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Abstract: Cardiovascular development is a complex process that starts with the formation of symmet-
rically located precardiac mesodermal precursors soon after gastrulation and is completed with the
formation of a four-chambered heart with distinct inlet and outlet connections. Multiple transcrip-
tional inputs are required to provide adequate regional identity to the forming atrial and ventricular
chambers as well as their flanking regions; i.e., inflow tract, atrioventricular canal, and outflow
tract. In this context, regional chamber identity is widely governed by regional activation of distinct
T-box family members. Over the last decade, novel layers of gene regulatory mechanisms have been
discovered with the identification of non-coding RNAs. microRNAs represent the most well-studied
subcategory among short non-coding RNAs. In this study, we sought to investigate the functional
role of distinct microRNAs that are predicted to target T-box family members. Our data demonstrated
a highly dynamic expression of distinct microRNAs and T-box family members during cardiogenesis,
revealing a relatively large subset of complementary and similar microRNA–mRNA expression pro-
files. Over-expression analyses demonstrated that a given microRNA can distinctly regulate the same
T-box family member in distinct cardiac regions and within distinct temporal frameworks, supporting
the notion of indirect regulatory mechanisms, and dual luciferase assays on Tbx2, Tbx3 and Tbx5 3′

UTR further supported this notion. Overall, our data demonstrated a highly dynamic microRNA
and T-box family members expression during cardiogenesis and supported the notion that such
microRNAs indirectly regulate the T-box family members in a tissue- and time-dependent manner.

Keywords: T-box genes; microRNA; cardiac development; post-transcriptional regulation

1. Introduction

Cardiovascular development is a complex process that starts with the formation of
symmetrically located precardiac mesodermal precursors soon after gastrulation [1,2] and
is completed with the formation of a four-chambered heart with distinct inlet and outlet
connections [3,4]. During this developmental process, the forming heart is progressively
shaped, requiring multiple transcriptional inputs in order to provide adequate regional
identity to the forming atrial and ventricular chambers as well as their flanking regions; i.e.,
inflow tract, atrioventricular canal, and outflow tract [4]. Transcriptional specification of the
early nascent heart is initiated by the expression of a core set of transcription factors, such
as Nkx2.5, Gata4, and Mef2c [5–7]. Subsequently, a distinct left–right input is provided to
the forming heart by the left-restricted expression of the homeobox transcription factor
Pitx2, which is already initiated at the cardiac crescent stage and subsequently followed
at the early straight tubular heart stage [8–12]. As the development proceeds, regional
chamber identity is initiated with restricted expression of the Hand [13–15] and Hrt family
members [16–18], a process that is also governed by regional activation of distinct T-box
family members, as detailed below.
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Expression of multiple T-box family members during cardiac development is widely
documented. Tbx1 is expressed in the arterial pole of the heart [19], Tbx2 and Tbx3
are expressed in the outflow tract and atrioventricular canal at early developmental
stages [20–23], becoming confined to the prospective developing cardiac conduction system
at later stages [24–26]. Tbx5 is expressed in the atrial chambers and the left ventricle [27,28],
Tbx18 is mostly restricted to the venous pole, the epicardial lining as well as to a subset of
interventricular septum cardiomyocytes [29,30], while Tbx20 is expressed in all the cardiac
cells [31–35]. Genetic manipulations of distinct T-box family members have demonstrated
a pivotal role of these transcription factors in cardiac development. Tbx1 null mutant mice
displayed impaired arterial pole development, phenocopying DiGeorge syndrome [19],
while Tbx2 and Tbx3 null mutants played a fundamental role in establishing the ventric-
ular conduction system [36,37]. Tbx5 plays multiple roles during cardiac development,
including ventricular chamber, conduction system, and epicardium formation [38–42]. On
the other hand, Tbx18 is important for venous pole development [43,44], while Tbx20
plays distinct roles during cardiac development, including atrial and atrioventricular canal
formation [32,33,45,46].

Over the last decade, new layers of gene regulatory mechanisms have been discovered
with the identification of non-coding RNAs. Non-coding RNAs are broadly classified
in two distinct categories, short non-coding RNAs (<200 nt) and long non-coding RNAs
(>200 nt) [47]. microRNAs represent the most well-studied subcategory among short
non-coding RNAs. microRNAs are short (22–24 nt) non-coding RNAs that regulate target
mRNAs by base-pair complementary binding, leading in most cases to mRNA degra-
dation and/or protein translation blockage. Nonetheless, in several instances, mRNA
stabilization and thus increased protein expression have also been documented [48,49]. mi-
croRNAs display temporal and tissue-restricted expression in multiple biological contexts,
including cardiovascular development [50]. microRNAs play fundamental roles governing
distinct biological processes, such as proliferation, growth, and differentiation [1,2,51–54].
The identification of the functional role of microRNAs in the cardiovascular context is
progressively emerging, such as the pivotal role reported for miR-1 during heart develop-
ment, miR-126 in vasculogenesis, and miR-23 and miR-199 during valvulogenesis [54–58].
microRNA-mediated regulation of several key cardiac-enriched transcription factors, such
as Mef2c [50,59], Gata4 [60,61], and Nkx2.5 [57] have also been reported.

At present, post-transcriptional regulation of T-box genes remains poorly investigated,
even though their play fundamental roles during heart formation. Among those T-box
genes expressed during cardiogenesis, microRNA-mediated post-transcriptional regulation
has only been reported for Tbx1, Tbx3, and Tbx5 in distinct biological contexts. Tbx1 is
targeted by miR-3651 in colorectal cancer, promoting cell proliferation [62]; by miR-451a in
cutaneous basal carcinoma, suppressing cell growth [63]; and by miR-96 in dental epithelial
progenitor cells [64]. Furthermore, only indirect evidence supports a role of the miR-17-92
cluster in regulation of Tbx1 expression during myocardial differentiation from cardiac
progenitors [65].

Direct functional evidence demonstrated that miR-206 targets Tbx3 in breast cancer,
particularly contributing to the regulation of proliferation, invasion, and maintenance
of cancer stem cells [66], while indirect evidence was also reported for this microRNA
regulating Tbx3 expression during mammary gland development [67]. miR-17-92 and
miR-106b-25 deficient mice deregulate Tbx3 in distinct biological contexts [68,69] and miR-
17-92 also deregulate Tbx3 in cancer stem cells [70]. Importantly, no evidence of microRNA
regulation of Tbx3 in the cardiovascular context has been reported to date.

In contrast to Tbx1 and Tbx3, increasing evidence of microRNA mediated regulation of
Tbx5 has been reported in the cardiovascular context. Tbx5 is targeted by miR-98, regulating
cardiomyocyte differentiation of mesenchymal stem cells [71], and by miR-10a [72,73] in the
context of cardiac hypertrophy. In addition, indirect evidence demonstrates that miR-300
modulates Tbx5 expression in cardiac progenitor cells [74], miR-142 modulates Tbx5 in
embryonic stem cells, contributing thus to early cardiac cell fate decision [75]—and let-7c
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modulates Tbx5 expression during embryonic stem cell-derived cardiomyogenesis [76].
Importantly, no data have been reported on the functional role of microRNAs in the Tbx2,
Tbx18, and Tbx20 expression in any biological settings.

Predictive microRNA algorithms, such as TargetScan and/or MirWalk, constitute
valuable tools to identify putative microRNA–mRNA interactions. Importantly, only a very
small subset of predicted interactions has been validated for distinct T-box genes. In this
study, we sought to investigate the functional role of distinct microRNAs that are predicted
to target the 3′ UTR of T-box family members during cardiogenesis. Our data demonstrated
a highly dynamic expression of T-box family members and microRNAs during cardio-
genesis. microRNA over-expression assays demonstrated that a given microRNA could
distinctly regulate the same T-box family member in distinct cardiac regions and within
distinct temporal frameworks, while dual luciferase assays on the Tbx2, Tbx3, and Tbx5
3′ UTR demonstrated indirect regulatory mechanisms. Overall, our data demonstrated a
highly dynamic expression of microRNA and T-box family members during cardiogen-
esis and supported the notion that such microRNAs indirectly regulate the T-box family
members in a tissue- and time-dependent manner.

2. Materials and Methods
2.1. Tissue Isolation and Culture

Fertilized eggs from white Leghorn chickens (Granja Santa Isabel, Córdoba, Spain)
were incubated at 37.5 ◦C and 50% humidity for 2–7 days. Embryos were harvested
at different developmental stages (HH17, HH20, and HH24) and classified according
to Hamburger and Hamilton [77]. Embryos were removed from the egg by cutting the
blastocyst margin with iridectomy scissors and placed into Earle’s balanced salt solution
(EBSS) (Gibco). For qPCR analyses, hearts were isolated and then atrial, ventricular, and
outflow tract regions were dissected out, pooled (n = 10), and stored at −80 ◦C until used.
For in vitro explants cultures, chicken atrial, ventricular, and outflow tracts of different
stages (HH17, HH20, and HH24) were dissected in EBSS (Gibco) and cultured in plastic
Petri dishes with DMEM/F12+ Glutamax as culture medium.

2.2. microRNA Mimics Transfections

In vitro explant cultures of chicken atrial, ventricular, and outflow tract regions of
different stages (HH17, HH20, and HH24) were cultured for 24 h at 37 ◦C in a cell culture
incubator before miRNAs mimics (microRNA precursors) administration as previously
described [78]. miRNA mimics transfections were carried out with Lipofectamine 2000
(Invitrogen, Carlsbad, CA, USA), following the manufacturer’s guidelines. Briefly, 85 nM
of pre-miRNA were applied to the explants (3–5 explants per well) for 24 h. A minimum of
20 explants were assayed under each experimental condition. After incubation, explants
were processed for qRT-PCR analyses as previously described [54]. Negative controls, i.e.,
chicken cardiac explants treated only with Lipofectamine, were run in parallel.

2.3. RNA Isolation and qPCR

All qRT-PCR experiments followed the MIQE guidelines [79] and were performed
similarly as previously reported [54,78]. Briefly, RNA was extracted and purified using
Trizol reactive (Invitrogen) according to the manufacturer’s instructions. For mRNA ex-
pression measurements, 100 ng of total RNA was used for retro-transcription with Maxima
First Strand cDNA Synthesis Kit for RT-qPCR (Thermo Scientific, Waltham, MA, USA).
Real time PCR experiments were performed with 1 µL of cDNA, SsoFast EvaGreen mix,
and corresponding primer sets. For microRNA expression analyses, 5 ng of total RNA
was used for retrotranscription with Universal cDNA Synthesis Kit II (Exiqon, Vedbæk,
Denmark), and the resulting cDNA was diluted 1/80. Real time PCR experiments were
performed with 1 µL of diluted cDNA, ExiLENT SYBR Green master mix (Exiqon), and
corresponding primer sets. All qPCRs were performed using a CFX384TM thermocycler
(Bio-Rad, Hercules, CA, USA) following the manufacturer’s recommendations. The relative
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level of expression of each gene was calculated as described by Livak and Schmittgen [80],
using, as internal controls, Gapdh and Gusb for mRNA expression analyses, and 5S and 6U
for microRNA expression analyses. Each PCR reaction was carried out in triplicate and
repeated with at least three distinct biological samples to obtain representative means.

2.4. Heatmap Graphical Representations

Normalized qPCR data were graphically plotted as heatmaps using Morpheus soft-
ware (https://software.broadinstitute.org/morpheus/, accessed on 3 March 2020).

2.5. Luciferase Assays

Tbx2, Tbx3, and Tbx5 3′ UTR constructs were PCR amplified and cloned into the
pMIR-REPORT vector. 3T3 fibroblasts (ATCC) were co-transfected with 100 ng of the corre-
sponding T-box 3′ UTR luciferase vector and 100 ng of the pMIR- β-galactosidase vector
(Ambion) for internal normalization. Luciferase activity was normalized to β-galactosidase
and compared to non-transfected controls. Each luciferase assay was carried out in tripli-
cate and repeated in at least three distinct biological samples to obtain representative means.
PCR-based site-directed mutagenesis was performed using the Stratagene QuikChange
site-directed mutagenesis kit but with the enzymes and buffers from the Bio-Rad iPROOF
PCR kit. Primers used for the site-directed mutagenesis were MD200_Tbx5_Fw: 5′-
ACACGCATCAAAAGCAGAAAAACAcgcTTAAAAAAAAAGTGTGTAAGTACG-3′,
MD200_Tbx5_Rv: 5′-CGTACTTACACACTTTTTTTTTAAgcgTGTTTTTCTGCTTTTGATGC
GTGT-3′, MD106_Tbx3_Fw: 5′-CAGTTTGGTCAAATCTGCCAGTGCcagTTGTTAGATGTA
AAATAAACCACG-3′, and MD106_Tbx3_Rv: 5′-CGTGGTTTATTTTACATCTAACAActgGC
ACTGGCAGATTTGACCAAACTG-3′ that introduced mutations into miR-200b and miR-
106b seed sequences of the Tbx5-and Tbx3 3′ UTRs, respectively.

2.6. Statistical Analyses

For statistical analyses of datasets, unpaired Student’s t-tests were used as previously
reported [54,78]. Significance levels or p values are stated in each corresponding figure
legend. p < 0.05 was considered statistically significant.

3. Results
3.1. Identification of Predictive T-Box–microRNA Interactions

Using on-line predictive microRNA algorisms, we searched for the putative evolution-
ary conserved microRNAs targeting Tbx1, Tbx2, Tbx3, Tbx5, Tbx18, and Tbx20. MirWalk
microRNA–T-box genes interactive network suggested a large number of plausible in-
teractions (Supplementary Figure S1), some of which are evolutionarily conserved, as
revealed by TargetScan analyses (Supplementary Figure S2). Subsequently, we scrutinized
previously validated and published T-box interacting microRNAs and selected those that
had not been tested to date and that were mostly evolutionarily conserved and displayed
differential expression during cardiogenesis [50]. This resulted in the selection of miR-
200bc predictively targeting Tbx1; miR-25, miR-106, and miR-200bc predictively targeting
Tbx3; miR-200bc and miR-429 predictively targeting Tbx5; miR-1 and miR-185 predictively
targeting Tbx18; and miR-25, miR-141, and miR-185 predictively targeting Tbx20. All these
eight microRNAs were selected for subsequent screening of their qRT-PCR expression
profiles, as detailed below.

3.2. Chamber-Specific Expression of T-Box Genes and Putative T-Box-Targeting microRNAs
during Chicken Cardiac Development

In other to dissect the post-transcriptional regulation of microRNAs in the T-box
family members, we analyzed, by qRT-PCR, the expression levels of T-box genes (Tbx1,
Tbx2, Tbx3, Tbx5, Tbx18, and Tbx20) and selected putative T-box-targeting microRNAs
(miR-1, miR-25, miR-106, miR-141, miR-185, miR-200b, miR-200c, and miR-249) in the

https://software.broadinstitute.org/morpheus/
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outflow tract, ventricular and atrial regions at three different stages of cardiac development
(HH17, HH20, and HH24) (Figure 1A).

Figure 1. T-box and microRNA expression during cardiogenesis. Panel A: Schematic representation of the distinct
developmental stages analyzed and the corresponding dissected cardiac regions. Panel B: Heatmap representation of T-box
gene expression as measured by qPCR in distinct cardiac regions at different developmental stages. Panel C: Heatmap
representation of microRNA gene expression as measured by qPCR in distinct cardiac regions at different developmental
stages. A, atria; V, ventricles; OFT, outflow tract.

Tbx1 and Tbx3 displayed higher expression levels in the outflow tract at all stages
analyzed (Figure 1B). Tbx2 displayed higher expression levels in the atria, while shifting
progressively to higher levels in the outflow tract at HH20 and HH24 (Figure 1B). Tbx5
and Tbx18 displayed postero-anterior expression gradients at the HH17 stage, while they
became more abundantly expressed in the ventricular chambers at HH20 and HH24
(Figure 1B). Finally, Tbx20 was mostly expressed in the outflow tract at HH17, while at
later stages, a most prominent expression in the ventricular chambers was observed at
HH24, while becoming again more prominent in the outflow tract at HH24 (Figure 1B).
Overall, these data demonstrated a highly dynamic expression of T-box genes during
cardiac development, in line with previous reports [19,21,22,27,30,32,41,81,82].

Subsequently, we examined the developmental expression profiles of eight differ-
ent microRNAs that were predicted to regulate T-box family members (miR-1, miR-25,
miR-106, miR-141, miR-185, miR-200b, miR-200c, and miR-429). Our data demonstrated
that miR-1 was prominently expressed in the atrial chambers at HH17 and HH20, while
becoming more abundantly expressed in the outflow tract at later stages (Figure 1C). miR-
25 was firstly most prominently expressed in the atrial chambers (HH17), subsequently
becoming more abundant in the ventricular chambers (Figure 1C). miR-106 and miR-141
displayed rather similar and very dynamic expression patterns during the development:
at HH17, they were rather similarly expressed in the outflow tract and atrial chambers,
while they were mostly expressed in the outflow tract and ventricle at HH20, displaying a
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postero-anterior expression gradient at HH24; i.e., higher expression in the atrial chambers
and lower in the outflow tract (Figure 1C). Similarly, miR-185, miR-200b, and miR-200c
displayed rather similar expression profiles during development: higher expression in the
atrial chambers at all developmental stages analyzed, except for miR-15, which displayed
a peak ventricular expression at HH24 and rather similar expression levels in the outflow
tract and ventricular chambers (Figure 1C). Finally, miR-429 displayed a highly dynamic
expression, being most prominent in the atria at HH17, in the outflow tract at HH20,
and in the ventricular chambers at HH24 (Figure 1C). Overall, these data demonstrated
a highly dynamic and chamber-specific enriched expression of these microRNAs during
cardiac development.

3.3. T-box–microRNA Interactions during Chicken Cardiac Development

Detailed analyses of the expression profiles of T-box genes and microRNAs during
cardiac development demonstrated that Tbx genes and their putative targeting microRNAs
displayed in several cases complementary profiles (Supplementary Figures S3–S5) or simi-
lar expression profiles (Supplementary Figures S4 and S5). Complementary patterns might
indicate negative regulation, while similar expression patterns might indicate positive
regulation. For example, miR-1 was highly expressed in the posterior region of the heart at
HH17 and HH20, while Tbx1 displayed the opposite pattern; i.e., high expression in the
outflow tract and low expression in the atria. Similarly, miR-200c was highly expressed
in the atria at HH20, while Tbx20 displayed the opposite pattern. These complementary
patterns might suggest that these microRNAs were regulating the expression of these target
Tbx genes in a stage- and time-dependent manner. Importantly, only a small subset of the
predicted T-box–microRNA interactions displayed complementary patterns (5 out 15; ap-
proximately 33%), while even a much smaller proportion displayed similar patterns (6 out
29; approximately 20%). More importantly, such complementary/similar patterns were
stage-specific. Thus, we decided to investigate if an over-expression of these microRNAs
could modulate the expression of these Tbx genes in each of these cardiac chambers at
different developmental stages. The outflow tract, atrial, and ventricular explant assays
were implemented, microRNA mimics were over-expressed, and T-box family members
expression was assayed by qPCR. Our results demonstrated that no single microRNA was
capable of similarly modulate the expression of any member of the T-box family in all
chambers and all stages analyzed (Figure 2), and only a small subset of them (22/135;
~16%) led to no significant changes of expression (Supplementary Figure S6). Only two
microRNAs almost fulfilled the prediction; i.e., over-expression of miR-1 similarly regu-
lated the Tbx5 expression in the outflow tract and atrial at all developmental stages but
failed to do so in the HH20 ventricular explants (Figure 2). Similarly, miR-141 up-regulated
the Tbx20 expression in all chambers and stages analyzed except for the outflow tract and
ventricles at HH20 (Figure 2). Therefore, our data demonstrated that the complementary
expression of T-box and microRNAs did not necessarily mean a regulatory interaction
between the target and the corresponding microRNA, supporting the notion of indirect
regulatory mechanisms. Furthermore, it is important to notice that a discrete microRNA
could distinctly regulate the same target gene in a tissue- and time-dependent manner.
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Figure 2. microRNA modulation of the Tbx expression by gain-of-function assays. Heatmap repre-
sentation of Tbx5, Tbx18, and Tbx20 modulation after microRNA over-expression in distinct cardiac
regions at different developmental stages. A, atria; V, ventricles; OFT, outflow tract.

3.4. Lack of Direct T-Box–microRNA Biochemical Interaction

In order to examine if these microRNAs displayed direct or indirect biochemical
interactions with the corresponding Tbx genes, we performed dual luciferase biochemical
assays. We tested if miR-1, miR-106, miR-141, and/or miR-200 could directly target the
3′ UTRs of Tbx2, Tbx3, and Tbx5, respectively. Our data demonstrated that none of these
microRNAs could directly interact with the Tbx2 3′ UTR (Figure 3), as expected because
none of them had been predicted by MirWalk and/or TargetScan. However, miR-1 and
Tbx2 displayed complementary (HH20) and similar (HH17) expression patterns during
cardiogenesis. In the case of the Tbx3 3′ UTR, only miR-106 significantly decreased lu-
ciferase levels (Figure 3), as expected because both MirWalk and TargetScan had predicted
a plausible interaction. Site-directed mutagenesis analyses confirmed the specificity of
such a biochemical interaction (Figure 3). Curiously, miR-200 had also been predicted to
target Tbx3 but no significant differences were observed. In line with previous findings,
miR-106 and Tbx3 displayed complementary (HH24) expression patterns during cardio-
genesis. Finally, our data demonstrated that miR-200 directly interacted with Tbx5 3′ UTR
(Figure 3) and confirmed this biochemical interaction by site-directed mutagenesis analyses
(Figure 3). Importantly, miR-200 overexpression could distinctly modulate Tbx5 in the
outflow tract, ventricles, and atria at different developmental stages, and miR-200 and Tbx5
displayed similar expression patterns only at the HH17 stage. Thus, overall, these data
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suggested that most T-box–microRNA interactions in the developing cardiac segments
were indirectly regulated.

Figure 3. Dual luciferase assays. Representative data of Tbx2, Tbx3, and Tbx5 3′ UTR luciferase assays
after miR-1, miR-106, miR-141, and miR-200 overexpression in 3T3 fibroblasts. Observe that only
miR-106 significantly decreased the Tbx3 3′ UTR luciferase levels, and only miR-200 significantly
decreased the Tbx5 3′ UTR luciferase levels, supporting a direct biochemical interaction for these
microRNAs, as corroborated when miR-106 (miR-106mut) and miR-200 (miR-200mut) seed sequences
were modified by site-directed mutagenesis in the Tbx3 and Tbx5 3′ UTRs, respectively, and thus
luciferase levels were similar to controls.
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4. Discussion

The spatio-temporal expression of T-box genes has been widely documented during
cardiac development, mostly by in situ hybridization. Tbx5 firstly displayed an antero-
posterior gradient of expression in the cardiogenic mesoderm, becoming subsequently
confined to the prospective left ventricle and atrial chambers [27]. Tbx2 and Tbx3 were
observed at the cardiac looping stage, mostly restricted to the outflow tract and atrioven-
tricular canal region [20–23,83,84] and subsequently within the forming cardiac conduction
components [24–26], while Tbx1 was exclusively observed at the most anterior part of
the developing heart [19]. Tbx18 was mostly observed in the proepicardium and the
sinus venosus, with transient temporal expression in the interventricular myocardium
at mid-developmental stages [29,30], while Tbx20 was broadly expressed in all cardiac
chambers [31–35]. While there is a wide account of the regional spatio-temporal expression
of T-box family members during cardiac development, there is a lack of quantitative as-
sessment of their expression patterns during cardiogenesis. In this study, we provided a
comprehensive quantitation of the T-box family members expression in different cardiac
regions at different developmental stages. Our data demonstrated a highly dynamic ex-
pression of T-box genes during cardiogenesis, and were in most cases in agreement with
previous results; e.g., Tbx1 was highly expressed in the OFT at all developmental stages,
as previously reported [19], while Tbx5 displayed an anteroposterior gradient at early
stages (HH17), becoming subsequently mostly confined to the ventricular chambers at later
developmental stages (HH20 and HH24), as previously reported [83]. Importantly, our data
also revealed previously unappreciated observations, such as the fact that Tbx20 displayed
significant differences in expression levels during cardiogenesis at cardiac regions [31–35].

Differential microRNA expression during cardiogenesis has been widely documented
in mice [50,85]. Some examples of such differential expression are: miR-1 and miR-133
displaying a myocardial specific expression during heart development [56–58], miR-126
confined to the developing endocardial lining [54], and miR-27 mostly restricted to the
ventricular chambers [50]. In addition, our understanding of the functional roles of mi-
croRNAs is also progressively increasing. miR-1 and miR-126 systemic null mutants are
embryonic lethal [54,85].

In this study, we investigated the spatio-temporal expression patterns of a selected
number of microRNAs predicted to target T-box family members. We aimed to examine
quantitative expression profiles during cardiogenesis in chicken and to establish whether
similar and/or complementary patterns of T-box genes expression could be observed as a
proxy to discern their plausible regulatory interactions. Importantly, we reported herein
for the first time the dynamic expression patterns of six distinct microRNAs (i.e., miR-25,
miR-106, miR-141, miR-185, miR-200, and miR-429) during chicken heart development.
Interestingly, miR-25, miR-106, miR-141, miR-185, and miR-429 were highly expressed in
the atrial compartment at early developmental stages (HH17) but significantly changed
their expression in subsequent stages (HH20) to the ventricular chambers. miR-200b and
miR-200c, on the contrary, displayed high expression levels in the atrial chambers at later
developmental stages (HH20 and HH24). Curiously, miR-1 had previously been observed
homogenously expressed during heart formation [86,87]. Our data demonstrated that miR-
1 displayed enhanced expression at the venous pole at early developmental stages (HH17
and HH24), while shifting to the arterial pole at later stages (HH24). In sum, our data illus-
trated the dynamic nature of microRNA expression during chicken cardiac development.

As previously mentioned, microRNAs are small non-coding RNAs that mostly act
as post-transcriptional regulators by enhancing mRNA degradation and/or translational
blockage [47]. Thus, it is expected that microRNA expression would display a complemen-
tary pattern with their target mRNAs. The comparison of T-box members and predicted
microRNA expression patterns revealed that in most cases, similar patterns (32 pairs out
of 144; 22%) were observed, in contrast to only a few complementary patterns (16 pairs
out of 144; 11%). Among these, only a minority were in silico predicted, such as miR-
1/Tbx18, miR-25/Tbx20, and miR-200/Tbx5. Therefore, these data supported the notion
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that complementary miRNA–mRNA expression patterns do not reflect microRNA–mRNA
functional interactions.

Previous studies have demonstrated microRNA–T-box member regulatory modu-
lation in several biological contexts in both homeostasis and diseases, in particular for
Tbx1, Tbx3, and Tbx5. Tbx1 is targeted by miR-3651 in colorectal cancer, promoting cell
proliferation [62]; by miR-451a in cutaneous basal carcinoma, suppressing cell growth [63];
and by miR-96 in dental epithelial progenitor cells [64]. In addition, indirect evidence
supports a role of the miR-17-92 cluster in the regulation of Tbx1 expression during midface
development [68] and for miR-182 during otocyst-derived cell differentiation [88]. Tbx3
is targeted by miR-137 in melanoma, inhibiting cell migration [89], and in embryonic
stem cells, reducing cell proliferation [90]. Furthermore, miR-93 controls Tbx3 and thus
promotes a negative regulation of adipogenesis [70], miR-92 regulates Tbx3 expression in
microvascular endothelial cells [91], and miR-363 inhibits Tbx3 in limb development [92].
Indirect evidence demonstrated that miR-10a regulates Tbx5 in synoviocytes [93], lead-
ing to regulation of proliferation and apoptosis in those cells and by miR-200c in human
embryonic stem cells [94].

Importantly, only scarce information is available about the microRNA–T-box inter-
actions in the cardiovascular system [65,71–76], and no evidence of their role in cardiac
development has been reported. In order to explore if such functional interactions indeed
occur during cardiac development, we performed microRNA gain-of-function assays. Our
data demonstrated that all microRNAs tested were capable of distinct modulation of the
Tbx5, Tbx18, and Tbx20 expression in distinct cardiac compartments and distinct develop-
mental stages, independently of whether in silico prediction provided support for such
interactions or not. Importantly, only a small subset (~16%) of microRNA gain-of-function
assays did not lead to significant T-box gene deregulation, highlighting their relevant regu-
latory role in this context. Furthermore, our data also demonstrated that each microRNA
could distinctly modulate each T-box gene in distinct cardiac compartments, suggesting,
therefore, indirect regulatory actions. Direct interactions were only demonstrated for the 3′

UTR Tbx3 regulation by miR-106 and the 3′ UTR Tbx5 regulation by miR-200; interactions
were validated in these biochemical assays. Importantly, no additional targeting on the
5′ UTR or CDS of Tbx-genes was predicted for the microRNAs we studied—except for
miR-106 on Tbx3 and Tbx5 CDS, and miR-200 on Tbx2 and Tbx20 CDS—further supporting
the notion of indirect regulatory mechanisms.

In summary, we provided herein comprehensive quantitative analyses of T-box gene
expressions and T-box-predicted microRNA expressions during chicken cardiac devel-
opment. Gene expression profiling, microRNA gain-of-function assays and biochemical
luciferase assays demonstrated that microRNAs could distinctly modulate T-box expression
during cardiac development in a highly dynamic spatio-temporal manner. microRNA–
mRNA modulation was not necessarily reflected in complementary expression patterns.
Our data supported the notion that most microRNA modulatory actions on T-box genes by
miR-1, miR-106, miR-141, and miR-200 were indirectly exerted, with the exception of the
miR-106/Tbx3 and miR-200/Tbx5 regulation.
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