ER) stress
responses in the airway epithelium, and collectively these
features are central to the pathology and physiology of CF
lung disease. Our group was the first to examine miRNA
expression in CF [24]. Numerous microRNAs had altered
expression between CF and non-CF bronchial epithelium;
the altered miRNAs were predicted to regulate expression of
proteins involved innate immunity, inflammation, ion con-
ductance, and ER stress, amongst others.

2.1.1. Innate Immunity. The airway epithelium acts as an ana-
tomical barrier to or primary defense against infection.These
cells contribute to the barrier function via three essential
components: intercellular tight and adherens junctions (regu-
lating epithelial permeability), secreted antimicrobial factors,
and the mucociliary escalator [25]. Furthermore, it acts as a
key mediator of both innate and adaptive immune responses
toward invading pathogens. Toll-like receptors (TLRs) are a
key group of pattern recognition receptors whichmediate the
recognition of and response to microbial infections and are
highly expressed on myeloid cells. The expression of TLRs is,
however, not confined to immune cells, and these receptors
are also expressed at high levels on other cell types, including
airway epithelial cells (AECs) such as tracheal, bronchial, and
alveolar type II cells. In the CF lung, TLRs expressed by AECs
contribute to the airway immune response by regulating
the expression and secretion of cytokines, chemokines, and
antimicrobial peptides and through enhancing the expression
of cell surface adhesion molecules [26].

Target of Myb1 (TOM1) is a Tollip-binding protein
recently shown to act as a negative regulator of TLR2, TLR4,
and IL-1𝛽 induced signalling pathways in CF bronchial epi-
thelial cells [24]. TOM1 was predicted to be regulated by
miR-126, a miRNA that is significantly downregulated in CF
bronchial brushings compared to controls. To validate this
observation the coexpression of miR-126 and TOM1 was
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Figure 1:The CF airway lumen. Altered ion homeostasis in the CF airway due to mutated CFTR leads to impaired mucociliary clearance and
a depleted ASL volume.This, coupled with intrinsic inflammation, leads to chronic bacterial infection and inflammation, with large numbers
of neutrophils along with their secreted protease products being recruited to the lung.The high protease burden in the CF airway is damaging
to lung tissue and leads to bronchiectasis and ultimately lung failure and death. IL-8: interleukin 8; ASL: airway surface liquid; TLRs: Toll-like
receptors; NF-𝜅B: nuclear factor-𝜅B.

evaluated in CF and non-CF bronchial epithelial samples
and cell lines, and a reciprocal expression pattern was
evident; the effect of overexpression of miR-126 on TOM1
gene and protein levels was examined in a CF bronchial
epithelial cell line, and a miR-126::TOM1 mRNA interaction
was functionally validated using a reporter system. This was
the first report of altered miRNA expression affecting innate
immune responses in theCF lung and suggests that decreased
miR-126 may engender a TLR hyporesponsive state which
could be important at times of infective exacerbations where
a rapid and robust response is required.

In addition to the epithelium, bone marrow derived cells
such as monocytes, macrophages, neutrophils, and dendritic
cells are important in the CF lung. These are constantly
recruited to the infected CF lung to clear pulmonary path-
ogens, but numerous studies have suggested an impairment
of these cells in the context of the CF. It has been well
established that the CF lung is dominated by a neutrophilic
inflammation. Although neutrophils are required for antimi-
crobial defense, their accumulation over periods of time and
poorly controlled release of their toxic granular content can
lead to parenchymal lung tissue damage [27, 28]. Neutrophils
frompeople with CF have been found to releasemore elastase
[29] and have defective phagocytic capacity and oxidative
burst compared to controls [30]. Impaired bacterial killing
by CF neutrophils has been shown to be a result of excessive
protease cleavage of important molecules such as the IL-
8 chemokine receptor CXCR1 on neutrophils [31] and also
impaired CFTR-dependent phagosomal chlorination [32].
Recent work has shown that neutrophils from people with
CF have altered cytosolic ion concentrations resulting in
impaired degranulation [33].

Monocytes originate fromprecursors in the bonemarrow
and circulate in the bloodstream, until they are attracted to

infection or inflammatory signals in particular tissues, such
as the lung, where they differentiate into macrophage or
dendritic cell populations [34]. The monocyte/macrophage
lineage of myeloid cells has three primary roles in the
immune response: phagocytosis, antigen presentation, and
immunomodulation [35]. In the lungs, monocytes primarily
differentiate into alveolar macrophages. These are excellent
phagocytes, effective at rapidly clearing bacteria from the
airways.Their numbers are increased in BALF of young non-
infected CF patients [36] and similarly in CF mouse models
[37, 38]. Emerging evidences suggests that these cells are
hyperresponsive in peoplewithCF,when exposed to bacterial
agonists [39–41]. CF macrophages also appear to be defective
in intracellular bacterial killing [42–44] and efferocytosis
(i.e., scavenging of apoptotic neutrophils) [45–47]. Therefore
myeloid cells play important roles in driving pathogenesis of
the CF airways.

Hector and colleagues have examinedmiRNA expression
in CF myeloid cells (neutrophils and mononuclear cells) and
found changes in specific miRNAs including decreased miR-
9 in CF neutrophils and increased miR-126 in CF mononu-
clear cells versus the same cells from healthy control cells
(Andreas Hector, University of Tuebingen, personal commu-
nication). Functional studies will define if these changes in
miRNA expression impact on dysfunctional processes such
as those described above.

2.1.2. Inflammation. The CF lung is a high protease milieu
and bacterial-derived proteases can contribute to this pro-
tease burden. For example, Pseudomonas aeruginosa secretes
themetalloproteasesPseudomonas elastase (PsE) and alkaline
protease (APR), capable of cleaving a wide range of host
proteins and of altering the physiology of the CF airways [48–
50]. High numbers of neutrophils contribute significantly to
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the abnormally high concentrations of neutrophil-derived
proteases, for example, neutrophil elastase [51–53], proteinase
3 [54], and cathepsin G [55]; however a range of other
endogenously expressed cysteine, metallo-, and aspartyl pro-
teases generated by other cell types are also important. These
include the cysteinyl protease cathepsin S [56] which can be
expressed by bronchial epithelial cells and antigen presenting
cells such as macrophages and dendritic cells. Weldon and
colleagues [56] have recently found that the expression and
activity of cathepsin S is increased in the BALF of chil-
dren with CF, including a cohort of Ps. aeruginosa-negative
preschool children, compared to non-CF childrenwith recur-
rent infection, indicating that upregulation of cathepsin S
may be CF-specific. Interestingly, they illustrated that this
is due, in part, to decreased miR-31 which they have shown
regulates the transcription factor interferon regulatory factor
1 (IRF-1), which controls cathepsin S expression. Levels of
miR-31 were lower in CF versus non-CF cell lines, primary
bronchial epithelial cells, and bronchial brushings [57].

Other studies have looked at alternative roles of miRNA
in other aspects of inflammation in CF. Infection with
Ps. aeruginosa induces the production of proinflammatory
cytokines such as IL-8 in the CF airway epithelium. Fabbri
et al. [58] found that miR-93 is decreased in CF bronchial
epithelial IB3-1 cells during infection with this CF pathogen.
They also demonstrated that the decrease in miR-93 expres-
sion is correlated with an increase in IL-8 levels and thatmiR-
93 directly targeted IL-8 mRNA.

2.1.3. Ion Conductance. CFTR is the most important ion
channel in CF. The CFTR gene encodes a membrane bound
ion transport protein that belongs to the ATP-binding cas-
sette (ABC) superfamily of transporter proteins [59]. The
gene, containing 27 exons, was mapped by positional cloning
in 1985 to the long arm of chromosome 7 (7q31) [60]. Its
protein product, which is 1480 amino acids in length, pri-
marily functions as an ion channel that, in concert with the
Ca2+-activated Cl− channel (CaCC) [61], works to secrete Cl−
and fluid required to hydrate the airway mucus but has
the additional ability to transport bicarbonate [62] and
glutathione [63]. Although the mechanism is still not fully
understood, evidence is emerging for the role of CFTR in reg-
ulating the epithelial Na+ channel (ENaC) and the failure of
mutated forms of CFTR in restricting salt absorption through
ENaC [64]. Therefore, in the CF airway, epithelial CFTR
dysfunction leads to airway surface liquid volume depletion
due to an imbalance between CFTR-mediated Cl− secretion
and ENaC-mediated Na+ absorption [27]. Indeed transgenic
mice overexpressing the𝛽-subunit of ENaCdevelop aCF-like
lung pathology [65] and have been used as amodel of CF lung
disease [66].

CFTR expression is a carefully controlled process that is
spatially and temporally regulated. Transcription can begin
at different start sites depending on the tissue or develop-
mental stage in question. For example, CFTR is positively
regulated by a selection of transcription factors including
C/EBP proteins and FOXA factors, amongst others; CFTR is
also posttranscriptionally regulated by miRNAs. A number
of studies have examined the role of microRNAs in the

control of CFTR expression and various microRNAs were
demonstrated to regulate CFTR [67–75]. Although different
experimental situations were examined, such as different cell
lines and response to cigarette smoke, miR-101, miR-145,
miR-494, and miR-509-3p have been repeatedly implicated
in many of these studies, strongly highlighting their roles
in regulating CFTR expression. For example, Oglesby and
colleagues [71] demonstrated that miR-145, miR-223 and
miR-494 were upregulated in CF bronchial brushings and
cell lines, inversely correlated with CFTR levels, and were
shown to directly target CFTR mRNA. The expression of
thesemiRNAs also correlatedwith p.Phe508delmutation and
Ps. aeruginosa colonisation. Ramachandran et al. [73] showed
that miR-494 and miR-509-3p are increased in CF primary
airway epithelial cells, regulate CFTR, and are regulated by
NF-𝜅B. In themost recent study, Viart et al. identifiedmiRNAs
that participate in CFTR downregulation in the lung after
birth [75]. Having compared the miRNA expression profiles
of adult and foetal lungs, three miRNAs in particular (miR-
145, miR-150, and miR-451) were found to have a temporal
effect, being significantly upregulated in the adult lung and
therefore contributing to downregulation of CFTR. They
also demonstrated how inhibitors based on these miRNAs
can affect CFTR gene expression and function in air-liquid
interface culture and suggest that these may be developed as
tools for CFTR correction in people with CF [76].

2.1.4. ER Stress. The ER is the site of protein translation,
folding, and processing for transport to secretory vesicles.
Misfolded variants of CFTR, for example, the class II
p.Phe508del-CFTR protein, accumulate in the ER and fail
to reach the apical surface of epithelial cells to function as
anion channels. ER perturbation can lead to ER stress and the
initiation of signalling networks aimed at restoring ER equi-
librium. One such network is the unfolded protein response
(UPR). Recent evidence has implicatedmiRNAs in regulation
of the UPR, in contexts other than CF [77–80]. However
one recent study has examined whether altered miRNA
expression regulates expression of UPR genes in CF airway
epithelium [81]. Activating transcription factor 6 (ATF6) is
an ER resident transcription factor and a key component of
the UPR [82]. Its activation leads to transcriptional induction
of ATF6-regulated genes which function primarily to restore
correct protein folding in the ER.

The role of miRNA in basal regulation of ATF6 was
investigated in CF and non-CF bronchial epithelial cells in
vitro and in vivo. miRNAs predicted to target the 3󸀠UTR of
the ATF6 mRNA were identified. Three of these, miR-145,
miR-221, and miR-494, were upregulated in a p.Phe508del-
CFTR versus non-CF bronchial epithelial cell line and also
in p.Phe508del-CFTR versus non-CF bronchial brushings.
Expression of ATF6 was reciprocally decreased in CF both
in vivo and in vitro. After experimentally validating ATF6
as a molecular target of these miRNAs through the use of a
luciferase reporter vector containing the full length 3󸀠UTR of
ATF6, the human studies were complemented by analysing
the expression of key miRNAs in a mouse model of CF
lung disease. Expression of miR-221, which is also predicted
to regulate murine ATF6, was significantly increased in
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native airway tissues of 𝛽ENaC-overexpressing transgenic
mice with CF-like lung disease versus wild type litter-
mates, demonstrating structural and functional conservation
between humans andmice.These findings implicate 𝛽ENaC-
overexpressing transgenic mice as a useful animal model for
studies manipulating miR-221 levels in vivo using miRNA
overexpression strategies to limit ER stress-mediated inflam-
mation.

3. Concluding Remarks and Perspective

In this review, we have discussed current data regarding
miRNA studies in cystic fibrosis. What is clear is that miRNA
dysregulation exists in CF, with many studies highlighting
an altered miRNA expression profile in the CF lung, be it in
cell lines, primary cell cultures, or bronchial brush samples.
Some of these aberrantly expressed miRNAs have been
demonstrated to be involved in the regulation of key com-
ponents of inflammatory signalling and, more recently, the
UPR. Others have been shown to regulate the expression
of CFTR itself. Such dysregulated miRNA may represent
potential therapeutic targets. Although this is an emerging
field, somework is beginning to be carried out with respect to
the development of strategies to ultimately modulate miRNA
levels in vivo in the CF lung, through the use of miRNA
mimics and inhibitors [83]. Finally, the potential ofmiRNAas
biomarkers of CF disease progression remains underexplored
in comparison to other diseases such as cancers. The expres-
sion of these may become particularly useful for predicting
and determining CF lung disease in infants and children,
where currently used surrogate markers and biomarkers are
of little use.
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