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Abstract: Elevated levels of free fatty acids (FFAs) have been related to pancreatic beta-cell failure in
type 2 diabetes (T2DM), though the underlying mechanisms are not yet fully understood. FFAs have
been shown to dysregulate formation of bioactive sphingolipids, such as ceramides and sphingosine-
1 phosphate (S1P) in beta-cells. The aim of this study was to analyze the role of sphingosine-1
phosphate lyase (SPL), a key enzyme of the sphingolipid pathway that catalyzes an irreversible
degradation of S1P, in the sensitivity of beta-cells to lipotoxicity. To validate the role of SPL in
lipotoxicity, we modulated SPL expression in rat INS1E cells and in human EndoC-βH1 beta-
cells. SPL overexpression in INS1E cells (INS1E-SPL), which are characterized by a moderate
basal expression level of SPL, resulted in an acceleration of palmitate-mediated cell viability loss,
proliferation inhibition and induction of oxidative stress. SPL overexpression affected the mRNA
expression of ER stress markers and mitochondrial chaperones. In contrast to control cells, in
INS1E-SPL cells no protective effect of oleate was detected. Moreover, Plin2 expression and lipid
droplet formation were strongly reduced in OA-treated INS1E-SPL cells. Silencing of SPL in human
EndoC-βH1 beta-cells, which are characterized by a significantly higher SPL expression as compared
to rodent beta-cells, resulted in prevention of FFA-mediated caspase-3/7 activation. Our findings
indicate that an adequate control of S1P degradation by SPL might be crucially involved in the
susceptibility of pancreatic beta-cells to lipotoxicity.

Keywords: sphingosine-1 phosphate; sphingosine-1 phosphate lyase; insulin-secreting cells; diabetes;
lipotoxicity; human beta-cells

1. Introduction

Type 2 diabetes (T2DM) affects the majority of patients with diabetes and is triggered
by unhealthy diet and physical inactivity together with a genetic predisposition [1,2].
Elevated plasma free fatty acid (FFA) levels have been detected at the prediabetes state
and in T2DM patients, and it is believed that chronic exposure of pancreatic insulin-
secreting beta-cells to FFAs induce beta-cell dysfunction and death [3–6]. FFAs induce a
multimodal stress response, including oxidative stress, endoplasmic reticulum (ER) stress
and mitochondrial dysfunction, leading to dysfunction and death of beta-cells [3,6–12].
The two most abundant dietary FFAs in plasma are saturated palmitic acid (PA) and
monounsaturated oleic acid (OA)—of which, OA exerts toxic effects in human pancreatic
beta-cells [13,14], in contrast to rodent beta-cells in which it protects from PA-mediated cell
death [15]. The underlying mechanisms of the broader sensitivity of human beta-cells to a
variety of FFAs are not fully understood. Recently, stearoyl-CoA desaturase 1 (SCD1), an
ER enzyme that is involved in monounsaturated fatty acid synthesis from PA and stearic
acid (SA), was shown to be abundantly expressed in human beta-cells [9]. PA was shown to
downregulate SCD1 expression and siRNA-mediated silencing was shown to induce beta-
cell death [9]. These findings indicate that the intracellular capacity to decrease biological
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availability of PA for various biosynthetic or metabolic pathways may be crucially involved
in the protection of human beta-cells against lipotoxicity.

Palmitate serves as a starting point for the biosynthesis of sphingolipids (SLs) [16].
Accumulating evidence points to an important role of SLs, particularly ceramides, in the
regulation of beta-cell dysfunction and death during T2DM development [5,11,17–23].
SLs are ubiquitous, structurally diverse lipid species that are essential components of cell
membranes and bioactive mediators regulating cell fate and metabolism. The complex
SL pathway begins in the ER from the reaction of palmitoyl-CoA with L-serine catalyzed
by serine-palmitoyl-transferase (SPT) [16]. SPT is characterized by a high specificity for
the CoA-thioester of PA [24], and therefore, the flux of de novo SL biosynthesis strongly
depends on the availability of PA. A series of enzymatic reactions leads to formation of a
central SL ceramide, which is a precursor of sphingosine and complex SLs [16]. Sphingosine
is a substrate for the generation of sphingosine-1 phosphate (S1P) [25]. This reaction is
catalyzed by two types of sphingosine kinases (SK), of which, SK2—which raises S1P
levels in the mitochondria, ER and nucleus—is the predominant isoform in pancreatic
beta-cells [23,26]. S1P can be dephosphorylated by the actions of S1P-specific phosphatases
(SPPs), or by the nonspecific lipid phosphate phosphatase family (LPPs) [27]. The last
step in sphingolipid metabolism is the irreversible degradation of S1P to hexadecenal
and phosphoethanolamine by the highly conserved ER enzyme S1P lyase (SPL) [28].
Rodent beta-cells are characterized by a moderate expression of SPL [26]. The SPL-reaction
products can be transferred to the glycerophospholipid pathway and hexadecenal can be
used for reloading the palmitoyl-CoA pool [29]. An insufficient degradation of hexadecenal
leads to its accumulation and elicits cellular toxicity [30,31].

S1P is a potent modulator of cellular function and fate in various cell types, including
pancreatic beta-cells [11,16,18,20,21,25,27,32–34]. The serum and tissue concentrations of
S1P have been shown to be elevated in the metabolic state preceding T2DM [35]. A high
fat and sugar diet as well as obesity have recently been linked to activation of SK/S1P/S1P
receptor signaling and induction of inflammation in many gastrointestinal disorders, in-
cluding cancer [36]. S1P can act extracellularly by activation of cell surface S1P receptors
(S1PR1-5) or intracellularly as a second messenger and epigenetic modulator [25]. Acti-
vation of SK1 in parallel with increased S1P generation has been shown to regulate cell
proliferation and stem cell differentiation [36,37], while SPL was shown to regulate stem
cell cycle quiescence [38].

PA was shown to induce ceramide and dihydro-S1P, but not S1P accumulation under
prolonged hyperglycemic conditions (24 h) in INS1 insulin-secreting cells [23]. Loss of SK1
was shown to predispose to diabetes development via promotion of beta-cell death in diet-
induced obese mice [39]. Pharmacological suppression of SK1 in INS1 cells was associated
with acceleration of PA toxicity, while overexpression of SK1 protected beta-cells against
PA-mediated apoptosis [23]. The protective effect of SK1 overexpression was related
to the intracellular action of S1P and correlated with decreased levels of proapoptotic
ceramides [23]. In contrast, a negative role of SK2 was described in PA-treated rodent
beta-cells and in a mouse model of T2DM [40,41]. This toxic effect was related to shuttling
of SK2 from the nucleus to the cytoplasm and correlated with mitochondrial cell death [41].

Thus, an accumulating body of evidence indicates that the biosynthesis of S1P may be
crucially involved in the sensitivity of beta-cells to PA. So far, the role of S1P degradation
capacity in the toxic effects of FFAs in beta-cells has not been addressed. Therefore, in
the present study we undertook the question of whether SPL may be engaged in the
regulation of beta-cell sensitivity to FFAs. We demonstrate that SPL overexpression boosts
lipotoxicity in rodent beta-cells and show that the significantly higher SPL expression in
human beta-cells correlates with their broad-range sensitivity to FFAs.
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2. Results
2.1. SPL Overexpression in Insulin-Secreting INS1E Cells Downregulates Intracellular S1P

To address the importance of a high S1P degradation capacity and SPL for FFA effects
in beta-cells we chose rat insulin-secreting INS1E cells, which are an established, robust
model for studies of molecular mechanisms underlying the effects of various diabetogenic
substances, including FFAs. We formerly showed that the expression of SPL in INS1E cells
very closely resembles the expression of SPL in primary rat islets [26]. Comparing to other
tissues, SPL expression is in a medium–low range, which makes these cells a good model
for SPL overexpression [26]. By means of a lipofectamine-mediated stable transfection
we generated INS1E cells overexpressing human SPL tagged with GFP, enabling easy
tracking of overexpression stability during routine cell culture (Figure 1). The expression
of SPL was significantly elevated, as revealed by measurements of mRNA and protein
levels (Figure 1). SPL overexpression resulted in a strong decrease in S1P concentration by
around 80% as compared to INS1E-ctr cells (Figure 1), demonstrating that the SPL-GFP
was enzymatically active.
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Figure 1. Overexpression of human SPL in rat INS1E insulin-secreting cells. INS1E cells were
stably transfected with the pcDNA3-huSPL-GFP construct using lipofectamine. Positive clones
were selected by resistance to G418. Confirmation of SPL expression level was performed on the
mRNA (real-time PCR) and protein levels (Western blot using an antibody enabling detection of
rat and human SPL) as well as by measurements of intracellular S1P by ESI-LC–MS/MS (S1P in
INS1E-control cells was set as 100%). Shown are MEANS ± SEM from 4 independent samples. t-test,
*** p < 0.001 vs. INS1E-control cells. The magnitude of SPL overexpression was regularly checked
during the entire time of cell culture. Visible are weak rat SPL protein bands of 63 kDa and a strong
band of human SPL-GFP. Beta-actin was used as a loading control (ACTB).

2.2. SPL Overexpression Sensitizes Insulin-Secreting INS1E Cells to FFA-Mediated Viability Loss

To study the influence of SPL overexpression on the susceptibility of INS1E cells to
FFAs we incubated cells for 24 h with 500 µM PA, 500 µM OA or with a combination of
PA + OA (each at the concentration of 500 µM). This concentration was chosen based on
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our earlier studies and concentration-dependency experiments [4,14,15]. Cell viability
was estimated using a MTT assay, the results of which correlate with cellular metabolic
activity and which is commonly used as an indicator of cell viability, proliferation and
cytotoxicity [42]. A 24 h exposure to PA resulted in a 30% decrease in cell viability in INS1E-
ctr cells (Figure 2). OA did not induce a significant drop in cell viability and prevented
PA-induced cell viability loss in INS1E-ctr cells (Figure 2). Interestingly, overexpression of
SPL strongly potentiated PA-mediated cell viability loss (Figure 2). Moreover, in INS1E-SPL
cells, incubation with OA resulted in a significant cell viability decrease and the protective
effect of OA on PA-toxicity was lost (Figure 2).
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Figure 2. Effects of SPL overexpression and free fatty acids on cell viability in rat INS1E insulin-
secreting cells. INS1E cells were incubated in the absence or presence of 500 µM PA, OA or a
combination of PA and OA (500 µM of each) for 24 h. Thereafter, cell viability was measured by MTT
assay. Shown are MEANS ± SEM from n = 6 independent experiments; each condition was measured
in triplicate. ANOVA followed by Bonferroni. ** p < 0.01, *** p < 0.001 vs. untreated, # p < 0.05 vs.
INS1E-ctr cells treated in the same way.

2.3. SPL Overexpression Potentiates FFA-Mediated Proliferation Inhibition

Next, we analyzed the effects of SPL overexpression on the proliferation rate of INS1E
cells exposed to FFAs. In INS1E-ctr cells we observed a significantly lower incorporation
rate of BrdU, indicating a slower proliferative capacity (Figure 3). Again, OA alone or
in combination with PA was not associated with any deleterious effect regarding cell
proliferation (Figure 3). This was in contrast to SPL-overexpressing INS1E cells, which
were characterized by a significantly stronger inhibition of proliferation induced by PA
and a decrease of proliferation in response to OA or PA + OA (Figure 3).
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Figure 3. Effects of SPL overexpression and free fatty acids on proliferation rates in rat INS1E
insulin-secreting cells. INS1E cells were incubated in the absence or presence of 500 µM PA, OA or a
combination of PA and OA (500 µM of each) or 24 h. Thereafter, proliferation rate was estimated by
BrdU incorporation. Shown are MEANS ± SEM from n = 6 independent experiments; each condition
was measured in triplicate. ANOVA followed by Bonferroni, ** p < 0.01, *** p < 0.001 vs. untreated,
# p < 0.05 vs. control cells treated in the same way.
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2.4. SPL Overexpression Potentiates FFA-Mediated Oxidative Stress

FFA-mediated toxicity in pancreatic beta-cells has been shown to be associated with
an increased generation of reactive oxygen species (ROS), particularly in peroxisomes and
in the cytoplasmic compartment [4,15,43]. We estimated oxidative stress using a robust
DCFDA-based assay, which enables detection of changes in overall ROS generation. In
line with earlier findings, we observed a significant induction of oxidative stress in INS1E-
ctr cells exposed to PA, but not to OA (Figure 4). Interestingly, SPL overexpression was
associated with a significantly stronger induction of ROS generation in PA-treated cells
as compared to INS1E-ctr cells (Figure 4). Similarly, incubation with OA resulted in an
increased ROS generation in INS1E-SPL cells (Figure 4).
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secreting cells. INS1E cells were incubated in the absence or presence of 500 µM PA, OA or a
combination of PA and OA (500 µM of each) for 24 h. Thereafter, oxidative stress was estimated
by DCFDA oxidation rate. Shown are MEANS ± SEM from n = 6 independent experiments; each
condition was measured in triplicate. ANOVA followed by Bonferroni, ** p < 0.01, *** p < 0.001 vs.
untreated, # p < 0.05 vs. INS1E-ctr cells treated in the same way.

2.5. SPL Overexpression Regulates the ER Stress Response under PA Challenge

Elevated concentrations of FFAs have been shown to induce the ER stress response
in beta-cells [7,23,44–46], which has serious consequences for beta-cell function and fate.
We analyzed the gene expression of two ER stress markers, namely the key UPR signaling
activator Ire1 and the crucial transcription factor mediating cell death Chop. Previously,
it has been demonstrated that in rat INS1E cells PA is a particularly strong inducer of
Ire1 and Chop expression [44], and these findings were confirmed in our experiments
(Figure 5). SPL overexpression resulted in a lower expression of Ire1 (Figure 5a). The
magnitude of PA-mediated upregulation of Ire1 expression was stronger in INS1E-SPL cells
as compared to INS1E-ctr cells (Figure 5a). The basal Chop expression was not affected by
SPL overexpression, but the PA-mediated induction of Chop was potentiated (Figure 5b).
Thus, SPL overexpression may be involved in the regulation of the gene expression of ER
stress markers in beta-cells.

2.6. SPL Overexpression Regulates the Expression of Mitochondrial Chaperones in Response
to FFAs

Mitochondria are the site of beta-oxidation of FFAs, ROS generation and ATP biosyn-
thesis. Mitochondrial stress has been well documented in beta-cells during T2DM devel-
opment [6,10]. In our present study, we analyzed the effects of SPL overexpression upon
FFA exposure on the expression of two mitochondrial chaperones that have been shown to
participate in oxidative stress, ATP synthesis regulation and mitochondrial morphology.
First, we analyzed the expression of prohibitin 2 (Phb2), an inner mitochondrial mem-
brane protein that is involved in the regulation of mitophagy and ATP biosynthesis [47,48].
Confirming our earlier observations [26] we observed a higher basal expression of Phb2
in INS1E-SPL cells as compared to INS1E-ctr cells (Figure 6a). In control cells, incubation
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with PA led to a small reduction in Phb2 expression, while OA significantly stimulated
mRNA expression of Phb2 (Figure 6a)—in line with a protective effect of OA. FFAs did not
modulate the gene expression of Phb2 in INS1E-SPL cells (Figure 6a).
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Next, we estimated the effects of FFAs on the gene expression of mitofusin 2 (Mnf2), a
mitochondrial protein essential for mitochondrial fusion and maintenance of mitochondrial
morphology [49]. Incubation with OA resulted in a significant increase of Mnf2 expression
in INS1E-ctr cells, but not in INS1E-SPL cells (Figure 6b). INS1E-SPL cells were charac-
terized by a lower Mnf2 gene expression level than INS1E-ctr cells (Figure 6b). Thus, SPL
overexpression may regulate the expression of mitochondrial chaperones in response to
FFAs in beta-cells.
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2.7. SPL Overexpression Inhibits Lipid Droplet Formation

Lipid droplets (LDs) are storage units for various lipids, including ceramides [50,51].
The formation of LDs has been shown to be induced by unsaturated FFAs in beta-cells [52]
and some studies indicate its protective role against saturated FFA-mediated toxicity [53].
To address the question of whether an observed potentiation of FFA toxicity by SPL
overexpression may be related to disturbances in lipid droplet formation, we analyzed
LD generation by Oil Red O staining and by gene expression measurements of perilipin 2
(Plin2), a protein highly expressed in LDs and involved in their biosynthesis [51,54,55].
As expected, we observed a significant, strong induction of LD formation in response
to OA in INS1E-ctr cells, as shown by an increased ratio of LD area/total cell area and
by the presence of multiple LD puncta in cells (Figure 7a,b). These observations went
in line with a stimulation of Plin2 expression in OA-treated INS1E-ctr cells (Figure 7c).
Interestingly, we detected a significantly lower number of LDs in INS1E-SPL cells as
compared to INS1E-control cells (Figure 7a,b). Consistent with this finding, the expression
of Plin2 was significantly lower in INS1E-SPL cells in comparison to INS1E-ctr cells and was
only slightly induced by OA (Figure 7c). Thus, changes in intracellular S1P concentration
may be involved in the regulation of lipid droplet formation in beta-cells.
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images were analyzed with xCellence Rt software. The fluorescence of lipid droplets is shown in relation to the total cell
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Shown in (c) is the mRNA expression of Plin2. RNA was isolated, cDNA was synthetized and real-time PCR was performed.
Shown are MEANS ± SEM from n = 4–6 independent experiments; each condition was measured in triplicate. ANOVA
followed by Bonferroni, * p < 0.05, ** p < 0.01, *** p < 0.001 vs. untreated, # p < 0.05 vs. INS1E-ctr cells treated in the
same way.
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2.8. SPL Knockdown Protects Human EndoC-βH1 Cells from FFA-Mediated Toxicity

Our results strongly suggest that SPL might be involved in the sensitivity of beta-
cells to FFAs. It is, meanwhile, well established that human beta-cells exhibit divergent
responses to FFAs and their toxic effects [3,7,9,14,15,56] compared to rodent beta-cells.
Importantly, monounsaturated FFAs (such as OA) that protect rodent insulin-secreting
cells against saturated FFA-mediated toxicity (such as PA) induce apoptosis in human beta-
cells [13]. To address the question of whether SPL may be involved in toxic effects of FFAs
in human beta-cells, we used a well characterized human EndoC-βH1 beta-cell line, which
is very close in phenotype to native adult human beta-cells [57,58]. Using an antibody that
specifically detects rodent and human SPL protein, we analyzed the expression of SPL
in rat insulin-secreting INS1E cells and in human EndoC-βH1 beta-cells (Figure 8a). We
observed that human beta-cells express SPL on a significantly higher protein level than
rat insulin-secreting INS1E cells (Figure 8a). In the next step, we determined whether
suppression of SPL in human EndoC-βH1 beta-cells may affect the susceptibility of these
cells to FFAs. We transiently transfected human EndoC-βH1 beta-cells either with a control,
non-targeting siRNA or with a validated Silencer®Select RNAi against human SPL, and
verified the optimal conditions for the most effective suppression of SPL (Figure 8a). For
the analysis of FFA-induced apoptosis we used cells 72 h after transfection with 80 nM
Silencer®Select RNAi, which resulted in >80% reduction of SPL protein expression and
was characterized by the lowest level of efficiency variability (Figure 8a).
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EndoC-βH1 beta-cells were transiently transfected with either control siRNA (no specific target, siQ) or with Silencer®Select
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best conditions for efficient SPL silencing. All experimental samples and controls were run on the same blot image. A
representative blot of 2 independent experiments and the densitometry analysis of both experiments (as % of siQ-treated
cells) are shown; (b) For subsequent experiments on the role of SPL knockdown on FFA-mediated apoptosis induction,
EndoC-βH1 beta-cells were transfected with 80 nM siRNA and 72 h post-transfection incubated in the absence or presence of
500 µM PA, OA or a combination of PA and OA for 24 h. Thereafter, caspase-3/7 activation was measured by caspase3/7-Glo
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Exposure of control EndoC-βH1-siQ beta-cells to FFA-induced caspase 3/7 activation
(Figure 8b). PA (500 µM) increased caspase-3/7 activation by approximately 150%, while
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OA used at the same concentration elevated it by nearly 200% (Figure 8b). No additive
effect of FFAs when used in combination was observed (Figure 8b). Strikingly, silencing
of SPL prevented PA-mediated caspase-3/7 activation in EndoC-βH1-siSPL beta-cells
(Figure 8b). Moreover, the OA-induced caspase-3/7 activation was significantly blunted
by SPL knockdown (Figure 8b). Consequently, caspase 3/7 activation in response to
PA + OA was also significantly reduced in EndoC-βH1-siSPL beta-cells (Figure 8b). Thus,
SPL silencing prevented FFA-mediated caspase-3/7 activation in human beta-cells.

3. Discussion

The rising burden of T2DM is a serious concern for healthcare systems worldwide [1,2].
T2DM is preceded by the prediabetes state, coupled with glucose intolerance, systemic
inflammation and hyperlipidemia [1,2]. Elevated serum concentrations of FFAs have been
associated with pancreatic beta-cell dysfunction and impaired glucose-stimulated insulin
secretion [3,12,59]. Chronic exposure to high concentrations of FFAs was shown to stim-
ulate toxic effects in beta-cells—a phenomenon called lipotoxicity [1–3,6,12]. So far, the
mechanisms of lipotoxicity in pancreatic beta-cells have been extensively studiedmainly in
rodent insulin-secreting beta-cell lines and islets due to a scarce supply of human islets.
Numerous groups have demonstrated that toxic effects of FFAs in beta-cells involve an
induction of oxidative stress, activation of ER stress and mitochondrial dysfunction [3,6–12].
The generation of the human EndoC-βH1 beta-cell line [57] has enabled studies on the
specific effects of various FFAs in human beta-cells [13,14,56,60,61]. These studies con-
firmed and extended the observations gained from human islets, which demonstrated
that human beta-cells are vulnerable to a variety of FFAs, including the most abundant
monounsaturated FA: oleic acid [13,14,56]—which in rodent beta-cells exerts protective
effects against toxic saturated FFAs [15,62]. The underlying mechanisms of lipotoxicity
in human beta-cells remain unclear. Recently, an important role of SCD1 as a gatekeeper
of human beta-cell phenotype and lipotoxicity has been described [9]. SCD1 is an ER-
localized enzyme, which uses saturated palmitic acid (PA) to produce the monounsaturated
palmitoleic acid [63], and as such, SCD1 could downregulate the intracellular pool of PA
available for other biosynthetic or harmful metabolic pathways. However, a diminished
islet expression of SCD1 has been associated with T2DM development and it is believed
that this reduced SCD1 expression may render beta-cells more susceptible to PA-induced
ER stress and apoptosis [9,64].

Palmitate is a main substrate for biosynthesis of sphingolipids. Remarkable changes
in SL serum and tissue profiles have been described in T2DM patients [35,65], and SLs,
particularly ceramides, are believed to be crucially involved in the development of insulin
resistance and T2DM as well as beta-cell dysfunction [5–7,11,18,21–23,34,35,39–41,66].

Several groups studied the role of intracellular S1P in beta-cells by manipulation of
the expression level of two S1P-generating enzymes: SK1 and SK2. Rodent pancreatic
beta-cells are characterized by a higher expression level of SK2 than of SK1 [23,26]. The
effects of upregulation of intracellular S1P generation capacity seem to depend on the site
of S1P production. The beta-cell protective effect was observed by overexpression of SK1,
which generates S1P at the plasma membrane and by ER-targeted SK1 overexpression [23].
The antiapoptotic effect of SK1 overexpression involves the inhibition of PA-induced
ceramide synthesis [23]. A pharmacological inhibition of SK1 accelerated PA-induced
cell death [23]. Additionally, loss of SK1 was shown to promote the onset of diabetes by
accelerating beta-cell death in diet-induced obese mice [39]. In contrast, overexpression of
SK2 has been associated with acceleration of PA toxicity [41], while silencing SK2 expression
downregulated PA-stimulated cell death in INS1E cells and improved glucose homeostasis
in a T2DM mouse model [41]. Thus, data gained from studying the role of SKs indicate
that the intracellular concentration and the site of generation of S1P determine its effects
on lipotoxic beta-cell death.

So far, the role of the S1P-degrading enzyme SPL has not yet been studied in context
of lipotoxicity in beta-cells. SPL is the only exit point in the SL pathway and as such,
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controls not only the availability of S1P for S1P-dependent biological processes, but also
regulates the flow of SL intermediates into phospholipid pathway [67]—thereby serving as
a gatekeeper of lipid metabolic flow [67–70]. Products of the SPL reaction are involved in
cell fate by distinct mechanisms; accumulation of hexadecenal has been shown to induce
DNA breakage [30,71] and mitochondrial fragmentation [72], while phosphoethanolamine
production has been shown to regulate accumulation of aggregate-prone proteins such as
amyloid beta precursor polypeptide in neurons [73,74].

In our present study, we undertook characterization of the importance of SPL for beta-
cell fate under lipotoxic conditions. Our former study revealed that the expression levels
of SPL in rodent beta-cells is relatively low as compared to the expression of sphingosine
kinases—particularly that of SK2 [26]. Therefore, rodent beta-cells serve as an excellent
model for studying the effects of SPL overexpression on sensitivity to FFAs. Because SPL
overexpression resulted in an approximately 80% decrease in S1P content, most of the
observed effects are likely linked to its enzymatic activity and a lower biological availability
of S1P. However, it cannot be excluded that increased SPL protein expression per se could
also contribute.

The current study revealed an enhanced cell viability loss and proliferation inhibition
in INS1E-SPL cells exposed to PA, which went along with a stronger induction of oxidative
stress. Moreover, we observed that SPL overexpression also elicited toxic effects of OA,
which is nontoxic in control INS1E cells [15]. The protection of OA against PA-induced cell
death and ROS formation was lost in INS1E-SPL cells. The unexpected sensitization to OA
observed in SPL-overexpressing cells could be related to the observed dramatic loss of LD
formation in INS1E-SPL cells. LDs are storage units, mainly for neutral lipids especially
triglycerides but also for proapoptotic ceramides [50,51,75]. Increased LD formation in
liver parenchyma was described in SPL knockout mice [67]. The formation of LD has been
shown to be induced by unsaturated FFAs in beta-cells and several studies have indicated
their protective role against saturated FFA-mediated toxicity [53], although no consensus
exists on their cytoprotective role in various models of beta-cells. In the present study,
there was a correlation between enhanced FFA toxicity and the dramatically reduced LD
area in INS1E-SPL cells, which went along with decreased expression of Plin2. Though the
exact mechanism is unclear, former studies in other cell types such as hepatocytes indicate
that SLs can influence LD formation [50,76]. Plin2-coated lipid droplets were shown
before to inhibit FFA availability for mitochondria metabolism [77]. It could therefore
be possible that the reduced Plin2 expression and concomitant reduced LD formation
under exposure to high concentrations of FFAs may lead to a higher availability of FFAs
for mitochondrial metabolism, which could be associated with changes in the expression
of mitochondrial chaperones and enhanced ROS formation in SPL-overexpressing cells.
This reduced LD formation could also result in pathological intracellular, ectopic fat
accumulation, as observed in other cell types [50,51,75]. Such an accumulation of FFAs—
especially of longer-chain FFAs—could also be involved in the observed increase in ROS
generation in INS1E-SPL, since long-chain FFA metabolism in peroxisomes was linked
with FFA-induced oxidative stress in beta-cells [4].

In line with increased toxicity, we observed a potentiated expression pattern of Ire1
and Chop in response to PA in INS1E-SPL cells as compared to control cells. At variance
with the induction of viability loss, OA failed to induce Ire1 or Chop expression in INS1E-
SPL cells, in a similar way to control cells—which indicates that sensitization to OA in
INS1E-SPL cells was rather not related to induction of ER stress.

Additionally to activation of ER stress, we observed alterations in the expression of
mitochondrial chaperons in FFA-treated INS1E-SPL cells. Pancreatic beta-cell mitochondria
are characterized by a strong expression of manganese superoxide dismutase (MnSOD),
but inexplicably are very poorly equipped with an enzymatic defense system against
hydrogen peroxide—which makes this organelle particularly vulnerable to stress [78].
Earlier studies from various cell types have demonstrated that various SLs can regulate
mitochondrial function [72,79,80]. Our current observations in INS1E-SPL cells point to the
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role of intracellular S1P concentration for proper beta-cell mitochondrial integrity under
lipotoxic conditions. We observed a significantly lower expression of mitofusin 2 (Mnf2) in
INS1E-SPL cells. A similar observation has been made in mouse MIN6 beta-cells treated
with a SK inhibitor, which resulted in a reduced Mnf1 expression [81]. Mnf2 is the predomi-
nant isoform of mitofusin in rodent beta-cells and has been shown to control mitochondrial
morphology, fusion and mitophagy [49]. However, the exact mechanism by which intracel-
lular S1P and SPL expression may be involved in the regulation of mitochondrial function
in beta-cells may be more complex, since SPL overexpression significantly upregulated
the expression of the mitochondrial chaperone Phb2 in our study, while SK2 suppression
has been associated with decreased prohibitin expression in MIN6 beta-cells [81]. PHB2 is
a highly conserved mitochondrial protein, which regulates mitochondrial assembly and
ATP biosynthesis, and has been shown to be an important modulator of glucose-induced
insulin secretion [47,48]. The intramitochondrial interaction of SK2-derived S1P with PHB2
has been shown to be important for cytochrome-c oxidase assembly and mitochondrial
respiration [82]. Thus, SPL may be an important element in the regulation of mitochondrial
network and function in beta-cells under lipotoxic stress. One of the possible involved
mechanisms could rely on an increased hexadecenal generation in SPL-overexpressing
cells exposed to PA, as hexadecenal accumulation has been shown to diminish oxygen
consumption rates and increase ROS production and mitochondrial fragmentation in
yeast [72]. Another mechanism involved in SPL overexpression-mediated effects could
be rearrangements of mitochondrial CerS6-derived C-16:0 sphingolipids that have been
recently shown to bind the mitochondrial fission factor and thereby induce mitochondrial
fragmentation and stress [80].

Finally, we observed that in contrast to rodent beta-cells SPL is abundantly expressed
in human EndoC-βH1 beta-cells. Interestingly, this observation correlated with distinct
susceptibility profiles to FFA-mediated toxicity of rodent vs. human beta-cells, respec-
tively [9,13,14,56]. To determine whether the high expression of SPL is indeed involved in
the high sensitivity of human beta-cells to FFAs, we suppressed SPL expression in human
EndoC-βH1 beta-cells and exposed these cells to FFAs. Strikingly, we observed a strong,
almost complete prevention of apoptosis induction in SPL-suppressing EndoC-βH1 beta-
cells exposed to PA, OA or a combination of both FFAs. These findings strongly suggest
that SPL may be crucially involved in the vulnerability of human beta-cells to FFAs. The
SPL expression in beta-cells could be also influenced by various environmental factors,
such as sex hormones. Indeed, a significant role of estrogens in sphingolipid signaling
in beta-cells as well as in the prevention of accumulation of misfolded proinsulin, ER
stress, mitochondrial damage and in regulation of beta-cell metabolism has been demon-
strated [34,83,84]. Low estrogen levels in (pre)menopausal women could lead to increased
SPL expression and potentiation of FFA-mediated beta-cell failure, as a lower SPL expres-
sion has been observed in (phyto)estrogen-treated breast cancer cells [85]. Thus, enhanced
SPL expression in beta-cells could participate in the well-known high susceptibility of
(pre)menopausal women to T2DM development [86].

Though further studies are needed to establish the role of SPL in long-term effects of
FFAs in human beta-cells, particularly under hyperglycemic conditions, inhibition of SPL
might represent a promising pharmacological tool for future T2DM therapeutic approaches
to protect beta-cells under lipotoxic stress.

4. Materials and Methods
4.1. Chemicals

BiothermTM Taq polymerase was from GeneCraft (Münster, Germany). Hybond
N nylon membranes and the ECL detection system were from Amersham Biosciences
(Freiburg, Germany). All other reagents were from Sigma Chemicals (Munich, Germany).
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4.2. Cell Culture and FFA Incubations

Rat insulin-secreting INS1E cells (a kind gift of Prof. C.Wollheim, Geneva, Switzerland)
and human EndoC-βH1 beta-cells (ENDOCELLS SARL, Paris, France) were cultured
in a humidified atmosphere at 37 ◦C and 5% CO2. The cell lines used were routinely
checked for mycoplasma and were free from mycoplasma contamination. INS1E cells
were cultured in RPMI 1640 medium supplemented with 10 mM glucose, 10% fetal calf
serum (FCS), penicillin and streptomycin, 10 mM Hepes (Serva, Heidelberg, Germany),
2 mM glutamine, 1 mM sodium-pyruvate (Sigma-Aldrich, Munich, Germany), and 50 µM
of 2-mercaptoethanol [26]. EndoC-βH1 beta-cells were cultured onto coated dishes or
plates (fibronectin and ECM) in a DMEM cell culture medium (5.5 mM glucose) without
serum, but supplemented with 2% BSA, penicillin and streptomycin, 10 µM nicotinamide,
2.5 µg/mL transferrin, 6.7 ng/mL sodium selenite and 50 µM of 2-mercaptoethanol as
described earlier [57,58]. For tests, cells were washed with PBS, followed by incubation
with FFA (palmitate, oleate or in combination) at a concentration of 500 µM for 24 h. FFA
incubations were performed in the presence of 1% FCS in the case of INS1E cells and under
binding of FFA to BSA as described earlier [13–15,52]. The stock solutions of PA and of OA
(50 mM) were freshly prepared using 90% ethanol as a solvent at 62 ◦C. The ratio between
NEFA and BSA was 0.5 mM NEFA to 1% BSA.

4.3. Overexpression of Human SPL in Rat Insulin-Secreting INS1E Cells

The human SPL cDNA (pcDNA3.1-hSPLvector) [71] was stably overexpressed in
insulin-secreting INS1E cells using the Lipofectamine™ transfection method. Positive
clones were selected based on G418 and SPL expression levels confirmed by real-time PCR
measurements, Western blotting and S1P measurements.

4.4. Suppression of Human SPL in EndoC-βH Beta-Cells

EndoC-βH1 beta-cells were transiently transfected with validated Silencer®Select
RNAi against human SPL (assay S16965, ThermoFisher Scientific, Braunschweig, Germany)
using Lipofectamine RNAiMax in OptiMEM medium. Silencer®Select RNAi were func-
tionally tested and guaranteed a superior > 70% knockdown of the the target gene without
off-target effects. 24 h after transfection cell culture the medium was changed. We tested 60
and 80 nM concentration of siRNA at two different times after transfection, namely 48 h
and 72 h. Higher siRNA concentration and longer time post-transfection were associated
with a stronger silencing effect, as shown in Figure 8a. This condition was used in the
experiments analyzing the effects of FFAs on apoptosis induction.

4.5. Detection of S1P by ESI-LC–MS/MS

Lipids were extracted from cell pellets as described earlier [87]. Cell samples were
used directly after adding 10 µL of the internal standard 10 µM C17-S1P (Avanti, Alabaster,
AL, USA). Volumes of 300 µL 18.5% HCl, 1 mL methanol, and 2 mL chloroform were
added to the glass centrifuge tubes and vortexed for 10 min. After centrifugation at
1900× g for 3 min, the lower chloroform phases were transferred into new centrifuge
tubes and 2 mL chloroform added to the remaining aqueous phase. The vortexing and
centrifugation steps were repeated, and the chloroform phases were combined. After
evaporation of the solvent under vacuum for 45 min at 60 ◦C in a vacuum rotator, the
dried samples were re-dissolved in 100 µL of a mixture containing 80% methanol and
20% chloroform and transferred into autosampler tubes and analysed with an LC–MS/MS
QTrap triple quadrupole mass spectrometer (AB Sciex, Framingham, USA) coupled to a
Hewlett Packard/Agilent Series1100 HPLC (Santa Clara, USA). Molecules were ionized
by electrospray ionization (ESI) in the positive mode. The mass transitions for analysis
in multiple reaction monitoring (MRM) mode were: S1P m/z 380/264 and C17-S1P m/z
366/250. Data analysis was done using Analyst 1.6.2 (AB Sciex, Framingham, MA, USA).
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4.6. Viability Assay

Cells were seeded onto 96-well plates at a concentration of 30,000 cells/well and
cultured for 48 h. Thereafter, cells were treated with FFAs for 24 h and cell viability was
determined by a microplate-based MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide, Serva, Heidelberg, Germany) as previously described [59]. The
MTT assay is based on the conversion of MTT into formazan crystals by living cells, and
detects total mitochondrial activity, which correlates with the number of cells for most
cell populations.

4.7. Proliferation Assay

The proliferation rate of INS1E cells was quantified by a colorimetric method using
the Cell Proliferation BrdU–ELISA (Roche, Mannheim, Germany). Cells were seeded at a
concentration of 40,000 cells/well in 96-well microtiter plates and allowed to attach for 24 h.
Thereafter, cells were incubated with the chemical compounds for 24 h. The proliferation
assay was performed as described [26]. Absorbance was measured at 450 nm (reference
wavelength 650 nm). Data were expressed as a percentage of untreated cells.

4.8. Detection of Caspase-3/7 Activation

After knockdown of SPL in EndoC-βH1 beta-cells, sensitivity to FFA-induced apop-
tosis was measured 24 h after FFA addition. The activation of the effector caspase-3/7
was analyzed by a 96-well-based chemiluminescence Caspase-3/7-Glo assay (Promega,
Walldorf, Germany) according to the manufacturer’s protocol.

4.9. RNA Isolation, cDNA Synthesis and Real-Time RT-PCR

Total RNA from insulin-secreting cellswas obtained using an RNeasy Kit (Qiagen,
Hilden, Germany). The quality of the total RNA was verified by agarose gel electrophoresis.
RNA was quantified spectrophotometrically at 260/280 nm. Thereafter, 2 µg of RNA
were reverse transcribed into cDNA using a random hexamer primer (Life Technologies,
Carlsbad, CA, USA) and RevertAid H Minus M-MuLV reverse transcriptase (Thermo
Fisher Scientific, Braunschweig, Germany). QuantiTect SYBR GreenTM technology (Qiagen),
which uses a fluorescent dye that binds only double-stranded DNA, was employed. The
reactions were performed on a ViiA7 real-time PCR system (Life Technologies) with the
following protocol: 50 ◦C for 2 min, 95 ◦C for 10 min, and 40 cycles comprising a melting
step at 95 ◦C for 15 s, an annealing step at 62 ◦C for 60 s and an extension step at 72 ◦C for
30 s. The quality of reactions was controlled by analysis of melting curves. Each sample
was amplified in triplicate. Data were analyzed using the 2−∆∆Ct method and normalized
to the reference gene beta-actin. The primer sequences are given in Table 1. Primers were
purchased from Microsynth (Balgach, Switzerland) and the efficiency was >90% for each
primer set.

Table 1. Primers used in real-time RT-PCR analysis.

Gene FW REV

Rat B-Act GAACACGGCATTGTAACCAACTGG GGCCACACGCAGCTCATTGTA
Rat Chop CCAGCAGAGGTCACAAGCAC CGCACTGACCACTCTGTTTC
Rat Ire1 TTCTACATCTGGCAGCGGGAGG TTCCACTTGGTGATGCGCCC

Rat Mnf2 TCCAAGGTCAGGGGAATCAGCG TGGTGGTGTGGCCAATCCCA
Rat Phb2 AAGGAGTCATGGTGCCAAA GTGTCCGGCATCCACG
Rat Plin2 TCGTCTCTCAGCTCTCCTGT TAGGTGGAGCTCACCAAGGG

Human SPL ACGGCCTGGTGGCATTA CTGACAATTGGGGATTCCC
Human B-Act ATGGATGATGATATCGCCGC TTCTGACCCATGCCCACCA
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4.10. Western Blot Analysis

Cells were homogenized in ice-cold PBS containing protease inhibitors (Roche) us-
ing short bursts (Braun-Sonic 125 Homogenizer, Quigley-Rochester, Rochester, NY, USA).
Protein content was determined by the BCA assay (Pierce). For Western blotting, 40 µg of
total protein was resolved by SDS polyacrylamide gel electrophoresis and then electroblot-
ted onto nitrocellulose membranes (GE Healthcare, Buckinghamshire, UK). Nonspecific
binding sites of the membranes were blocked with 5% nonfat dry milk for 1 h at room
temperature. The membranes were incubated with specific primary antibodies overnight
at 4 ◦C. Immunodetection was performed using specific primary antibodies (goat anti-SP-
lyase T-20 #sc-51431 diluted 1:500, Lot. No A1808 Santa Cruz, goat anti-actin C4 #sc47778,
Santa Cruz, diluted at 1:1000) as described [26]. The excess of primary antibody was
removed by three washing steps with washing buffer (PBS, 0.1% Tween 20, 0.1% BSA).
Subsequently, the membranes were incubated with peroxidase-labeled secondary anti-goat
antibodies at a dilution of 1:20,000 at room temperature for 1 h. Protein bands were visual-
ized by chemiluminescence using the ECL detection system (GE Healthcare). As a loading
control, the expression of β-actin was analyzed after stripping the blots with Re-blot Plus
solution (Merck-Millipore, Darmstadt, Germany) according to the manufacturer’s manual.
Pictures were captured by the INTASR chemiluminescence detection system (Intas Science
Imaging Instruments, Göttingen, Germany). The intensity of bands was quantified through
densitometry with the Gel-Pro Analyzer 4.0 software (Media Cybernetics, Silver Spring,
MD, USA).

4.11. Reactive Species Detection by DCF Fluorescence

To detect overall oxidative and nitrosative stress, cells were seeded onto 96-well coated
black plates. Before addition of test compounds, cells were pre-incubated with 10 µM
dichlorodihydrofluorescein diacetate DCFDA-H2 (Invitrogen, Karlsruhe, Germany) for
40 min at 37 ◦C. Plates were analyzed at 480/520 nm excitation/emission using the fluo-
rescence reader Victor2 1420 Multilabel Counter (Perkin Elmer, Fremont, CA, USA). Each
condition was analyzed at least in duplicate. Data were expressed as a % of untreated cells.

4.12. Lipid Droplet Detection

INS1E cells were exposed to 500 µM of PA or OA for 24 h. Cells were trypsinized
and fixed in 1% paraformaldehyde for 15 min at room temperature. Thereafter, cells were
stained with Oil Red O solution (Sigma-Aldrich, Munich, Germany) followed by DAPI
staining, and washed twice with PBS (phosphate buffered saline). Lipid droplet formation
was analyzed using a CellR/Olympus IX81 inverted microscope system (40× objective,
Olympus, Hamburg, Germany). The area within the cells was quantified by the use of
Olympus xCellence Rt software (Olympus, Hamburg, Germany) at 546 nm excitation
and 580 nm emission. For each conditions five to seven randomly selected images, (each
containing 30 to 100 cells) were used to quantify the proportion of the lipid droplet area to
the total cell area with the phase analysis module of the xCellence Rt software.

4.13. Data Analysis

All data are expressed as MEANS ± SEM. Statistical analyses were performed using
the Prism analysis software (Graphpad, San Diego, CA) using t-test or ANOVA followed
by Bonferroni, with p < 0.05 considered statistically significant.
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