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Abstract

Background: Severe asthma is a chronic disease contributing to disproportionate disease morbidity and mortality.
From the year of 2007, many genome-wide association studies (GWAS) have documented a large number of
asthma-associated genetic variants and related genes. Nevertheless, the molecular mechanism of these identified
variants involved in asthma or severe asthma risk remains largely unknown.

Methods: In the current study, we systematically integrated 3 independent expression quantitative trait loci (eQTL) data
(N=1977) and a large-scale GWAS summary data of moderate-to-severe asthma (N =30,810) by using the Sherlock Bayesian
analysis to identify whether expression-related variants contribute risk to severe asthma. Furthermore, we performed various
bioinformatics analyses, including pathway enrichment analysis, PPl network enrichment analysis, in silico permutation
analysis, DEG analysis and co-expression analysis, to prioritize important genes associated with severe asthma.

Results: In the discovery stage, we identified 1129 significant genes associated with moderate-to-severe asthma by using
the Sherlock Bayesian analysis. Two hundred twenty-eight genes were prominently replicated by using MAGMA gene-based
analysis. These 228 replicated genes were enriched in 17 biological pathways including antigen processing and presentation
(Corrected P=430x 10"°), type | diabetes mellitus (Corrected P=7.09x 10” ), and asthma (Corrected P=1.72 x 10" ). With
the use of a series of bioinformatics analyses, we highlighted 11 important genes such as GNGT2, TLR6, and TTC19 as
authentic risk genes associated with moderate-to-severe/severe asthma. With respect to GNGT2, there were 3 eSNPs of
1s17637472 (Pacm = 298 x 10~ % and Pgyas = 340 X 1079), 1511265180 (Pagr. = 6.0 X 107 ° and Pguas = 1.99x 10~), and
1s1867087 (Pogn = 1.0 10™* and Pguas = 184 x 10 ) identified. In addition, GNGT2 is significantly expressed in severe
asthma compared with mild-moderate asthma (P = 0.045), and Gngt2 shows significantly distinct expression patterns
between vehicle and various glucocorticoids (Anova P=1.55x 10" °).
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Conclusions: Our current study provides multiple lines of evidence to support that these 11 identified genes as important

candidates implicated in the pathogenesis of severe asthma.

Keywords: Severe asthma, Genetic variants, Gene expression, Susceptibility genes, GWAS

Background

Asthma is the most prevalent chronic respiratory disease
which is characterized by aberrant and inflamed mucosa
of the airways, wheezing and shortness of breath [1, 2].
Among these asthma patients, 10-15% have severe
asthma with clinical symptoms including associated fre-
quent severe exacerbations, dependence on high doses of
inhaled or oral steroids, debilitating breathlessness, and
low baseline lung function [3, 4]. Severe asthma among
children and adult populations is a significant threat that
is correlated with disproportionate disease morbidity and
mortality. Previous twin and family studies have been re-
ported that both environmental and genetic components
convey susceptibility to asthma [5, 6]. There is estimated
to vary between 35 and 95% of the heritability of asthma
[5, 7]. Genetic studies offer a structured approach of iden-
tifying molecular targets for treating the syndrome and
understanding the etiology of asthma [8-10].

With the development of sequencing and microarray
technique, genome-wide association study (GWAS) is
widely employed and thought to be an effective mean of
simultaneously examining the association of tons of
SNPs with traits of interest. The well-powered GWAS
based on large-scale samples highly increase the likeli-
hood to identify disease-associated genetic loci. In recent
years, many GWASs on asthma were conducted, and
numerous genetic loci were identified to be associated
with asthma [2, 8—16]. Meanwhile, numerous genetic as-
sociation studies of severe asthma were carried out, but
most of these studies are underpowered so that cannot
clearly differentiate asthma severity variants from these
identified asthma susceptibility variants [17]. Most re-
cently, a GWAS on asthma severity with large-scale
samples (N =57,695) was reported, and several asthma
severity risk genes were identified; such as MUCSAC,
KIAA1109, and GATAS3 [15]. Nevertheless, the molecular
mechanism of how these identified genetic loci convey
risk to severe asthma is still equivocal. It should be
noted that these identified genetic loci from GWAS con-
tain a plenty of useful information, which contribute to
uncover novel risk genes and biological pathways impli-
cated in the pathogenesis of asthma. Furthermore, in
view of applying very strict genome-wide threshold of
significance, many genetic loci with weak or modest ef-
fects were very difficult to be identified in a single
GWAS, which is one of the explanations of missing her-
itability. Therefore, more comprehensive studies are

needed to reveal the underlying effects of the small-to-
modest genetic variants on severe asthma.

A growing number of studies have strongly reported
that the aberrant gene expression-associated SNPs have
vital parts in the etiology of complex diseases [18-21].
Recently, accumulating integrative studies have been
performed for integrating the GWAS summary genetic
data and expression quantitative trait loci (eQTL) data
to identify the underlying regulatory effects of disease-
risk genetic variants on gene expression levels. A recent
article introduced a Bayesian statistical approach named
as the Sherlock integrative analysis to incorporate gen-
etic variants from GWAS summary data with eQTL
data. Comparing with traditional GWAS method that
commonly ignore- small or moderate effect SNPs, Sher-
lock integrative analysis is an effective Bayesian algo-
rithm for employing SNPs with moderate-to-strong
genetic association signals. With the use of this Bayesian
tool, a growing number of studies have been performed
and many novel risk genes which are very hard to be de-
tected by traditional GWAS alone were identified in dif-
ferent complex diseases, such as schizophrenia [22] and
major depressive disorders [23, 24].

The main goal of the current study is to identify authen-
tic severe asthma-associated genetic loci and extend our
understanding of genetic determinants influencing
doctor-diagnosed severe asthma. Here, we first performed
a systematically integrative genomics analysis to integrate
GWAS-based SNP data with eQTL data based on the
Sherlock Bayesian analysis. Furthermore, we repeated the
Sherlock analysis by using two independent eQTL datasets
to validate the potential biological role of these identified
risk genes. In addition, through using various bioinformat-
ics analyses based on multi-omics data, we highlighted a
number of susceptible genes as promising candidates con-
tributing risk to moderate-to-severe asthma.

Methods

GWAS summary datasets

Dataset #1 GWAS dataset on moderate-to-severe asthma
We downloaded a large-scale GWAS summary dataset
on moderate-to-severe asthma reported by Shrine and
coworkers [15]. We chose GWAS summary data from
stage 1 for our current genomics analysis. With respect
to the GWAS of stage 1, a total of 5135 patients with
moderate-to-severe asthma and 25,675 controls were en-
rolled from the Genetics of Asthma Severity and
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Phenotypes (GASP) initiative and the U-BIOPRED
asthma cohort [25]. All the subjects were based on Euro-
pean origin. The mean age of patients was 55 year old
(SE+8). The phenotype of moderate-to-severe asthma
was assessed by using clinical records according to the
British Thoracic Society (BTS) 2014 guidelines. All sub-
jects gave written and signed informed consent. The eth-
ical approval was approved by the ethics committee for
each participating clinical institution, and adhered to the
standards set by International Conference on Harmon-
isation and Good Clinical Practice, which is registered
on ClinicalTrials.gov (identifier: NCT01982162). The
Affymetrix Axiom UK BiLEVE array [26] were used for
genotyping and further imputation. A total of 33,771,858
SNPs were qualified for subsequent analysis.

Dataset #2 GWAS dataset on random phenotype of asthma
To ensure identified genes were due to genetic biol-
ogy instead of artificial factors, we constructed a Null
GWAS dataset as negative control. The genotype data
of Null GWAS were on the basis of a reported
GWAS dataset (N=3960) [27], and the phenotype of
Null GWAS were depended on randomly assigned the
trait (asthma or control) to 3960 individuals. Consid-
ering the Null GWAS was assumed to be no true ef-
fect, the small sample size of this dataset is not a big
issue. We used the PLINK (1.07v) based on the addi-
tive genetic model of the Null GWAS for a logistic
regression analysis.

Multiple eQTL datasets used for Sherlock Bayesian
analysis

Dataset #3 Zeller et al. eQTL dataset

For this eQTL dataset reported by Zeller and coworkers
[28], a total of 1490 unrelated subjects were included
from a single-center cohort study of the Gutenberg
Heart Study (GHS). Each chosen subject was randomly
drawn from the local registry offices. Individuals signed
informed consent were interviewed with a 5-h baseline
examination with the collection of blood samples. All
the chosen individuals’ blood samples were used for iso-
lation of RNA and DNA. The Affymetrix Genome-wide
Human SNP Array 6.0, which contains 900,392 SNPs,
was utilized for genotyping. After employing a stringent
quality control by considering the factors of Hardy-
Weinberg equilibrium, genotype calling rate, and minor
allele frequency, a number of 675,350 SNPs were eligible
for subsequent analysis. Furthermore, the Illumina HT-
12V3 BeadChip was used to obtain gene expression
abundance from monocyte RNA samples. After remov-
ing not well-characterized genes, a number of 12,808
genes were included for the eQTL analysis.
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Dataset #4 Dixon et al. eQTL dataset

This dataset reported by Dixon et al. [29] was utilized as
an independent eQTL dataset for validation. With re-
gard to this dataset, Dixon and colleagues generated a
global map of the genetic effects of variants on the ex-
pression levels of genes in Epstein-Barr virus-
transformed lymphoblastoid cell lines of children from
families enrolled through a proband with asthma. All
chosen children provided written informed consent and
the ethical approval was approved by the UK Multicen-
tre Research Ethics Committee. Both the Illumina Hu-
man Hap300 Genotyping BeadChip and the Sentrix
Human-1 Genotyping BeadChip were used for sample
genotyping, and the Affymetrix U133 Plus 2.0 GeneChip
was utilized for gaining gene expression abundance.
After standard and strict inclusion criteria, a total of 400
asthmatic children with genotypes and expression abun-
dance data were utilized to create an eQTL resource,
which contains 408,273 genotyped SNPs and 20,599
genes.

Dataset #5 Duan et al. eQTL dataset

This dataset published by Duan et al. [30] was also used
as an independent eQTL dataset for validation. The
genotype data of 87 CEPH from Utah (CEU) samples
were downloaded from the online HapMap database re-
lease 22 version. After filtering SNPs with Mendelian-
inheritance transmission errors and minor allele fre-
quencies < 5%, a total of 2,098,437 SNPs remain for ana-
lysis. In addition, gene expression levels of HapMap
CEU lymphoblastoid cell lines were assessed by using
Affymetrix GeneChip Human Exon 1.0 ST array. Finally,
Duan and coworkers created an eQTL resource contain-
ing the pairwise association between 12,747 gene expres-
sion levels and 2,098,437 SNPs in the HapMap CEU
population.

Gene-level enrichment analysis

We applied the SNP-based p values from each GWAS
summary statistics as input for gene-level enrichment
analysis. The powerful bioinformatics tool of The Multi-
marker Analysis of GenoMic Annotation [31]
(MAGMA; more information refers to the official web-
site: https://ctg.cncr.nl/software/magma) is used for
gene-level enrichment analysis in the current investiga-
tion. Multiple regression model was employed in the
MAGMA tool to combine the linkage disequilibrium
(LD) information among SNPs within a specific genomic
region and identify multi-variant convergent effects. SNP
assigned to a gene was dependant on the location of the
SNP whether mapped into the gene or within a genomic
region extended +/-20kb downstream or upstream of
the gene [32]. The LD information of SNP-SNP pairs
was calculated by using the reference data of 1000
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Genome European panel phase 3. The significance level
of each gene was corrected by using the Bonferroni cor-
rection method. The Venn plot was generated by using
the web-access tool of Draw Venn Diagram (http://bio-
informatics.psb.ugent.be/webtools/Venn/).

The method of Sherlock Bayesian analysis

The Sherlock analysis [33] is a powerful Bayesian statis-
tical method that incorporates GWAS summary data
with eQTL data to systematically discover the cis- or
trans-regulatory effects of SNPs on risk genes implicated
in the complex trait of interest. The procedures of this
method as follows: Sherlock algorithm first uses infor-
mation from eQTL dataset to find expression-associated
SNPs; i.e., called eSNPs. Subsequently, the Sherlock al-
gorithm will examine the association between eSNPs
and asthma using the GWAS-based summary dataset.
There were three judgmental scenarios: (1) A positive
score would be assigned to an eSNP if this eSNP shows
a significant association with asthma in GWAS data; (2)
A negative score would be assigned to an eSNP if this
eSNP has no significant association with asthma in
GWAS data; (3) No score would be assigned if this SNP
is only significantly associated with asthma but not an
eSNP. The total score of a gene is an aggregation of the
scores of eSNPs based on the integration of GWAS and
eQTL data. Further, the Sherlock algorithm uses the
logarithm of the Bayes factor (LBF) for a specific gene as
an important indicator to predict asthma-associated risk
genes. The significance of genes from Sherlock analysis
was adjusted by using the Benjamini-Hochberg correc-
tion for multiple testing.

Pathway-based analysis of risk genes

To elucidate the molecular functions of the prioritized
severe asthma-associated risk genes from Sherlock ana-
lysis, we applied ClueGO, a plug-in tool of Cytoscape
platform [34], to enrich significant pathways or orga-
nized biological terms. Based on the Kyoto Encyclopedia
of Genes and Genomes (KEGG) which is a very popular
pathway resource [35], we carried out a pathway enrich-
ment analysis to identify significant functional links be-
tween these risk genes and biological pathways. In
addition, we also conducted a Gene Ontology (GO) en-
richment analysis based on three well-used categories of
GO terms: molecular function, cellular component, and
biological process. We also employed the feature of “GO
Term Fusion” in the ClueGO tool to reduce the redun-
dancies of enriched GO terms. For all enrichment ana-
lysis, the hypergeometric test was applied to assess the
significance, and P values were adjusted by using the
Bonferroni step down method.
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In silico permutation analysis

To determine whether the Sherlock-identified genes
from Dataset #3 (N=1129 genes) were significantly
overlapped with identified genes from Sherlock analysis
of Datasets #4 (N =964 genes) and #5 (N =771 genes)
and MAGMA analysis of Dataset #1 (N =1778 genes),
we carried out in silico permutation analysis of 10° times
[36]. By randomly selecting the same size as the identi-
fied significant genes from background genes of each
dataset (N =9776 ~ 18,311 genes) for 100,000 times, we
recorded the counts of genes overlapped with genes
from Sherlock analysis of Datasets #3. Then we calcu-
lated how many times the counts of overlapped genes
were larger than the number observed from real data
among 100,000 trials. Empirical P value was permuted
with the use of the probability of the observed number
and P-value < 0.05 is treated as significance.

Protein-protein interaction network analysis of identified
risk genes

Previous studies have reported that disease-associated risk
genes confer a predisposition to be of collective and func-
tional interactions with each other [20, 37, 38]. Addition-
ally, various protein-protein interaction (PPI) network-
based analyses have been extensively utilized to identify
the functional patterns of risk genes implicated in targeted
phenotypes or traits [39]. Thus, we applied a PPI network
analysis by using the well-used GeneMANIA tool [40], a
plug-in of Cytoscape for prioritizing the promising genes
for further bioinformatics analysis or lab experiments, to
generate a subnetwork of these identified severe asthma-
associated genes. Based on the inputted gene list, Gene-
MANIA software could incorporate current existing pro-
teomics and genomics data to predict genes that
functionally interacted with these identified genes.

Asthma-associated SNPs and genes from GWAS catalog
To determine whether some of risk eSNPs or genes
identified from Sherlock or MAGMA analysis are docu-
mented by GWAS Catalog, we downloaded the asthma-
associated SNPs and genes information from the GWAS
Catalog website (https://www.ebi.ac.uk/gwas/). From the
database inception to 05 August 2019, 56 asthma-related
studies reported with significant or suggestive findings.
As for these 56 studies, there were a number of 846 risk
SNPs and 856 mapped genes documented in the GWAS
Catalog database.

Functional annotation analysis by using HaploReg tool

To further explore the functionality of identified eSNPs
from the Sherlock analysis, we used the web-based tool
of HaploReg v4.1 (http://pubs.broadinstitute.org/mam-
mals/haploreg/haploreg.php) [41] to perform afunctional
annotation analysis. The vast majority of disease-
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associated common variants identified from GWAS
studies might regulate gene expression instead of dir-
ectly affect the function of proteins. The HaploReg was
developed to aid the function dissection of GWAS find-
ings and predict putative causal variants that were LD
with tag SNPs. Based on systematically comparative, epi-
genomic and regulatory annotation, the HaploReg tool
also could be used to predict targeted genes associated
with traits of interest [41].

Gene expression patterns between severe asthma and
control

The assumption of identifying disease-relevant risk genes
from the Sherlock Bayesian algorithm is that the aber-
rant expression of risk genes involve in the development
of disease of interest. Thus, we utilized two RNA expres-
sion datasets downloaded from the NCBI GEO database
(Accession Nos. GSE130499 and GSE123750) to validate
the functionality of identified severe asthma-associated
genes. The first dataset of GSE130499 based on bron-
chial epithelial cells (N =154 participants) [42] was de-
signed to identify the differential gene expression (DEG)
profiles between severe asthma (SA, N=44), mild-
moderate asthma (notSA, N =72), and normal control
(Control, N =38). The mean age of individuals with se-
vere asthma was 47 year old (SE + 1.7). The second data-
set of GSE123750 includes blood transcriptomics
profiles of school-aged children diagnosed with severe
(N=75) and mild-moderate asthma (N =37) from the
U-BIOPRED asthma project. We could use this dataset
to examine whether these identified risk genes are prone
to be vulnerable to severe asthma. Corrplot R package
was used to compare the different co-expression pat-
terns of identified genes among three groups. One-way
ANOVA analysis with Tukey post hoc analysis was per-
formed for calculating the significance of gene expres-
sion among SA, notSA, and control groups. Significance
between severe asthma and mild-moderate asthma
group was calculated by using Student’s T-test. P < 0.05
was considered to be significant.

Gene expression profiles among various glucocorticoids
for severe asthma

The gene expression data of inhaled glucocorticoids
(GCs) for severe asthma was downloaded from the NCBI
GEO database (Accession No. GSE119789) [43]. The
Agilent SurePrint G3 Mouse Gene Expression Micro-
array v.2 was employed to profile gene expression pat-
tern  of GCs, including Dexamethasone (DEX),
Fluticasone Furoate (FF), VSG158, and VSG159, and
control treatment of EtOH DMSO (Vehicle) in the
mouse macrophage RAW264.7 cells. RAW264.7 cells
were treated with designated steroids at 100 nM 1 h be-
fore overnight lipopolysaccharide stimulation of
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inflammation. There are 3 biological replicates in each
group. Thus, we explored whether these effective GCs
have significant links with severe-associated risk genes
identified from our Sherlock analysis based on large
GWAS and eQTL data. Heatmap was generated by using
pheatmap R package. Corrplot R package was employed
to compare the distinct expression profiles of risk genes
with the different treatment of GCs. One-way ANOVA
analysis with Tukey post hoc test was carried out for cal-
culating the significance.

Results

Prioritization of asthma-associated risk genes using the
Sherlock analysis

In the first place, we employed Sherlock Bayesian infer-
ence method to reveal whether aberrant gene expression
confers risk to moderate-to-severe asthma by incorpor-
ating GWAS summary data (Dataset #1, N = 31,810) and
eQTL data (Dataset #3, N =1490). All procedures of the
present investigation are shown in Fig. 1. In this discov-
ery analysis, we identified a number of 1129 significant
genes to be associated with moderate-to-severe asthma
risk through altering in its expression (Simulated P-value
<0.05, Supplemental Table S1). For example, the top-
ranked risk genes with significant eSNPs conferring risk
to asthma: HLA-DRB3/HLA-DRBS5/HLA-DRB4/HLA-
DRBI (Simulated P=7.93x10"7), RBM43 (Simulated
P=1.59x10"°), HLA-DOB (Sherlock-based P =1.59 x
107 °), IKZF3 (Simulated P = 1.59 x 10~ °), ILI8RI (Simu-
lated P=159x10"°), GNGT2 (Simulated P=1.11x
107°), MAP2KS (Simulated P =2.54x 10"°), and HLA-
DQAI (Simulated P=2.85x 10" °). Although numerous
genes have been reported to be associated with asthma
in the GWAS Catalog, a greater number of novel risk
genes were identified in our current Bayesian analysis
(Supplemental Table S1).

MAGMA gene-based analysis of GWAS on moderate-to-
severe asthma

Furthermore, we used an independent technique of gene-
based analysis for identifying more reliable genes contribut-
ing risk to moderate or severe asthma. The MAGMA gene-
based analysis revealed significant 1778 genes (MAGMA-
based P<0.05) to be associated with moderate-to-severe
asthma. The association signals of gene-based analysis were
yielded by HLA-DQAI (MAGMA-based P=2.90x 10" %),
HLA-DQBI (MAGMA-based P=398x10"%"), ILI8RI
(MAGMA-based P=4.99x 10" "), CLECIGA (MAGMA-
based P=5.27x10""), DEXI (MAGMA-based P=9.70 x
107"%), TSLP (MAGMA-based P=299x10™'%), SMAD3
(MAGMA-based P=121x10""%), and ILIRLI (MAGMA-
based P =152 x 10" '%). Consistently, there were a number
of 228 genes overlapped with the results of Sherlock analysis
in the discovery stage (Supplemental Table S2).
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Severe asthma GWAS Summary
data (N =31,810)

J

Sherlock Bayesian analysis
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[ Identified 11 promising genes ]
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| Prioritization stage 3 | | Validation stage 2 |

Fig. 1 The overall workflow of current investigation

Pathway-based analysis of 228 identified risk genes

Through using these identified 228 risk genes, we car-
ried out a pathway-based enrichment analysis based on
the KEGG pathway resource. There were 17 biological
pathways prominently overrepresented by these identi-
fied genes (Fig. 2a-b and Supplemental Table S3). These
significantly enriched pathways have functionally inter-
acted with each other (Fig. 2a). The top-ranked signifi-
cant pathways were antigen processing and presentation
(Corrected P=4.30x10"9), type 1 diabetes mellitus
(Corrected P=7.09 x 10~°), inflammatory bowel disease
(Corrected P=1.14x10"%. Of note, the pathway of
asthma (Corrected P=1.72x10"%) was significantly
enriched by these 228 risk genes (Fig. 2b and Supple-
mental Table S3). In addition, we further performed
GO-term enrichment analysis according to 3 categories
of molecular function, cellular component, and bio-
logical process, respectively. With regard to the terms of
molecular function (Fig. 2c and Supplemental Table S4),
these identified risk genes were significantly overrepre-
sented in 7 terms, including peptide antigen binding

(Corrected P=5.17 x 10™°), peptide binding (Corrected
P=1.72x10"3), and ATP-dependent DNA helicase ac-
tivity (Corrected P =7.15 x 10" %). For the terms of cellu-
lar component (Fig. 2d and Supplemental Table S5), 12
GO-terms were significantly overrepresented; e.g., MHC
protein complex (Corrected P=4.91x10"7), plasma
membrane protein complex (Corrected P=6.79 x 10~ 9,
and class II protein complex (Corrected P =5.43 x 10™%).
With respect to the terms of biological process (Fig. 2e,
Supplemental Fig. S1, and Supplemental Table S6), we
detected a number of 32 significantly enriched GO-
terms; e.g., regulation of leukocyte mediated immunity
(Corrected P =4.22 x 10~ °), antigen processing and pres-
entation of peptide antigen (Corrected P=1.58 x 10™°),
and regulation of adaptive immune response (Corrected
P=212x107°).

Two independent eQTL datasets for validation

We re-performed the Sherlock Bayesian analysis with
the same parameter settings by using two independent
expression QTL datasets (Datasets #4 and #5). For the
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8

eQTL data from Dataset #4, Sherlock analysis detected a
number of 964 significant or suggestive risk genes (Sim-
ulated P value <0.05, Fig. 3a). The top signals of this
dataset were HLA-DQA2 (Simulated P=7.73x1077),
HLA-DQA1 (Simulated P=7.73x10"7), and P4HA2
(Simulated P=7.73x10"7). For the eQTL data from
Dataset #5, Sherlock analysis detected a group of 771
significant or suggestive risk genes (Simulated P value <
0.05, Fig. 3a). The top signals of this dataset were
ORMDL3 (Simulated P =1.02 x 10~°), HLA-DRB5/HLA-
DRBI/HLA-DQBI1/HLA-DQB2 (Simulated P =4.09 x
10~ °), and ZNF749 (Simulated P = 2.05 x 10”°).

To further replicate the reliability of above identified
risk genes, we compared these Sherlock-identified genes
from Datasets #4 and #5 with two groups of identified
genes from Datasets #3 and #1, indicating there exist a
considerable number of genes overlapped among these 4
groups (Fig. 3a). We found that Sherlock-identified genes

from Dataset #3 in the discovery stage showed a signifi-
cantly or marginally higher overlap with genes from Data-
sets #4 (Permuted P =0.0024; Fig. 3b), #5 (Permuted P =
0.064; Fig. 3c), and #1 (Permuted P =0, i.e., very signifi-
cant; Fig. 3d) than that of random selection from back-
ground genes. In addition, we observed that Sherlock-
identified genes from Datasets #3, #4, and #5 have rela-
tively higher overlapped gene rates with MAGMA-
identified genes from asthma GWAS data than that from
Null GWAS data (Dataset #2) (Fig. 4a,b,c).

From technique and biological validation from these in-
dependent datasets, there were a number of 11 risk genes
common across all analyses (Fig. 3a and Table 1). Interest-
ingly, 4 genes of MPI, DECR2, LNPEP, and TTCI9 are
newly reported to be involved in severe asthma risk. Based
on Null GWAS data, we found that all these 11 identified
genes showed non-significant associations with the ran-
dom phenotype of asthma (Table 1).
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PPI network-based analysis of 11 highlighted risk genes

To reveal the functional interactions of 11 highlighted
risk genes associated with moderate-to-severe asthma,
we performed a PPI network enrichment analysis with
the use of the GeneMANIA bioinformatics tool [40].
Figure 5 demonstrated that these identified 11 asthma-
associated genes were highly interacted together with
multiple layers of evidence, encompassing physical inter-
actions, pathway links, co-expression correlations, pre-
dicted links, and shared protein domains. These 11
highlighted risk genes accompanied with the other 19
predicted genes constructed a biological sub-network,
which potentially implicated in the pathogenesis of se-
vere asthma. For example, the hub genes of MP],
TTC19, and SLC22A5 show evidence of co-expressions
(Fig. 5). The important gene of GNGT2 showed high in-
teractions with other genes in this sub-network. Further-
more, the well-reported asthma-associated genes of

HLA-DQA1, HLA-DRBI, and HLA-DRBS have the most
number of interacted edges with identified and predicted
genes (Fig. 5).

Differential gene expression patterns among severe
asthma different datasets

To further validate the functionality of 11 highlighted
risk genes, we tested the different co-expression profiles
of these genes among SA, notSA, and control group in
the GSE130499 dataset. We detected that the co-
expression patterns of these 11 important genes among
SA and notSA group showed obvious differences by
comparison with control group (Fig. 6a-c). There were 7
genes showing significantly abnormal expressions among
3 groups (Fig. 6d-j and Supplemental Fig. S2); for ex-
ample TLR6 (ANOVA P=0.035) and TTCI9 (ANOVA
P =0.0067). Meanwhile, in an independent dataset of
GSE123750, we found that TTCI9 (P =0.0078; Fig. 6k),
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TLR6 (P=0.0086; Fig. 6l), and GNGI2 (P =0.045; Fig.
6m) were significantly expressed in severe asthma by
comparison with mild-moderate asthma. In addition, we
observed that there existed distinct expression patterns
between vehicle and various GCs including VSG158,
VSG159, FF, and DEX in the dataset of GSE119789
(Fig. 7a and Supplemental Fig. S3); for example, Gngt2
(ANOVA P=1.55x10"% Fig. 7b) and Tlr6 (ANOVA
P=6.43x10"% Fig. 7c). Consistently, we also detected
that the co-expression patterns of these 11 important
genes were distinctly altered by using various GCs com-
paring with vehicle (Fig. 7d-e and Supplemental Fig. S4).

Identification of risk eSNPs among these 11 identified
asthma-risk genes

For each of these 11 identified genes, we found multiple
important eSNPs showing significant association with
the expression of this gene and moderate-to-severe
asthma risk simultaneously (Supplemental Table S7). To
name a few, for the gene of TLR6, there were 3 cis-
regulatory eSNPs of rs11466640 (P.qrr =1.64 x 1077

and Pgwas = 2.0 x 10™?), rs5743592 (P.qrr=3.0x10"°
and Pgwas =249 x 107%), and rs5743595 (Peqry = 4.5 x
107 and Pgwas = 2.61 x 10~ %) and one trans-regulatory
eSNP of rs11130280 (Peqrr=5.0x10"% and Pgywas=
1.83x 107 %). As for GNGT2 gene, 3 SNPs of rs17637472
(Peyrr, = 2.98 x 10™® and Pgyas = 340 x 10~ %), rs11265180
(Peqr=60x10"° and Pgwas=199x10"%), and
151867087 (Peqr = 1.0x 10" * and Pgwas = 1.84x 107°)
were severe asthma-associated eSNPs. To replicate this
findings, we used the web-based tool of HaploReg [41] and
found 2 eSNPs of rs17637472 and rs1867087 were signifi-
cantly associated with the expression of GNGT2 in whole
blood cells (P=2.13x 10"°% and P =3.79 x 10~ %%, Supple-
mental Table S8). In addition, GNGT2 gene contains some
suggestive asthma-associated SNPs (Supplemental Fig. S5);
eg 15648980 (Pgwas=193x107%), rs617182 (Pgwas =
1.95x10°%), 1s55978930 (Powas =279 x 1074,
15113201977 (Pgyas = 4.14 x 10~ %). The polymorphisms of
15648980 (Peyrr =140 x 10™ %) and r1s617182 (Peqrr =
6.25x107>% also showed a significant association with
GNGT?2 expression level in whole blood samples [44], and
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Table 1 Integrative genomics analysis highlighted 11 highlighted genes contributed to moderate-to-severe asthma risk

Gene Simulated P-value  Simulated P-value  Simulated P-value = MAGMA-based MAGMA-based P GWAS Catalog
name (Sherlock analysis (Sherlock analysis (Sherlock analysis P-value value (Dataset #2, documented genes
of Dataset #3) of Dataset #4) of Dataset #5) (Dataset #1) negative control)
HLA-DRB5 793107 160x 1072 409%107° 757%107"° 0.11 Documented gene
HLA-DRB1  7.93x 1077 464x107° 409%107° 141%x107" 0.59 Documented gene
GNGT2 111x107° 230x 107" 183x 1072 142x 1072 048 Documented gene
HIA-DQAT 2.85% 107 773%1077 149%107° 290x 107 058 Documented gene
SLC22A5  185x107* 387x107° 266x107° 123%x107° 046 Documented gene
STAT6 219x107* 275%1072 331x10°° 194x 107" 097 Documented gene
MPI 190x 1072 2021072 239x107° 112x107° 084 Not documented gene
TLR6 363x107° 354%x107°2 6.69x10 > 410% 1077 0.93 Documented gene
DECR2 162%107° 432%10°? 158x 107" 222x10°° 078 Not documented gene
LNPEP 228x107° 555% 107" 433%107° 398x 102 046 Not documented gene
T7C19 252% 1072 181x1072 220% 1072 323%x 1072 030 Not documented gene

1555978930 (Peqyrr, = 2.52 x 10~ ®) is significantly associated
with GNGT2 expression level in thyroid tissue [45].

Discussion

Asthma is a heterogeneous and chronic airways disease, and
it is estimated to influence 235-334 million individuals
worldwide [1, 2, 46]. Approximately 15% of asthma patients
are treated for severe asthma, which is in relation to poor
control and response to treatment (3, 4, 47]. Severe asthma
is influenced by both environmental and genetic components

[5-7]. There is a considerable interest in improvement of
our understanding of the biological mechanism of severe
asthma by using genetics and genomics approaches. Current
investigation based on comprehensive genomics integrative
analysis is designed to prioritize important risk genes associ-
ated with moderate-to-severe asthma.

In general, GWAS is a wide-used and effective method
for identifying disease-associated common SNPs. To
date, through using GWAS, thousands of SNPs have
been reported to be associated with complex diseases/
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traits of interests [48, 49]. Consistently, many studies
have demonstrated that numerous SNPs were identified
to be associated with asthma [2, 8—14]. But, only several
GWASs reported to identify risk variants for moderate-
to-severe/severe asthma [15, 50, 51]. Because of examin-
ing millions of SNPs at one experiment of GWAS which
employs very stringent correction methods for multiple
testing, the power of GWAS has been remarkably con-
strained. Furthermore, considering numerous SNPs were
highly linked with each other, these previously reported
asthma-associated SNPs appeared to be accompanied
with several highly linkage disequilibrium (LD) SNPs
with similar P values. Thus, to confirm the exact causal
SNPs became a very tough and necessary job. In light of
the vast majority of identified SNPs being located in the
non-coding genomic regions, it is plausible to infer that
identified SNPs contribute to asthma risk through medi-
ating the expression level of the causative genes. Thus,
the Sherlock Bayesian analysis is a powerful method to

identify asthma-associated novel risk genes and eSNPs
which cannot be identified by any single GWAS study.
In the present study, we utilized the Sherlock Bayesian
analysis to integrate a large-scale GWAS summary data-
set (N =30,810) with an eQTL dataset (N = 1490) as dis-
covery dataset for identifying susceptible genes and
SNPs associated with moderate-to-severe asthma. We
identified 1129 significant genes with eSNPs to be asso-
ciated with moderate-to-severe asthma. Some of the top-
ranked significant genes, e.g., HLA-DRB3, HLA-DRBS,
and HLA-DRB4, have been widely documented to be in-
volved in mild asthma pathogenesis in previous studies
[2, 11-16, 52], which is in line with previous finding that
there exist shared genetic components between mild and
moderate-to-severe asthma [47]. Furthermore, we
employed an independent technique of MAGMA gene-
based analysis, which has been extensively used for iden-
tifying susceptible genes associated with complex dis-
eases [31, 53-56], to validate Sherlock-identified genes
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in the discovery stage. Interestingly, 228 genes were sig-
nificantly replicated. These identified genes were signifi-
cantly enriched in 17 biological pathways, including the
pathway of antigen processing and presentation, type I
diabetes mellitus, inflammatory bowel disease, and
asthma. These results provide a mechanistic clue for fur-
ther experimental validation. To improve the reliability of
our findings, we used two independent eQTL datasets for
biological validation, and found that Sherlock-identified
genes in the discovery stage were higher overlapped with
Sherlock- and MAGMA-identified genes in replication
stages than that of random selections. Together, based on
biological and technical validation, the findings of our
current integrative genomics analysis are reliable.
Subsequently, through performing joint bioinformatics
analyses, including MAGMA gene analysis, pathway en-
richment analysis, in silico permutation analysis, PPI
network analysis, co-expression analysis, and DEG ana-
lysis, we highlighted 11 important genes, such as
GNGT2, TLR6, and TTCI19, may represent authentic risk
genes for moderate-to-severe asthma. By using the PPI
network enrichment analysis, we observed that these 11
highlighted genes together with the other 19 predicted
genes constructed a biological sub-network, suggesting
that these genes have collective functions in severe

asthma-related risk rather than false-positives. In view of
the assumption of genes identified from Sherlock Bayes-
ian analysis is that the expression level of risk genes with
eSNPs are abnormally changed in individuals at disease
status [33], the expression of identified genes should be
dysregulated in severe asthmatic patients if the Sherlock-
identified genes truly confer risk to asthma. Thus, we
performed DEG analyses using 2 RNA expression data-
sets on severe asthma and 1 RNA expression dataset on
the inhaled glucocorticoids treatment for severe asthma.
We found that there exist different co-expression pat-
terns of these 11 highlighted genes among severe
asthma, not severe asthma and control group, as well as
between vehicle and various GCs, indicating that the al-
tered expression of these 11 genes may implicate in the
etiology of severe asthma. There were 8 of 11 genes (8/
11=72.7%) showing significantly different expression
profiles between severe asthma and controls; for ex-
ample, GNGT2, TLR6, TTC19, LNPEP, SLC22A5 and
HLA-DQAL.

For the important gene of GNGT2, there were 3
eSNPs of rs17637472, rs11265180, and rs1867087 associ-
ated with moderate-to-severe asthma risk. 2 SNPs of
rs17637472 and rs1867087 have identified to be signifi-
cantly associated with the expression level of GNGT2
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gene [44]. Consistently, the polymorphism of rs17637472
was reported to be the strongest cis-eQTL for GNGT2 gene
[57, 58]. Demenais and colleagues [16] demonstrated that
the polymorphism of rs17637472 is a susceptibility locus for
asthma based on a large-scale GWAS (N =142,486) from
ethnically-diverse populations. Ferreira and coworkers [12]
documented that the GNGT2 gene was predicted targets of a
sentinel risk SNP of rs12952581 for asthma. In addition, we
also observed several suggestive asthma-associated SNPs
(e.g., rs648980, rs617182, and rs55978930) were mapped into
the gene of GNGT?2, indicating the association signals of this
gene was not alone and reflecting this gene predisposes to be
a genuine risk gene rather than false-positive one. The pro-
tein encoded by GNGT2 gene is thought to play an import-
ant role in cone phototransduction. It belongs to the G
protein gamma family and is localized specifically in cones
[59]. GNGT?2 protein has an interaction with beta-arrestin 1
for promoting G-protein-dependent Akt signaling to activate
NEF-kappaB [60]. A previous genome-wide methylation ana-
lysis [61] based on the Illumina Human Methylation 450 K
array of whole blood samples (N =724) has demonstrated
that the CpG site of cg00980784 in GNGT2 was significantly
associated with current smoking compared with never smok-
ing after correction for multiple testing. Smoking is a well-
established risk factor for the development of asthma [62].

The protein encoded by TLR6 gene is a member of the
Toll-like receptor (TLR) family, which regulate immune
system pathogen recognition and activate innate immun-
ity. Clinical experiments demonstrated that Ser249Pro
polymorphism in TLR6 has a protective effect on asthma
[63, 64]. Furthermore, genetic variants in TLR6 exerting
their protection on asthma were linked with greater
mononuclear cell generation of Thl-type cytokines [65].
Based on a mouse model, Moreira et al. [66] showed
that the protective role of TLR6 for asthma is regulated
by IL-23 and IL-17A. In our current analysis, there were
4 eSNPs of rs5743595 (Peqrr =4.5x 1077 and Pgwas =
261x107%), 1s11130280 (Peqr=50x10"° and
Pwas = 1.83 x 107 2), 185743592 (Pqrr. = 3.0 x 10~ ¢ and
Pawas =249 x 107%), and rs11466640 (P.qrr = 1.64 x
1077 and Pgwas=2.0x10"2) in TLR6 associated with
moderate-to-severe asthma risk. In addition, numerous
SNPs in the gene of TLR6 were reported to be associated
with allergic disease [67—69].

Among these 11 identified genes, there were 4 newly
discovered genes of MPI, DECR2, LNPEP, and TTCI9.
For TTCI9 gene, it encodes a protein with a tetratrico-
peptide repeat (TPR) domain, which is embedded in the
inner mitochondrial membrane and is involved in the
formation of the mitochondrial respiratory chain III
[70]. There were seven eSNPs with cis- or trans-
regulatory roles in TTCI9 to be associated with severe
asthma. For example, the cis-regulatory eSNP of
rs3785631 is associated with severe asthma (Pgwas=
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6.37x 10" %) and gene expression of TTCI19 (P.qrL =
1.79 x 10~ 7). The genetic variation in LNPEP, which is a
zinc-dependent aminopeptidase that cleaves vasopressin,
was reported to be associated with 28-day mortality in
septic shock [71]. Here we found nine eSNPs in LNPEP
to be associated with severe asthma. With regard to
MPI, there were four eSNPs to be associated with severe
asthma. Together, our findings showed that these 11
genes convey risk of moderate-to-severe/severe asthma
and worth us to do further experimental validation.

Some limitations are warranted to comment. First, al-
though we collected multi-layers of omics data, there
existed other omics data missed in our current investiga-
tion. For example, gene expression datasets used in
current analysis are derived from lymphoblastoid cell
lines and monocytes. Further studies are needed to as-
sess tissues that could be more relevant to asthma
pathogenesis, such as nasal or lung tissues. Second, be-
cause of the heterogeneity of used datasets, we used dif-
ferent correction methods for multiple testing for each
individual omics data, e.g., simulated P < 0.05 in Sherlock
analysis, MAGMA-based P <0.05 in MAGMA analysis,
FDR<0.05 for pathway enrichment analysis, and
ANOVA P<0.05 for DEG analysis. Moreover, our
current integrative genomics analysis found many SNPs
showed significant association among European popula-
tion. We did not explore their effects on asthma in other
ancestries. For example, the SNP of rs17637472 showed
significant association not only in Europeans but also in
a multi-ethnic meta-analysis, suggesting that the eQTL
effect may be also extensible to individuals of other an-
cestries. However, this inference should be evaluated by
using genotype and gene expression data from popula-
tions of different ethnicities.

Conclusions

In summary, current study provides several lines of evi-
dence to support that 11 highlighted genes including
GNGT2, TLR6, and TTCI9 could be treated as genuine
moderate-to-severe/severe  asthma-associated  genes.
Through incorporating GWAS summary-based genetic
information with eQTL data, we offered a reasonable ex-
planation of the biological functions of genetic variants
on severe asthma risk. The results of current investiga-
tion give several eSNPs and risk genes for subsequent
functional experimentations to explore the biological
mechanism of developing severe asthma.
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