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ABSTRACT 
Current classifications (World Health Organization-HAEM5/ICC) define up to 26 molecular B-cell precursor acute lymphoblastic leuke-
mia (BCP-ALL) disease subtypes by genomic driver aberrations and corresponding gene expression signatures. Identification of driver 
aberrations by transcriptome sequencing (RNA-Seq) is well established, while systematic approaches for gene expression analysis 
are less advanced. Therefore, we developed ALLCatchR, a machine learning-based classifier using RNA-Seq gene expression data 
to allocate BCP-ALL samples to all 21 gene expression-defined molecular subtypes. Trained on n = 1869 transcriptome profiles with 
established subtype definitions (4 cohorts; 55% pediatric / 45% adult), ALLCatchR allowed subtype allocation in 3 independent hold-out 
cohorts (n = 1018; 75% pediatric / 25% adult) with 95.7% accuracy (averaged sensitivity across subtypes: 91.1% / specificity: 99.8%). 
High-confidence predictions were achieved in 83.7% of samples with 98.9% accuracy. Only 1.2% of samples remained unclassified. 
ALLCatchR outperformed existing tools and identified novel driver candidates in previously unassigned samples. Additional modules 
provided predictions of samples blast counts, patient’s sex, and immunophenotype, allowing the imputation in cases where these 
information are missing. We established a novel RNA-Seq reference of human B-lymphopoiesis using 7 FACS-sorted progenitor stages 
from healthy bone marrow donors. Implementation in ALLCatchR enabled projection of BCP-ALL samples to this trajectory. This iden-
tified shared proximity patterns of BCP-ALL subtypes to normal lymphopoiesis stages, extending immunophenotypic classifications 
with a novel framework for developmental comparisons of BCP-ALL. ALLCatchR enables RNA-Seq routine application for BCP-ALL 
diagnostics with systematic gene expression analysis for accurate subtype allocation and novel insights into underlying developmental 
trajectories.

INTRODUCTION

Improved outcomes in B-cell precursor acute lympho-
blastic leukemia (BCP-ALL)—both, in pediatric and adult 
patients—have been achieved by precise risk stratification and 
target-specific treatments. Molecular BCP-ALL subtypes and 
immunophenotype are the most important baseline prognostica-
tors for BCP-ALL besides white blood cell counts and age. They 
inform risk-adapted treatments and targeted therapies. Currently, 
the revised World Health Organization (WHO) classification of 
lymphoid neoplasms (WHO-HAEM5)1 and the International 
Consensus Classification (ICC) of Myeloid Neoplasms and 
Acute Leukemia2 have acknowledged 11 and 26 molecular-de-
fined BCP-ALL subtypes as distinct diagnostic entities, respec-
tively, including 5 provisional entities (ICC classification). A 
total of 21 of these subtypes have been characterized by dis-
tinct gene expression profiles,3–8 while the remaining subtypes2,5 
are rare (IGH::IL3) or were defined by specific sets of under-
lying genomic drivers (Ph-like: ABL class / JAK-STAT / NOS) 
or their absence (KMT2A- / ZNF384-like). This heterogeneity 
of diagnostic subtypes exceeds the capabilities of cytogenetic 
(chromosome banding analysis and FISH) and molecular genetic 
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methods (breakpoint specific PCR, multiplex ligation-dependent 
probe amplification, and SNP-array/array-CGH), which so far 
have been combined for identification of BCP-ALL subtypes. 
Transcriptome sequencing (RNA-Seq) enables identification of 
all BCP-ALL subtypes with a single method, establishing a new 
diagnostic standard. Further implementation as routine clinical 
diagnostic requires unified analysis methods. Calling of driver 
gene fusions9,10 is well established and novel approaches for the 
identification of hotspot single-nucleotide10 variants and virtual 
karyoytpes11 exist. Yet only few approaches for systematic gene 
expression analysis are currently available.12–14

Gene expression signatures represent the signaling equiva-
lent of heterogeneous genomic driver alterations, and have been 
used to define BCP-ALL subtypes. Initially, unsupervised clus-
tering or prediction analysis for microarrays were used to define 
subtype-specific gene sets resulting in considerable heterogeneity 
regarding gene set definitions and subtype allocation of individ-
ual samples.15 More recent systematic approaches for BCP-ALL 
subtype allocations have employed machine learning methods 
to train classifiers for BCP-ALL subtype allocation mainly on 
pediatric ALL datasets.12,13 Yet the optimal method still needs to 
be defined—especially for rare and difficult to classify subtypes 
and subtypes with predominance in adults. Additionally, correct 
assignment of samples, which do not fall into established sub-
type categories either due to interfering biological conditions 
(e.g., low blast count or poor RNA quality) or because these 
samples represent novel candidate subtypes, remains a challenge. 
In addition to molecular subtype definitions, gene expression 
profiles might be informative for clinical baseline parameters 
such as leukemic blast proportion, immunophenotype, or more 
detailed analysis of lymphopoiesis trajectories underlying BCP-
ALL development. However, systematic approaches and espe-
cially RNA-Seq data that link BCP-ALL subtypes to human 
B-lymphopoiesis differentiation stages are lacking.

Here, we describe ALLCatchR, a machine learning-based 
classifier pretrained for allocation of BCP-ALL gene expression 
profiles to all 21 gene expression-defined molecular subtypes 
of the WHO-HAEM5 and ICC classifications. High accuracies 
in independent validation cohorts are achieved by integrating 
machine learning and gene set-based nearest-neighbor models 
into a compound classifier. ALLCatchR infers clinical baseline 
variables such as blast proportion and patient’s sex from RNA-
Seq data and provides insights into underlying developmental 
trajectories of BCP-ALL based on our newly established refer-
ence of human B-lymphopoiesis. ALLCatchR sustains routine 
diagnostic application of RNA-Seq with systematic gene expres-
sion analysis providing subtype allocations and insights into 
underlying biology for further exploratory analysis.

MATERIALS AND METHODS

The 3532 sample BCP-ALL transcriptome reference data set
We aggregated RNA-Seq count data from n = 3532 BCP-ALL 

samples including 64.5% pediatric5–7,12 and 35.5% adult3–5,8,12 
cases combined from 6 independent datasets (Figure 1A; Suppl. 
Table S1). Excluded were samples with multiple subtype assign-
ments (n = 116), multiple representations of the same patient (n 
= 44), subtypes that are not part of WHO-HAEM5/ICC classi-
fication (low hyperdiploid, n = 51; IDH1/2, n = 4) or that are 
mainly defined by absence of a genomic driver (KMT2A-like, n = 
4; ZNF384-like, n = 5). A total of n = 421 samples were defined 
‘unassigned’ or B-other in the original studies. Subtype-defining 
genomic events were identified in >90% of cases either by RNA-
Seq (gene fusions, hotspot single-nucleotide variants, and virtual 
karyotypes) or by genomic profiling (whole genome- / whole 
exome- / gene panel-sequencing, SNP-arrays, and array-CGH). 
The data set was split into a data set used for training of the clas-
sifier (n = 1869) and 3 hold-out studies (n = 1129) (Figure 1A). 
Complete hold-out-cohorts were used to challenge the classifier 

with new independent data structures mimicking real-world 
application. Selection of hold-out-data sets was based on best 
representation of all subtypes and age groups. Out of n = 421 
samples defined ‘unassigned’ or B-other in the original studies, n 
= 111 belonged to the 3 hold-out studies and were kept for eval-
uating ALLCatchR predictions on these cohorts (Figure  1A). 
All WHO-HAEM5/ICC-defined BCP-ALL molecular subtypes, 
which were characterized by distinct gene expression signatures 
in their original description (n = 21), were represented in the 
data set. Ph-like was considered one subtype without subdivi-
sion. CEBP/ZEB2 subtype lacks final definitions so far and was 
defined here as CEBP by the presence of IGH::CEBPA/CEBPE/
CEBPD fusions and the absence of other drivers (Suppl. Table 
S2). Raw read counts for 15,728 protein-coding genes repre-
sented in all cohorts were used including heterogenous sequenc-
ing approaches (poly-A selection/depletion of ribosomal RNAs), 
different sequencing depths, and different read count quantifi-
cation methods. Counts were normalized by log10(count + 1), 
followed by z-transformation and scaling between 0 and 1.

Integration of machine learning and gene set-based nearest-
neighbor models for BCP-ALL subtype allocation

To perform molecular subtype allocation based exclusively 
on gene expression data, we developed ALLCatchR, a classifier 
that integrates linear support vector machine (SVM) and near-
est-neighbor association models for BCP-ALL subtypes derived 
from the training data (Figure 1A). Training was performed in a 
10-fold randomized stratified cross-validation scheme. For fea-
ture selection, we applied least absolute shrinkage and selection 
operator (LASSO) regression with 4 different alpha parame-
ters (0.1, 0.3, 0.5, and 1), where higher values result in a more 
stringent selection of features. LASSO16 was run in an internal 
10-fold cross-validation with type.measure = deviance and fam-
ily = multinomial logistic regression using the cv.glmnet function 
of the glmnet R package.17 We used also Boruta18—a Random 
Forest-based feature selection method—allowing for nonlinear 
feature to class associations. Each feature selection method was 
used for training 5 machine learning algorithms of which linear 
SVM19 performed best (Suppl. Figure S1). The best feature selec-
tion method was LASSO (alpha = 0.1) resulting in 2802 genes 
with high discriminative power for 21 molecular subtypes (Suppl. 
Figure S2; Suppl. Table S3). Linear SVM achieved a remarkable 
accuracy of subtype prediction in the training data (0.963), thus 
outperforming all other machine learning methods. However, lin-
ear SVM is restricted to predefined classes and does not compute 
probabilities for individual subtype predictions, which prevents it 
from correctly handling cases that are unassigned or ambiguous 
due to multiple drivers or cases that represent novel candidates. 
To achieve a probabilistic compound model, we incorporated 
single-sample gene set enrichment analyses (ssGSEA) using sing-
score20 of the same subtype-defining LASSO gene sets. By this 
approach, batch effects between cohorts were removed (Suppl. 
Figure S3). Euclidean distance of each test sample to each training 
sample was computed and the 10 nearest-neighbors were con-
sidered for subtype allocations of each test sample (accuracy for 
subtype prediction based on highest enrichment for each sample: 
0.912). Both models—SVM linear predictions and sample-to-sam-
ples-distances in subtype-defining gene sets—were integrated into 
our newly established compound classifier, ALLCatchR, which 
provides dynamic ranges of subtype-specific scores. To achieve a 
better separation between highly similar high hyperdiploid and 
near haploid ALL, both subtypes where first represented as 1 class 
in the overall classifier and then separated by a second 2-class 
compound classifier with the same design as the overall classifier.

RNA-Seq reference of human B-lymphopoiesis
Bone marrow samples from healthy adult donors (n = 4; M:F =  

1:3; age, 27–39 years; study registration DRKS00023583; 

http://links.lww.com/HS/A481
http://links.lww.com/HS/A481
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http://links.lww.com/HS/A481
http://links.lww.com/HS/A480
http://links.lww.com/HS/A480
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Figure 1. ALLCatchR predicts molecular BCP-ALL subtypes based on the gene expression count data with high accuracy. (A) ALLCatchR work-
flow for BCP-ALL molecular subtype classification. Gene wise count data of a total of n = 3532 BCP-ALL patients from RNA-Seq experiments comprising 
6 datasets were included in this study. Four data sets (n = 1869) were used for training and validation was performed on 3 hold-out data sets (n = 1129). 
The largest data set was St Jude (n = 1988) and included patients from St Jude Children’s Research Hospital, Children’s Oncology Group, ECOG-ACRIN 
Cancer Research Group, the Alliance for Clinical Trials in Oncology, M.D. Anderson Cancer Center, University of Toronto, Northern Italian Leukemia Group, 
Southwestern Oncology Group, Medical Research Council UK, and City of Hope. Samples marked with institute as St Jude (n = 501), which were all pediatric, 
were considered an individual cohort used for validation. ALLCatchR is a compound classifier based on the deterministic linear SVM predictions and a classifier 
based on the sample-to-sample distances to subtype-specific gene sets. In addition to the n = 1018 hold-out samples with an assigned subtype, n = 111 were 
defined ‘unassigned’ or B-other in the original studies and kept for evaluating ALLCatchR predictions. (B) Heatmap showing the ALLCatchR prediction scores 
for 21 gene expression-defined BCP-molecular subtypes (WHO-HAEM5 / ICC) in n = 2998 samples of the entire BCP-ALL cohort (after removal of duplicate 
samples, samples with 2 primary subtype allocations and ‘unassigned’/B-other samples in the training data; n = 534) samples. Molecular subtypes had been 
defined in the 6 original studies (GMALL, St Jude, CLIP, MLL, AIEOP-BFM, and RCH/PM) based on the genomic driver aberrations and corresponding gene 
expression signatures in n = 2887 cases (ground truth). Remaining cases were deemed ‘unassigned’ or B-other. ALLCatchR scores are shown for the combined 
data set of training and hold-out cohorts. BCP-ALL = B-cell precursor acute lymphoblastic leukemia; CLIP = Childhood Leukaemia Investigation Prague; GMALL = German Multicenter 
Study Group on Adult Acute Lymphoblastic Leukemia; MLL = Munich Leukemia Laboratory; RCH/PM = The Royal Children's Hospital / Peter MacCallum Cancer Centre. 
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ethical approval of ethics committee, Kiel University: D 583/20) 
were subjected to immunodensity cell separation (RosetteSep, 
STEMCELL Technologies; Inc., Vancouver, BC, Canada; purg-
ing: CD16, CD36, CD66b, CD235a, CD3). Nondepleted cells 
were stained with a 9-color antibody panel (Suppl. Table S4; 
Suppl. Figure S4) and used for fluorescence activated cell sorting 
(FACS; FACSAria fusion; BD Biosciences, Franklin Lakes, NJ) 
to 7 lymphoid differentiation stages. RNA was extracted from 
5000 to 320,000 cells per differentiation stage (AllPrep DNA/
RNA Micro Kit, Qiagen, Venlo, Netherlands) and subjected to 
ultra-low-input RNA sequencing after generation of stranded 
sequencing libraries (SMART-Seq Stranded Kit, Takara Bio Inc., 
Kusatsu, Shiga, Japan; NovaSeq 6000, Illumina, San Diego, CA).

Data availability
ALLCatchR is freely available as an R-package through 

https://github.com/ThomasBeder/ALLCatchR. Transcriptome 
sequencing data of bone marrow samples from healthy 
donors were deposited at the European Genome Phenome 
archive (EGAS00001007305). BCP-ALL transcriptome 
profiles have been deposited in open or controlled access 
archives (EGAS00001006107; https://viz.stjude.cloud/
st-jude-childrens-research-hospital/visualization/pax5-driv-
en-subtypes-of-b-progenitor-acute-lymphoblastic-leukemia-ge-
nomepaint~16; https://github.com/Oshlack/ALLSorts) or can 
be obtained by the authors of the original publications upon 
reasonable request.4–8

RESULTS

ALLCatchR predicts BCP-ALL molecular subtypes with high 
accuracy

We used aggregated BCP-ALL gene expression profiles 
(n = 2998 samples; n = 6 cohorts) to develop and validate 
ALLCatchR, a pretrained machine learning classifier, which 
performs BCP-ALL molecular subtype allocation based on gene 
expression alone (detailed in Methods; Figure 1A). ALLCatchR 
provides scores for each sample and all gene expression-defined 
BCP-ALL subtypes. Using these scores, samples were grouped 
according to their subtype independent of cohort and age group 
(Figure 1B). Final prediction scores varied in their range for indi-
vidual subtypes depending on number of samples and strength 
of subtype-specific gene expression signature. Rare subtypes 
(e.g., HLF or NUTM1) or subtypes with less well distinguish-
able gene expression signatures (e.g., iAMP21) achieved overall 
lower prediction scores compared with more frequent subtypes 
(e.g., KMT2A or DUX4) or subtypes with very specific gene 
expression profiles (e.g., CDX2/UBTF; Figure  1B). Therefore, 
we defined subtype-specific cutoffs (Suppl. Table S5) based on 
the comparison of scores from samples belonging to the cor-
responding subtype and all remaining samples of the cohort 
(Figure 2A). This resulted in the following: (1) high-confidence 
predictions; (2) candidate predictions; and (3) low-confidence 
predictions that is unclassified samples. Cutoffs for high-con-
fidence predictions were defined to include >90% of correct 
predictions. Cutoffs for candidate predictions were defined to 
exclude all samples from other subtypes but allowed ‘unas-
signed’/B-other samples to be classified (n = 111; Figure  2A). 
Low-confidence prediction scores represented overlaps between 
different subtypes and were therefore considered unclassified.

In the training data, 84.6% of samples achieved high-con-
fidence predictions with an accuracy of 0.997, while 13.7% 
achieved candidate predictions with an accuracy of 0.797 to 
guide further validation based on genomic drivers in well pre-
specified directions (Figure 2B). Only 1.7% of samples achieved 
low-confidence predictions and were considered unclassified. To 
validate ALLCatchR performance, we used independent valida-
tion data from 3 hold-out cohorts (n = 1018 with assigned sub-
type; Figure 1A), not previously seen by the classifier. A total of n = 

1006 of 1018 (98.8%) samples was allocated to 1 of 21 subtypes 
(high-confidence and candidate predictions) with an accuracy of 
0.957, demonstrating the feasibility of highly accurate subtype 
allocations based on gene expression alone. High-confidence 
and candidate predictions were achieved in 83.7% and 15.1% 
of samples with accuracies of 0.989 and 0.851, respectively. A 
total of n = 44 samples were assigned to the wrong subtype  
(n = 32; 3.1%) or received no subtype allocation (Figure 2C; 
n = 12; 1.2%). Most frequently Ph-like samples were misclas-
sified to Ph-pos (n = 4) or PAX5alt (n = 3), followed by Ph-pos 
samples being misclassified to Ph-like (n = 4) and iAMP21 cases 
being misclassified to Ph-like (n = 4) or hyperdiploid (n = 1).  
Highly similar signaling patterns and even co-occurance of 
drivers21,22 have been described between Ph-pos−/−like and 
iAMP21 ALL, which might be the underlying reason for these 
misclassifications. Next frequently, hyperdiploid cases (n = 4) 
were misclassified to different subtypes (low hypodiploid: n = 2;  
PAX5 P80R: n = 1; ETV6::RUNX1-like: n = 1). Different sub-
types were involved in the remaining n = 12 misclassified cases 
(Figure 2C). Importantly, most misclassified samples (n = 23/32; 
71.9%) had received candidate (not high-confidence) predic-
tions, indicating the need to validate these predictions based on 
genomic drivers.

ALLCatchR provides subtype allocations for previously unassigned/
B-other samples

In addition to the n = 1018 hold-out samples with assigned 
subtype, n = 111 samples (Figure 2B and 2C) had been defined 
as unassigned/B-other in the original studies. ALLCatchR 
concordantly identified n = 20 (18.0%) of these as unclassi-
fied (Figure  2C; Suppl. Figure S5). However, n = 43 (38.7%) 
and n = 48 (43.2%) cases received high-confidence or candi-
date predictions, respectively (Figure 2C). Analysis of available 
RNA-Seq gene fusion calls or cytogenetic profiles and/or virtual 
karyotyping (whole genome sequencing [WGS]/SNP-arrays) 
identified driver candidates supporting the corresponding sub-
type allocations in n = 31 (72.1%) of high-confidence and n = 
13 (27.1%) of candidate predictions (Suppl. Table S6; Suppl. 
Figure S5). These newly suggested subtype allocations consisted 
of PAX5alt predictions (n = 25), which had not shown a clear 
PAX5alt gene expression profile in the original cohort (n = 1), 
or which were contributed from the CLIP cohort where this 
subtype had not been annotated previously. Next frequently,  
n = 11 CRLF2-rearranged cases from CLIP and St Jude cohorts 
without Ph-like gene expression profile in the original cohorts 
received ALLCatchR Ph-like predictions. Of the remaining n = 
7 samples, n = 4 were predicted to be KMT2A of which 2 cases 
had KMT2A amplifications and 1 case with an ALLCatchR 
high-confidence KMT2A prediction was found to harbor a 
KMT2A partial tandem duplication by WGS (Suppl. Table S6; 
Suppl. Figure S5). To the best of our knowledge, this is the first 
identification in BCP-ALL of this aberration, which is recur-
rently observed in acute myeloid leukemia. In a second of these 
n = 7 cases, an IGH::MYC gene fusion was identified in support 
of a BCL2/MYC ALLCatchR prediction. Further ALLCatchR 
high-confidence predictions for unassigned/B-other samples 
without corresponding drivers included PAX5alt (n = 9) and 
Ph-like (n = 3) predictions, which generally are defined in a pro-
portion of samples by gene expression alone. Thus, ALLCatchR 
suggested molecular subtype allocations in previously unas-
signed cases with atypical and less well-defined gene expres-
sion signatures and supported the identification of novel driver 
candidates.

High accuracy of ALLCatchR predictions is observed across cohorts 
and molecular subtypes

The accuracy of predictions was consistently high in the 
training and hold-out data with 0.952 and 0.957, respectively. 
Almost congruent predictions were achieved in St Jude and CLIP 

http://links.lww.com/HS/A481
http://links.lww.com/HS/A480
https://github.com/ThomasBeder/ALLCatchR
https://viz.stjude.cloud/st-jude-childrens-research-hospital/visualization/pax5-driven-subtypes-of-b-progenitor-acute-lymphoblastic-leukemia-genomepaint~16
https://viz.stjude.cloud/st-jude-childrens-research-hospital/visualization/pax5-driven-subtypes-of-b-progenitor-acute-lymphoblastic-leukemia-genomepaint~16
https://viz.stjude.cloud/st-jude-childrens-research-hospital/visualization/pax5-driven-subtypes-of-b-progenitor-acute-lymphoblastic-leukemia-genomepaint~16
https://viz.stjude.cloud/st-jude-childrens-research-hospital/visualization/pax5-driven-subtypes-of-b-progenitor-acute-lymphoblastic-leukemia-genomepaint~16
https://github.com/Oshlack/ALLSorts
http://links.lww.com/HS/A481
http://links.lww.com/HS/A480
http://links.lww.com/HS/A481
http://links.lww.com/HS/A480
http://links.lww.com/HS/A480
http://links.lww.com/HS/A481
http://links.lww.com/HS/A480
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cohorts with accuracies of 0.978 and 0.965, respectively. St Jude 
and CLIP represent pediatric data from clinical trials. In the 
MLL hold-out set, the accuracy was slightly lower with 0.914 
(Figure 3A), possibly due to less stringent preselection criteria 
(blast count and selection of subtypes) in a real-world diagnostic 
laboratory, indicating that ALLCatchR achieves reliable predic-
tions also in less preselected samples outside from clinical trials. 

Despite the overall high accuracies, classification performance 
varied between molecular subtypes (Figure  3B). ALLCatchR 
achieved specificities >0.99 for all 21 subtypes, both in training 
and hold-out data sets. The average sensitivity across subtypes 
was 0.919 ± 0.145 and 0.911 ± 0.167 in the training and hold-
out data, respectively. For n = 17/21 subtypes, sensitivities were 
≥0.85 both on training and hold-out data (Figure 3B). Only 4 

Figure 2. Confidence categories and predictions of samples previously unassigned/B-other.  (A) Cutoffs were defined for each BCP-ALL subtype 
based on distribution of all ALLCatchR scores in every subtype. (B) The proportions of confidence categories for true and false predictions in the training and 
hold-out data sets are shown. A prediction was considered true if the sample received the same subtype allocation as in the original study. False predictions 
represent allocations to other subtypes than the subtype assigned in the original study. For comparison, ‘unassigned’/B-other samples from the hold-out data 
sets are shown. (C) Confusion matrices relate ALLCatchR predictions to the ground truth in training samples (left) and hold-out cohorts (right). The training 
cohort did not contain ‘unassigned’/B-other samples, because these do not represent a homogenous group a classifier can be trained for. In the hold-out data, 
n = 111 samples had been defined as ‘unassigned’/B-other and predictions for these are also shown. Suppl. Figure S5A and Suppl. Table S6 indicate how 
ALLCatchR predictions in ‘unassigned’/B-other samples are supported by corresponding genomic drivers in 72.1% of high confidence and 27.1% of candidate 
predictions. BCP-ALL = B-cell precursor acute lymphoblastic leukemia. 

http://links.lww.com/HS/A480
http://links.lww.com/HS/A481
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Figure 3. ALLCatchR accuracy for subtype allocation is consistently high across cohorts and BCP-ALL subtypes. (A) Sankey diagrams indicate 
ALLCatchR subtype allocations and corresponding subtype ground truth in the training cohort and the individual hold-out data sets. Acc. indicates accuracy in 
the corresponding data set. (B) Bar charts indicated sensitivity and specificity of ALLCatchR predictions in the training data and ALLCatchR, ALLSorts, ALLIUM 
(GEX) and ALLspice predictions in the hold-out data. (C) Bar charts with correct classified, misclassified, and unclassified samples in the training and hold-out 
data, for different tools using gene expression for molecular BCP-ALL subtype allocation. Subtypes with missing values cannot be predicted by the individual 
tools. Validated ground truth was used to define true positive cases, that is, belonging to this subtype and true negative cases, that is, not belonging to this 
subtype. Values were obtained as fraction of true positive cases from all cases defined by ALLCatchR as belonging to this subtype (sensitivity) and as fraction 
of true negative cases from all cases defined by ALLCatchR as not belonging to this subtype (specificity). BCP-ALL = B-cell precursor acute lymphoblastic leukemia. 
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remaining subtypes (n = 106 samples; 3.7% of entire cohort) 
achieved sensitivities below 0.85 (NUTM1, CEBP, iAMP21, 
and near haploid), which was mainly related to the small num-
ber of samples representing these subtypes. Importantly, age and 
different subtype prevalence did not affect the results as accu-
racies were high in pediatric and adult samples, and sensitivity 
and specificity did not differ across age groups in the training 
and testing sets (Suppl. Table S7).

ALLCatchR subtype allocation outperforms current tools
Recently, 3 other tools—ALLSorts,12 Allspice,13 and ALLIUM 

GEX14—were independently developed for BCP-ALL subtype 
allocation based on gene expression profiles. For performance 
comparison, subtype allocation was performed on our hold-out 
data set (n = 1018 with assigned subtype). All tools achieved cor-
rect subtype allocations in the majority of cases (Figure 3B), but 
highest accuracy was achieved by ALLCatchR (0.957), leaving 
only n = 12/1018 samples unclassified and n = 32/1018 samples 
with an incorrect subtype allocation (Figure 3B; Suppl. Figure 
S6). ALLSorts performed well with an accuracy of 0.913 (n = 
14/1018 samples misclassified) but left more samples unclassi-
fied (n = 94/1018). The number of unclassified samples was also 
higher with ALLIUM GEX (n = 73/1018) and ALLSpice (n = 
239/1018), partially because all these tools were trained on less 
subtypes (ALLSorts: n = 19/21 subtypes; Allspice: n = 18/21; 
ALLIUM GEX: n = 14/21), precluding classification in part to 
some of the rarer subtypes such as IKZF1 N159Y, HLF, CDX2/
UBTF, BCL2/MYC, low hypodipolid, CEBP, and near haploid 
ALL (Figure 3C; Suppl. Figure S6). Compared with ALLCatchR, 
ALLIUM GEX achieved higher sensitivity for classification of 
iAMP21 (0.81 versus 0.69 with ALLCatchR) and ALLSorts was 
more sensitive in detecting near haploid cases (n = 6; sensitivity: 
0.5 versus 0.33 with ALLCatchR). For all other subtypes, sen-
sitivity and specificity in all cases was higher with ALLCatchR 
(Figure 3B and 3C).

Gene expression-based modeling predicts clinical baseline variables
Blast count proportions impact accuracy of gene expres-

sion-based molecular subtype allocation, as sequencing reads 
from nonleukemic compartments contribute to bulk transcrip-
tome profiles. To infer sample blast proportions, we trained 2 
machine learning regression models on data sets of our com-
bined cohort with available blast counts obtained by manual 
counting or flow cytometry (GMALL and MLL) and used these 
and the RCH/PM cohort for validation. Blast count predictions 
from single cohorts achieved good accuracies when applied to 
each other (Figure 4A and 4B) with a high concordance between 
GMALL and MLL training sets (Figure 4B), which were there-
fore combined for the final classifier. Only 1.85% of samples 
with high-confidence subtype predictions had blast count pre-
dictions <50% while these were observed in 9.83% of candidate 
predictions and in 17.95% of unclassified samples of the entire 
cohort (Suppl. Figure S7). Thus, ALLCatchR can identify a sub-
set of samples with worse performance for subtype allocation 
due to lower blast infiltration. Gene expression profiles were 
also informative for patient’s sex and disease immunopheno-
type. To enable gene expression-based cross-validation of these 
important clinical baseline characteristics, we implemented sub-
classifiers to the samples immunophenotype (pro-B versus com-
mon-/pre-B ALL; accuracy of 0.871 in the validation data) and 
patient’s sex (accuracy: 0.991 in validation data set; Figure 4C). 
ALLCatchR thus provides a cross-validation of clinical baseline 
variables and allows imputation of missing values.

Shared gene expression patterns suggest distinct developmental 
trajectories for BCP-ALL subtypes

The cell of origin for BCP-ALL cases remains to be defined, 
with immunophenotyping according to European Group for 

Immunological Classification of Leukemias (EGIL) crite-
ria23 representing a framework for orientation. An improved 
understanding of underlying lymphopoiesis trajectories is 
especially warranted regarding current immunotherapies, 
which rely on differentiation stage- and lineage-specific 
markers as therapeutic targets. To map BCP-ALL subtypes 
to underlying B-lymphopoiesis trajectories, we established a 
reference of normal human B-lymphopoiesis for 7 differen-
tiation stages from hematopoietic stem cells to mature bone 
marrow B-cell subsets (Figure 5A), based on established defi-
nitions.24 Expression profiles were obtained from ultra-low 
input RNA-Seq of FACS-sorted bone marrow samples of 
healthy adult donors (n = 4). A high sequencing depth was 
achieved despite limited input cell numbers (5000–320,000), 
enabling quantification of 31,787 ± 4008 genes (89.7% of 
all human genes). Marker gene expression confirmed on the 
transcript level surface protein profiles used for FACS_sort-
ing (Suppl. Figure S8). Unsupervised analysis of variable 
expressed genes grouped samples according to the devel-
opmental course with high concordance between donors 
(Figure 5B). Stage-specific gene sets were obtained by mul-
ticomparison ANOVA on normalized counts (vst), yielding 
well discriminative definitions (Figure 5C; Suppl. Table S8). 
Analysis of immunoglobulin rearrangements using droplet 
PCR indicated a germline configuration in hematopoietic 
stem cells, initiation of DH-JH rearrangements in sorted pro-B 
cells, while VH-(D)JH rearrangements were first observed in 
pre-B II large cells and class switch recombination occurred 
exclusively in the most mature B cells, providing an immu-
nogenomic differentiation trajectory25 which independently 
confirms our sorting strategy (Suppl. Figures S4 and S9). 
We implemented this newly established model of human 
B-lymphopoiesis in ALLCatchR using ssGSEA to define the 
proximity of each BCP-ALL sample to all 7 lymphopoie-
sis stages (Figure 5D; Suppl. Figure S10). Medians of these 
enrichment scores across samples revealed distinct patterns 
of enrichments for BCP-ALL subtypes (pro-B /pre-B I /pre-B 
I to pre-B II large transition / pre-B II large; Suppl. Figure 
S10) with similar patterns in pediatric and adult data sets 
(Suppl. Figure S11). Most BCP-ALL subtypes and the major-
ity of all cases showed highest similarity to the pre-B I stage 
(Figure 5D). However, KMT2A-rearranged and PAX5 P80R 
ALL showed a clearly distinct enrichment pattern similar 
to an earlier pro-B differentiation stage (Figure 5E). In con-
trast, CEBP, HLF, IKZF1 N159Y, MEF2D, NUTM1, and 
TCF3::PBX1 were grouped in a cluster with highest enrich-
ment in transition of pre-B-I to pre-B-II large stage and 
BCL2/MYC showed the highest degree of similarity exclu-
sively to pre-B II large differentiation stage (Figure  5D). 
These observations confirm expectations for the extremes 
of this trajectory (KMT2A and BCL2/MYC).26,27 A recently 
reported mouse model of PAX5 P80R ALL28 established a 
pro-B differentiation arrest as initial event in PAX5 P80R 
homozygous models, supporting a pro-B origin of this leu-
kemia subtype or at least an altered PAX5 function induc-
ing a pro-B like phenotype in PAX5 P80R mutated cases. 
Thus, specific enrichment patterns of normal lymphopoiesis 
are shared between molecular subtypes, suggesting distinct 
stages of transition from normal to leukemic lymphopoiesis. 
We have included this model in ALLCatchR. Comparison 
of EGIL immunophenotypes to gene-expression-defined 
stages indicated expected enrichments (pro-B stage in pro-B 
immunophenotype / pre-B II large in pre-B immunopheno-
types; Figure 5F) but nearly all gene-expression-based differ-
entiation stages were represented in each immunophenotype. 
BCP-ALL subtypes were more closely related to gene-expres-
sion-based differentiation stages as to EGIL immunopheno-
types, suggesting that ALLCatchR identifies developmental 
underpinnings of BCP-ALL drivers at higher resolution.
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BCP-ALL subtype-defining gene sets indicate shared signaling 
trajectories

Definitions of BCP-ALL subtype-specific gene expression 
signatures depend on the size and composition of the remain-
ing cohort used as comparator. We made use of the aggregated 
transcriptome profiles of 21 BCP-ALL subtypes to define sub-
type-specific gene expression profiles based on the largest data 
set (n = 2998) available till date, representing different age 
groups, cohorts, and sequencing methods. Uniform manifold 
approximation plot clustering of all batch corrected samples 
according to the LASSO-selected subtype-specific gene sets indi-
cated a clear separation of molecular subtypes independently 
of the contributing cohorts (Figure  6A). To characterize sub-
type-specific gene expression profiles beyond top discriminative 
features, we performed differential gene expression analysis for 
each subtype compared with the remaining cohort. A median of 
673 differentially expressed genes per subtype were identified 
(range: 144–1465; fold change: <1.5-log2-fold; FDR: <0.001; 
Figure 6B). Overlap between these gene sets was very low (Suppl. 
Figure S12) indicating that subtype-specific differences are 

represented in broad gene regulatory programs. Subtype-specific 
gene expression profiles were provided as a resource in Suppl. 
Tables S9-S16, S17-S22, and S23-S29. To explore the potential 
of this dataset to reveal underlying biological functions, we 
performed ssGSEA for canonical signaling pathways (MSigDB 
Hallmark/KEGG gene sets). Analysis of pathways top differen-
tially enriched in BCP-ALL subtypes (1-way ANOVA) indicated 
previously unrecognized clusters of subtypes with enrichment 
in cytokine receptor/JAK-STAT signaling (Ph-pos, Ph-like, 
ZNF384, Hyperdiploid, iAMP21) or WNT-/beta catenin/hedge-
hog signaling (ETV6::RUNX1 and -like, CDX2/UBTF), which 
together represented the majority of subtypes with proximity to 
normal pre-B-I cells (Figure  6C). For the remaining subtypes, 
an enrichment in MYC-/MTOR signaling was observed in sub-
types similar to either a more or less advanced differentiation 
stage (pro-B: KMT2A, PAX5 P80R / pre-B I to pre-B II large: 
BCL2/MYC, IKZF1 N159Y, MEF2D; Figure 6C). Interestingly, 
Ph-pos, Ph-like, iAMP21 and ZNF384 subtypes were grouped 
together here by unsupervised clustering. Shared enrichment of 
JAK/STAT signaling pathways supports previously suggested31,32 

Figure 4. ALLCatchR predicts sample blast counts, patient’s sex, and immunophenotype based on the gene expression data. (A) For GMALL (n 
= 302), MLL (n = 282), and RCH/PM (n = 77), sample blast counts obtained by cytology or flow cytometry were available. GMALL and MLL cohorts were sep-
arately used for training 2 classifiers in a 10-fold cross-validation scheme with the same machine learning algorithms used for subtype prediction. GMALL and 
MLL classifiers were validated on each other, and both were validated on the RCH/PM data. Best performing methods in terms of the RSME on the training data 
are shown. Training 2 classifiers on independent data sets allowed for the validation on each other and both were combined for final predictions. Blast count 
predictions had a good correlation to measured counts, that is, rho = 0.590 in GMALL and rho = 0.771 in MLL. Moreover, predicting MLL samples with the 
classifier trained on GMALL achieved a similar performance as the classifier trained on MLL samples and vice versa. (B) Because both GMALL and MLL classi-
fiers had a good performance and were generalizable, predictions from both are combined in ALLCatchR. (C) Subclassifiers for immunophenotype and patient’s 
sex were developed using SVM linear and ranger machine learning models, respectively. An immunophenotype classifier was trained on GMALL samples (n = 
413 common-B/pre-B and n = 66 pro-B) and validated on MLL data (n = 168 common-B/pre-B and n = 64 pro-B) with available EGIL immunophenotypes. A 
patient sex classifier was trained on n = 357 GMALL samples (female = 165; male = 192) analogous to the subtype classifier. For validation n = 1892 St Jude 
samples with known sex (female = 850; male = 1042) were used. Corresponding accuracies, sensitivities, and specificities are shown for these subclassifiers. 
BCP-ALL = B-cell precursor acute lymphoblastic leukemia; RSME = root mean squared error. 
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Figure 5. ALLCatchR identifies B-cell developmental trajectories underlying BCP-ALL subtypes. (A) To establish a reference map of human 
B-lymphopoiesis, we obtained bone marrow samples from healthy adult donors (n = 4) and used a 9-color antibody panel for FACS sorting of 7 B-lymphopoiesis 
stages following described definitions24 after pre-enrichment of wanted populations. Lin-selection included CD3, CD33, CD56, CD14, CD66c, and CD138. 
Antibodies used are shown in Suppl. Table S4. Suppl. Figure S9 shows immunogenomic profiling of immune gene rearrangements in support of the applied 
sorting strategy. (B) Ultra-low input RNA-Seq was performed for total RNA to obtain stage-specific gene expression. UMAP shows clustering of human 
B-lymphopoiesis stages based on 400 most variable expressed genes. (C) Multi comparison ANOVA on normalized (vst) count data was performed to obtain 
differentiation stage-specific gene sets. Heatmap depicts single-sample gene set enrichment analyses (singscore)20 of B-lymphopoiesis subsets (columns) to 
stage defining gene sets (rows). (D) BCP-ALL samples with known subtype allocation (n = 2887) were used for single-sample gene set enrichment analysis 
with B-lymphopoiesis-specific gene sets obtained from (C). Suppl. Figure S10 shows enrichment patterns of individual samples from all BCP-ALL subtypes for 
all differentiation stages. Heatmap depicts averaged enrichment scores for all BCP-ALL subtypes and all B-lymphopoiesis stages grouped by unsupervised 
clustering. Normal progenitors with proximity to BCP-ALL subtypes are annotated on top. Suppl. Figure S11 provides separate analyses for pediatric and adult 
patients indicating a high degree of similarity. (E) KMT2A rearranged and PAX5 P80R ALL had both the highest enrichment toward pro-B supporting a shared 
developmental origin (also depicted in Suppl. Figure S10). (F) Comparison of gene expression-defined differentiation stages and EGIL immunophenotypes are 
shown for n = 711 samples with available gene expression data. BCP-ALL = B-cell precursor acute lymphoblastic leukemia; UMAP = uniform manifold approximation plot. 
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Figure 6. The gene expression landscape in BCP-ALL. (A) UMAP plot showing all n = 2998 samples used in this study. Count data from the 6 data sets 
was batch corrected using the sva package29 and TPM values were calculated. The plot is based on 2802 genes selected by LASSO for training of ALLCatchR. 
Cohorts are highlighted on the bottom left plot. The expression data before batch correction is shown in Suppl. Figure S3A. (B) ALLCatchR predictions were 
used to define samples that best represented their respective molecular subtype. A total of n = 20 top ranking samples per subtype (exceptions with lesser 
samples available: HLF n = 14, CEBP n = 16, NUTM1 n = 17, IKZF1 N159Y n = 18) were used to obtain a homogenous data set representing all 21 BCP-ALL 
subtypes (n = 405). Differential gene expression analyses for each subtype versus the remaining cohort using DESeq230 revealed 5110 differentially expressed 
genes (cutoff: 1.5-log2-fold change, FDR: 0.001) used for unsupervised clustering. Suppl. Figure S12 and Suppl. Tables S9-S16, S17-S22, and S23-S29 
provide detailed information on the derived gene sets. (C) Canonical signaling pathways (KEGG, HALLMARK gene sets; MSigDB) were used for single-sample 
gene set enrichment analysis using the BCP-ALL subcohort from (B) for balanced representation of all subtypes. Enrichment scores for top variable enriched 
pathways are shown. BCP-ALL = B-cell precursor acute lymphoblastic leukemia; UMAP = uniform manifold approximation plot. 
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shared signaling trajectories in these otherwise independent 
subtypes. Thus, enrichment analysis for canonical signaling 
pathways independently grouped together BCP-ALL subtypes 
form similar underlying B-lymphopoiesis differentiation stages. 
ALLCatchR not only provides a systematic gene expression 
analysis for accurate identification of molecular BCP-ALL sub-
types but also enables insights into underlying disease biology, 
which is closely interconnected with subtype nosology.

DISCUSSION

Risk stratification based on the molecular disease subtypes 
has contributed to the remarkable improvement in outcomes of 
patients with BCP-ALL in the last decades and has provided 
guidance for target-specific treatments. Current nosology of 
BCP-ALL includes up to 26 specific subtypes (WHO-HAEM5 
/ ICC),1,2 exceeding the capability of cytogenetic and molecular 
genetic techniques, which have so far been combined for molec-
ular subtype allocation. Transcriptome sequencing provides 
informative gene expression profiles and allows identification 
of underlying driver gene fusions and more recently also driver 
single-nucleotide variants and karyotypes. Analysis of gene 
expression profiles for molecular subtype allocation is still not 
standardized, despite its potential for validating genomic driver 
calls and for subtype allocation of samples with missed genomic 
drivers.4

We have developed ALLCatchR, a pretrained machine learn-
ing classifier, which allows molecular subtype allocation in 
independent hold-out data with >95% accuracy. ALLCatchR 
is the only tool, which systematically provides allocation to 
all gene expression-defined subtypes of the ICC classification, 
including novel CDX2/UBTF ALL4,33–35 and CEBP/ZEB2.36–38 
Comparable published approaches (ALLSorts, ALLIUM, 
and ALLspice) also achieved accurate predictions. However, 
ALLCatchR achieved superior performance through enabling 
more correct subtype allocations especially for MLL cohort.8 
Immunophenotyping is a routine diagnostic in BCP-ALL and 
provides putative differentiation stages of origin with pro-B 
immunophenotype used as high-risk marker in some treatment 
stratification systems. EGIL definitions23 were derived from 
murine B-lymphopoiesis. Projecting BCP-ALL samples to our 
newly established reference of normal lymphopoiesis yielded 
novel insights into similarities between differentiation stages 
and BCP-ALL subtypes. Interestingly, KMT2A and PAX5 
P80R ALL showed a strong proximity to normal pro-B cells, 
the most immature B lymphoid stage analyzed. These observa-
tions are in line with very recent single-cell analyses suggest-
ing a pro-B or even pre-pro-B origin of KMT2A ALL27,39 and 
murine models of PAX5 P80R ALL showing that homozygous 
PAX5 P80R induces a pro-B differentiation arrest in lymph-
opoiesis before full transformation through acquisition of 
additional driver events.28 Here, ALLCatchR analysis based on 
our large aggregated reference cohort confirmed these observa-
tions of smaller cohorts,27,39 preclinical models,28 and previous 
assumptions on redirected PAX5 functionality in PAX5 P80R 
ALL.3,5 Gene-expression-based definitions of developmental 
stages in BCP-ALL were more closely related to BCP-ALL sub-
types than immunophenotypes, suggesting that selection for 
leukemogenic drivers occurs in a differentiation stage-specific 
manner.

Diagnostic definitions of molecular BCP-ALL subtypes1,2 rely 
primarily on genomic drivers. Gene fusion calling9,40 and identi-
fication of driver hotspot variants5,10 from RNA-Seq data is well 
established. Recently, it has been shown that virtual karyotypes 
can also be imputed from RNA-Seq data.11 Gene expression 
profiles, however, represent the downstream signaling equiv-
alent of these genomic events and by that inform biological 
insights. Shared gene expression patterns serve as validation of 
the functional relevance of the observed drivers—also in cases 

with multiple drivers. They establish subtype allocations for 
samples with missed driver calls due to difficult to identify tar-
gets (e.g., IGH::DUX4 or other IGH-fusions) and provide uni-
fying definitions for subtypes with heterogeneous drivers (e.g., 
Ph-like ALL). We see ALLCatchR as the central component of 
an integrated workflow for RNA-Seq in BCP-ALL, which incor-
porates gene fusion calling, identification of hotspot variants, 
and virtual karyotypes together with gene expression profiling 
for a subtype allocation with highest diagnostic precision.

ALLCatchR is based on the largest cohort of BCP-ALL 
gene expression profiles across age groups and molecular sub-
types available till date. We make use of this aggregated data 
to provide subtype-defining gene sets for normal and leukemic 
B-lymphopoiesis as an independent research resource. Although 
only a small minority of samples remain unassigned, novel sub-
type candidates are being discussed (e.g., IDH1/2 mutated ALL 
and low hyperdiploid ALL).5,33 ALLCatchR is a freely available 
open-source tool providing a conceptual and technical frame-
work, which can easily be extended for incorporation of novel 
subtypes and additional predictive models. When combined 
with already established approaches for calling of genomic driv-
ers (e.g., gene fusions), ALLCatchR will complement the essen-
tial prerequisites for the transition of RNA-Seq from research to 
routine application in clinical diagnostics.
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