
ARTICLE ADDENDUM

Glycosylation of arabinogalactan-proteins essential for development
in Arabidopsis

Allan M. Showaltera and Debarati Basub

aDepartment of Environmental and Plant Biology, Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA; bDepartment of
Biology, Washington University, St. Louis, MO, USA

ARTICLE HISTORY
Received 6 April 2016
Accepted 8 April 2016

ABSTRACT
Arabinogalactan-proteins (AGPs) are ubiquitous cell wall components present throughout the plant
kingdom. They are extensively post translationally modified by conversion of proline to
hydroxyproline (Hyp) and by addition of arabinogalactan (AG) polysaccharides to Hyp residues. Two
small gene subfamilies within the CAZy GT31 family, referred to as Hyp-galactosyltransferases (Hyp-
GALTs and HPGTs), encode enzymes that specifically add galactose to AGP protein backbones as
revealed by heterologous expression of the genes coupled with an in vitro enzyme assay and by
biochemical characterization of the genetic knock-out mutants. Biochemical analysis of galt2galt5
double and hpgt1hpgt2hpgt3 triple knockout mutants revealed significant reductions in both AGP-
specific Hyp-GALT activity and b-Gal-Yariv precipitable AGPs. Further analysis of these mutants
demonstrated both overlapping and distinct pleiotropic growth and development phenotypes,
indicating the important contributions of the carbohydrate moieties toward AGP function. Current
research indicates that all 8 Hyp-GALT/HPGT genes encode enzymes that catalyze the initial step for
AGP glycosylation and that AGP glycans play essential roles in plant growth and development.
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Introduction

Arabinogalactan-proteins (AGPs) are extensively glyco-
sylated hydroxyproline (Hyp)-rich proteins found in cell
walls, plasma membranes, and extracellular secretions of
plants. They are involved in various aspects of plant
growth and development such as cell proliferation, cell
viability, cell division, reproductive development, regen-
eration of somatic embryos, abiotic stress, and cellular
signaling.1-13 AGPs are widely distributed in the plant
kingdom, being present in land plants as well as in bryo-
phytes like Physcomitrella patens, basal angiosperms,
and even in algae.14-16 AGPs also have several important
industrial and biomedical applications including a direct
food additive, a food emulsifier, a stabilizer, a sweetener,
and an immunomodulatory molecule.17

Structurally, AGPs are diverse and heterogeneous due
in part to their various protein backbones as well as the
extent and degree of AG polysaccharide addition to the
backbones. AGP protein backbones typically consist of
repetitive dipeptide motifs such as Ala-Pro, Ser-Pro,

Thr-Pro, and Val-Pro in which the Pro residues are con-
verted to Hyp.18 About 40% of the AGPs are tethered to
the plasma membrane by a glycosylphosphatidylinositol
(GPI) anchor.19,20 AGP glycans or arabinogalactans
(AGs) are characterized by the presence of a b¡1,3-galac-
tan backbone which is substituted with b¡1,6-galactan
side chains that are decorated further with arabinose, and
less frequently with fucose, rhamnose, and (methyl) glu-
curonic acid.21 UsingNMR analysis of synthetic AGP pep-
tides expressed in tobacco BY2 cells, Tan et al., however,
concluded that the AG backbone is composed of repeating
b¡1,3-galactotriose units with or without side chains,
which are connected by b¡1,6-linkages, to generate a
kinked galactan backbone.22 While debate continues over
these 2 models of AG structure, it should be noted that
based on linkage and mass spectroscopy analysis, longer
b¡1,6-galactan side chains have been reported for AGPs
from radish root, wheat flour and Arabidopsis leaf.23-25

Several glycosyltransferases (GTs) are involved in
assembling the AG chains, and these GTs likely
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coordinate and regulate the density, length and sequence
of the AG chains. Given that the sugar side chains typi-
cally account for more than 90% of the mass of AGPs,
sugars likely define the interactive molecular surface of
AGPs and govern their function. Several of the GTs for
AG biosynthesis are known and cloned; however, many
await discovery as previously reviewed.21,26 O-glycosyla-
tion of AGPs is initiated by a set of 8 Hyp-galactosyl-
transferases (Hyp-GALTs/HPGTs), which are members
of the GT31 family of the CAZy database and designated
as GALT2-6 and HPGT1-3.12,27-29 These enzymes add a
single galactose residue to Hyp residues in AGP core
proteins. Other known and cloned GTs include: one
b¡1,3-galactosyltransferase in GT31, 2 b¡1,6-galacto-
syltransferases, GALT31A and GALT29A in GT31 and
GT29 respectively, 3 b-glucuronosyltransferases,
GlcAT14A, GlcAT14B, and GlcAT14C, in GT14,34,35 2
a-fucosyltransferases, FUT4 and FUT6, in GT37, and
one b¡arabinosyltransferase, Reduced Arabinose Yariv1
or RAY1, in GT77.30-38 Several other GTs for AG biosyn-
thesis await identification and cloning, including
a–arabinosyltransferases, a–rhamnosyltransferases, and
other b-galactosyltransferases.

With regard to the 2 small gene families within GT31
that exhibit Hyp-GALT enzyme activity, which are the
focus of this addendum, some additional information is
warranted. First, the functional identity of these genes
was verified by heterologous expression of the genes cou-
pled with an in vitro enzyme assay and by biochemical
characterization of genetic knock-out mutants.12,27-29

Second, one gene family consists of 5 genes/enzymes
(GALT2-At4g21060, GALT3-At3g06440, GALT4-
At1g27120, GALT5-At1g74800, and GALT6-
At5g62620) each of which contains both a GALT
domain as well as a GALECTIN domain, while the other
family consists of 3 genes/enzymes (HPGT1-At5g53340,
HPGT2-At4g32120, and HPGT3-At2g25300), each of
which contains only a GALT domain.12,27 Third, this
paper presents the first direct comparison between mem-
bers of these 2 related gene families in terms of their bio-
chemical activity and mutant phenotypes.

Results and discussion

The importance of AGPs is reflected in their wide range
of physiological functions related to vegetative processes,
sexual reproduction, development, and signaling
throughout the plant kingdom. Given the complexity
and heterogeneity of the numerous AGPs, little is known
about the contribution of AG polysaccharides to AGP
function. Identification of the genes responsible for AGP
glycosylation and their genetic mutants, however, is
beginning to reveal such contributions.

In vitro GALT assays and functional analysis led to
the identification of 8 Hyp-GALTs within the GT31 fam-
ily.12,27,28 It is interesting that one subclade consists of 5
proteins (named GALT2-6) each with 2 protein
domains, a catalytic GALT domain and a GALECTIN
domain, whereas the other subclade consists of 3 pro-
teins (named HPGT1-3), each of which only contains a
GALT domain (Fig. 1).

Based on genotyping and phenotypic analysis of sin-
gle, double, and triple T-DNA insertion mutants for the
GALT and HPGT genes, these lines have a number of
phenotypic alterations compared to wild-type.12,27 In
particular, here we directly examined and compared the
galt2galt5 double mutant with the hpgt1hpgt2hpgt3 triple
mutant. The galt double and hpgt triple knockout
mutants displayed 43% and 70% reductions in b-Gal-
Yariv precipitable AGPs compared to wild type, respec-
tively. In addition, the double and triple mutants showed
a 31% and 18% decrease in Hyp-galactosylation activity
compared to wild type using our in vitro enzyme assay,
respectively (Fig. 2). These results indicate that both sub-
clades affect AGPs and that a greater reduction is
observed when 3 genes were knocked out as opposed to
two. However, it is not known whether this greater
reduction is due to the greater effect of the HPGT genes
or to the greater number of genes that were knocked out
(i.e., 3 versus 2). It is also interesting to note that while
both the double and triple mutants show a decrease in
Hyp-GALT activity using our in vitro assay, the decrease
is not proportional to the reductions in b-Gal-Yariv pre-
cipitable AGPs observed in these mutants. One likely
explanation for this is that HPGTs may have a different
AGP peptide substrate preference compared to the
GALTs.

The reduced AGP glycosylation and reduced Hyp-
GALT activity observed in the galt and hpgt single and
higher order mutants were also reflected in their physio-
logical phenotypes.12,27 Both the galt and the hpgt
mutants demonstrated pleiotropic effects, which were
generally subtle or non-existent in the single mutants but
were more severe in the galt double and hpgt triple
mutants. The galt mutants demonstrated reduced root
hair growth, reduced seed coat mucilage, reduced seed
set, and accelerated leaf senescence. The galt mutants
also displayed several conditional phenotypes including
impaired root growth and root tip swelling in response
to salt and sucrose; these mutants were also less sensitive
to the growth inhibitory effects of Yariv reagent in root
and pollen tubes. In contrast, while the hpgt single
mutants showed no obvious phenotypes, the hpgt triple
mutants exhibited the pleotropic phenotypes of longer
lateral roots, longer and denser root hairs, swollen root
tips, smaller leaves, shorter inflorescence stems, reduced
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fertility, and shorter siliques. Thus, while the galt and
hpgt mutant phenotypes share some similarities, there
are also some differences, which may reflect the action of
the GALTs and HPGTs on different sets of AGPs.
Regardless of these differences, these results provide clear
evidence that Hyp-linked AG polysaccharide chains of

AGPs, which are initiated by the action of the GALTs
and HPGTs, are essential for AGP function.

Finally, identification of these 8 Hyp-GALTs raises
the following questions that should be addressed in
future studies. 1. Do these 8 enzymes act on all AGPs or
only on a subset of AGPs? 2. Do these enzymes act in a

Figure 1. In silico analysis of Hyp-GALTs for AGPs. (A) Phylogenetic tree of the Arabidopsis Hyp-GALT members which act on AGPs. The
glycosyltransferase sequences were retrieved from the Carbohydrate-Active enZYmes (CAZY) database (http://www.cazy.org/GT1_eu-
karyota.html) and NCBI database. The full-length amino acid sequences of the Arabidopsis Hyp-GALTs were aligned with Clustal Omega
and the maximum parsimony tree was generated using MEGA 6.39 Numbers at the nodes indicate bootstrap values calculated for 1000
replicates (>50%). The scale bar represents 50 amino acid substitutions. (B) Protein structure of the 8 Hyp-GALT genes found in Arabi-
dopsis. Blue arrowheads indicate the position of the DXD motif, which is predicted for UDP-galactose binding. TMHMM (http://www.
cbs.dtu.dk/services/TMHMM/) was used to predict the transmembrane domain (T); Pfam domain predictions: Pf01762 identified the Gal-
actosyltransferase (GALT) domain (http://www.sanger.ac.uk/Software/Pfam/) and Pf00337 identified the Galactose-binding lectin
(GALECTIN) domain.
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complex as is apparently the case for biosynthesis of the
b¡1,6-galactan side chains by GALT31A-GALT29A?32

3. Do these enzymes have different preferences for AGP
peptide sequences? 4. Are there any other AGP-specific
Hyp-GALTs/HPGTs that remain to be identified and
characterized? Nonetheless, based upon the progress to
date, we are now beginning to understand how the Hyp-
AG polysaccharides of AGPs are made and their impor-
tant contributions to biological function.

Abbreviations

AG arabinogalactan
AGPs arabinogalactan-proteins
HPGT hydroxyproline galactosyltransferase
Hyp hydroxyproline
GALT galactosyltransferase
GTs glycosyltransferases
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