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A deep learning approach 
in diagnosing fungal keratitis based 
on corneal photographs
Ming‑Tse Kuo1,3*, Benny Wei‑Yun Hsu2,3, Yu‑Kai Yin2, Po‑Chiung Fang1, Hung‑Yin Lai1, 
Alexander Chen1, Meng‑Shan Yu1 & Vincent S. Tseng2*

Fungal keratitis (FK) is the most devastating and vision-threatening microbial keratitis, but clinical 
diagnosis a great challenge. This study aimed to develop and verify a deep learning (DL)-based corneal 
photograph model for diagnosing FK. Corneal photos of laboratory-confirmed microbial keratitis were 
consecutively collected from a single referral center. A DL framework with DenseNet architecture was 
used to automatically recognize FK from the photo. The diagnoses of FK via corneal photograph for 
comparing DL-based models were made in the Expert and NCS-Oph group through a majority decision 
of three non-corneal specialty ophthalmologist and three corneal specialists, respectively. The average 
percentage of sensitivity, specificity, positive predictive value, and negative predictive value was 
approximately 71, 68, 60, and 78. The sensitivity was higher than that of the NCS-Oph (52%, P < .01), 
whereas the specificity was lower than that of the NCS-Oph (83%, P < .01). The average accuracy of 
around 70% was comparable with that of the NCS-Oph. Therefore, the sensitive DL-based diagnostic 
model is a promising tool for improving first-line medical care at rural area in early identification of FK.

Microbial keratitis (MK) is one of the leading causes of blindness1. Among MK, fungal keratitis (FK) is the 
most devasting disease that causes severe vision losses2, 3 and accounts for more than half of the MK in several 
tropical and subtropical regions4. Delayed diagnosis may cause deep fungal invasion of cornea and lead to poor 
penetration of the antifungal agents. The unsuccessful medical treatment of FK may lead to series of severe 
complications, including corneal melting, glaucoma, and endophthalmitis5. Consequently, at least one third 
of FK patients ultimately underwent surgical interventions such as intrastromal injection of antifungal agents, 
therapeutic keratoplasty, penetrating keratoplasty, or deep anterior lamellar keratoplasty6,7. Therefore, Early 
diagnosis is essential for avoiding severe complications and minimizing surgical necessities.

Early diagnosis of FK, however, is challenging for first-line physicians or eye care practitioners8. The unfa-
miliarity with the clinical presentation of FK and the lack of diagnostic tests such as culture or polymerase chain 
reaction often leads to delayed diagnosis and referral to medical center. According to Dahlgren et al.9, among 
the major categories of MK, FK was the most difficult to diagnose by clinical presentations. The sensitivity and 
specificity of clinical diagnosis of FK were 38% and 45%, respectively. Even corneal specialists were only able to 
distinguish fungal from bacterial etiology 66% of the time via photographic diagnosis10. However, Thomas et al. 
showed that diagnostic accuracy could be improved by delicate morphological analysis on corneal infiltrates11. 
Therefore, reinforcing clinical image diagnosis in first-line medical services may reduce delayed diagnosis of FK 
and prevent the development of intractable FK.

Artificial intelligence (AI) based on deep learning (DL) has sparked incredible medical interest globally in 
recent years. DL is a class of state-of-the-art machine learning techniques, which has no need for manual feature 
engineering and automatically recognizes the complex structures in high-dimensional data through projection 
on a low-dimensional manifold12. In recent years, DL has been applied to ocular imaging for a variety of purposes 
such as diagnosing diabetic retinopathy and evaluating optic disc morphologies13–16. In view of outstanding per-
formances of DL in ocular imaging, we expect that the application of DL can improve the diagnostic accuracy of 
FK in primary care and community settings. In consequence, the purpose of this study was to develop a DL-based 

OPEN

1Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College 
of Medicine, No.123, Dapi Rd., Niaosong Dist., Kaohsiung  833, Taiwan, ROC. 2Department of Computer 
Science, National Chiao Tung University, No. 1001, Daxue Rd., East Dist., Hsinchu  300, Taiwan, ROC. 3These 
authors contributed equally: Ming-Tse Kuo and Benny Wei-Yun Hsu. *email: mingtse@cgmh.org.tw; vtseng@
cs.nctu.edu.tw

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-71425-9&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:14424  | https://doi.org/10.1038/s41598-020-71425-9

www.nature.com/scientificreports/

corneal photo diagnostic model, evaluate the validity of the model, and compare the diagnostic performance of 
the model with ophthalmologists.

Materials and methods
Study design & subjects.  This was a retrospective study enrolling patients with clinically suspected MK 
who had records of corneal digital photographs and laboratory confirmation of microbial invasion. The study 
adhered to the Declaration of Helsinki and the ARVO statement on human subjects and was approved by the 
Chang Gung Medical Foundation Institutional Review Board (Ethical approval code: 201800949B0C501). The 
consent for patients in this study has been waived by the Institutional Review Board. The consecutive patient 
records in the Kaohsiung Chang Gung Memorial Hospital from June 1, 2007 to May 31, 2018 were retrospec-
tively reviewed. Corneal photography was performed according to the same standard procedure by certified 
ophthalmic technicians using Nikon D100 camera mounted on Topcon SL-D8 slit lamp biomicroscopy (before 
May, 2015) and Canon EOS 7D camera mounted on Haag-Streit BX900 slit lamp microscopy (since May, 2015).

The enrolled patients must have received corneal scarping or biopsy and have at least one of the following 
laboratory confirmations, including direct microscopy (Gram or acid fast stain), culture (blood agar, chocolate 
agar, Sabouraud dextrose agar, or Löwenstein–Jensen slant), molecular tests (polymerase chain reaction or 
dot hybridization assay), and pathological examination17–20. However, the subjects with mixed infection were 
excluded. Moreover, the proved subjects without photographic documentation for their MK were excluded. Fur-
thermore, subjects were also excluded if the initial documented photos were obtained after the acute stage of MK 
(corneal haze without infiltrate and symptoms onset > 7 days for non-mycobacterium bacterial keratitis, > 14 days 
for FK and herpes keratitis, and > 21 days for mycobacterial keratitis and parasitic keratitis—Acanthamoeba 
keratitis and microsporidial keratitis). One corneal photograph with white light illumination (no slit beam 
enhancement) for each patient was used for the following experiments. A total of 288 photos were collected 
from 288 eyes of 288 laboratory-confirmed MK patients.

Image preprocessing of subjects’ corneal photos.  All photos used for the development of DL-based 
model for diagnosing FK were delinked from personal identification except for their corresponding diagnosis. 
The identification information and date of photography footnoted in the image of each subject were automati-
cally pre-cut with a batch processing manner by a specially designed software. After that, in order to auto-
matically disregarding unnecessary information and reducing the impact of noise from the raw images on DL 
algorithm, the images were processed with normalization and transformation techniques (Fig. 1). For data nor-
malization, RGB values of each image were calculated for obtaining standard deviation and mean value to nor-
malize each pixel in a range 0 to 1. Gaussian blur, a denoising technique for images, was used to reduce image 
details to a certain level and make machines unaffected by much noise. After the above image preprocessing, two 
randomization techniques, horizontal flip and color jitter, were used before entering the training process of the 
neural network. The processes of horizontal flip and color jitter were built-in functions in the training flow. We 
set up a random ratio of 0.5, which meant that there was a 50% probability of doing horizontal flip and color jitter 
on some corneal photos in each training epoch. The randomization techniques were utilized in training process 
to help the model learn more variations of images.

Establishment of the DL‑based diagnostic model of FK.  Convolutional Neural Network (CNN) has 
been demonstrated to be effective in implementing DL for classifying the image data21. Therefore, we exploited 
the DenseNet algorithm22, a representative CNN-based DL method with less computations and more effective-
ness than the ResNet algorithm23, for establishing DL models for diagnosing FK, of which the framework is 
shown in Fig. 1. The training dataset was used to teach a DL model how to recognize FK and non-FK photos, 
while the validation dataset was used to understand the performance of a trained model (Fig. 1a). After the 
randomization, the model was trained with the DenseNet architecture (Fig. 1b). In order to generate the opti-
mal model, we empirically tuned the hyperparameters of DenseNet, including learning rate, the number of 
dense blocks, growth rate, and batch size according to the validation results. The visualization technique, Grad-
CAM ++ 24, was used to realize what regions of the photo were recognized by the DL model.

Clinical image diagnosis from ophthalmologists of corneal and non‑corneal specialty.  The 
clinical diagnostics of FK is based on the clinical features of corneal infiltrates, including feathery or serrated 
margin, raised slough, colorization, dry texture, and satellite lesion10,11,25. Three experienced corneal special-
ists, who had more than seven years of qualification in the specialty (26  years, 15  years, and 8  years), were 
asked to provide their clinical impressions for the same corneal photos tested for the DL model for diagnosing 
FK. Another three senior ophthalmologists of non-corneal specialty with comparable qualifications in clinical 
practice (25 years, 16 years, and 12 years) were also invited to make their clinical impressions for these photos. 
The average work experience after ophthalmic qualifications was 16.3 years and 17.7 years for the corneal and 
non-corneal specialty ophthalmologists (P = 0.8474), respectively. A technician played these digital photos on 
a 28-inch liquid crystal display monitor to assist all doctors on making their clinical diagnosis in a masked 
manner. Each doctor was asked to provide one of the two following impressions: presumed FK or presumed 
non-fungal MK. Expert diagnosis was reached when at least two corneal specialists had the same impression. 
Similarly, the non-corneal specialty ophthalmologist (NCS-Oph) diagnosis was determined in the same manner.

Diagnostic validation.  Five-fold cross validation was used to assess the AI-assisted diagnostic method for 
FK. In brief, the photos of MK (Fig. 2) were classified as FK group (n = 114) and non-FK group (n = 174), which 
included bacterial keratitis (n = 141), herpes keratitis (n = 21), and parasitic keratitis (n = 12). The photos of each 
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group were randomly and equally assigned into five datasets. In turn, four of the datasets were used to fit and 
train a DL diagnostic model, and the remaining one was used to validate and obtain the scores of performance 
indices of the model. Finally, five diagnostic models were established and their scores of performance indices 
were also obtained, respectively. The five models were under the same architecture with different parameters 
learned by DL models themselves. This fivefold cross validation method was helpful in validating performances 
on small datasets. All photos were also used to validate the diagnosis of each ophthalmologist, the Expert, and 
NCS-Oph diagnosis. The average performances of the five DL models, 3 corneal specialty ophthalmologists, and 
3 non-corneal specialty ophthalmologists were determined, respectively. The overall performances of the Expert 
diagnosis and the NCS-Oph diagnosis were estimated, too.

Statistical analysis.  The performance indices, including sensitivity, specificity, positive predictive value 
(PPV), negative predictive value (NPV), and diagnostic accuracy of FK, were calculated for the DL model, the 
Expert diagnosis, and the NSC-Oph diagnosis, respectively. The 90% and 95% Wilson/Brown binomial confi-

Figure 1.   The deep learning framework for diagnosing fungal keratitis by corneal photographs. (a) The abstract 
structure for developing the deep learning-based model for diagnosing fungal keratitis. (b) The DenseNet 
architecture, a deep learning neural network adopted in this study. Images were fed into the first convolution 
layer and then the output feature was mapped to input the dense block. Dense blocks contain dense networks 
that connect each layer to every other layer in a feedforward manner. The output of first two dense blocks were 
the input of transition layers that reduce the dimensions of the channels to prevent further dense blocks from 
generating too many feature maps. The last dense block produced feature maps, and these maps were fed in the 
global average pooling layer, fully connected layer, and Softmax to obtain the final classification results. DL, deep 
learning; ReLU, rectified linear unit; FC, fully connected layer.
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dence intervals for these indices were estimated. Moreover, the Fisher exact test was performed to identify the 
statistical difference of each performance index between the two groups. Significant difference was set at P < 0.05 
and analyzed by GraphPad Prism version 8.2.1 for Windows (GraphPad software, San Diego, CA).

Results
Performance of the DL model for diagnosing FK.  The average performance the five DL models for 
cross validation was shown in Table 1. The average sensitivity and NPV were higher than 70%, while the aver-
age specificity and PPV were lower than 70%. The average diagnostic accuracy of the DL model for diagnosing 
FK was near 70%. The receiver operator characteristic (ROC) curve and area under ROC curve (AUC) were 
depicted in Fig. 3. The AUC was near 0.65. By using Grad-CAM ++ , we can tell whether the deep learning model 

Figure 2.   Representative photographs of microbial keratitis caused by fungal and non-fungal pathogens. Fungal 
keratitis (a–d) and non-fungal keratitis (e–h): (a) Candida keratitis, (b) Fusarium keratitis, (c) Acremonium 
keratitis, (d) Curvularia keratitis, (e) Pseudomonas keratitis, (f) Herpes keratitis, (g) Acanthamoeba keratitis, (h) 
Microsporidia keratitis.

Table 1.   Average performance of the deep learning model in diagnosing fungal keratitis.

Diagnostic performance (95% confidence interval)

% Sensitivity % Specificity
% Positive
Predictive value

% Negative
Predictive value % Accuracy

71.1 68.4 59.6 78.3 69.4

(62.1–78.6) (61.1–74.9) (51.2–67.4) (71.1–84.1) (63.9–74.5)

Figure 3.   The performance of the deep learning model in differentiating fungal keratitis and non-fungal 
keratitis was illustrated by the receiver operator characteristic curve. ROC receiver operator characteristic curve 
plot.
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learned the correct region of interest or not. We found that the model focused on the cornea of most correct-
classified images. However, the discrimination between FK and non-FK on Grad-CAM ++ imaging was not 
obvious. The crucial point for discriminating FK and non-FK were the complicated combinations of non-linear 
equations in the model.

Performance of the senior ophthalmologists for identifying FK.  The average diagnostic perfor-
mance of the 3 non-corneal specialty ophthalmologists and that of 3 corneal specialty ophthalmologists were 
shown in Table 2. The average diagnostic sensitivity and NPV of the non-corneal specialty ophthalmologists 
were significantly lower than those of the corneal specialty ophthalmologists (P = 0.0026 and 0.0354, respec-
tively), while the average diagnostic specificity and PPV did not reach statistical difference. The average diagnos-
tic accuracy of the former was significantly lower than that of the latter (P = 0.0208).

Performance of the NCS‑Oph and Expert diagnosis for identifying FK.  Among the 114 patients 
of FK, the NCS-Oph and Expert diagnosis correctly identified 59 and 81 patients, respectively. Correspondingly, 
144 and 143 patients were correctly diagnosed from 174 patients of non-FK. Therefore, the overall sensitivity, 
specificity, PPV and NPV of the NCS-Oph diagnosis were 52%, 83%, 66%, and 72%, while those of the Expert 
diagnosis were 71%, 82%, 72%, and 81%, respectively. The overall accuracies of NCS-Oph and Expert diagnosis 
for FK were 70% and 78%, respectively. For diagnosing FK, the Expert diagnosis was significantly better than 
NCS-Oph diagnosis in sensitivity (P < 0.01), and marginally better in NPV (P = 0.051) and accuracy (P = 0.057).

Comparison of the DL model and the ophthalmologist diagnosis in identifying FK.  We com-
pared the average performance of 3 non-corneal specialty ophthalmologists and that of 3 corneal specialty oph-
thalmologists with the DL model (Table 2). We found the DL models had higher average accuracy than that of 
the non-corneal specialty ophthalmologists (P = 0.8558) but lower than that of the corneal specialty ophthal-
mologists (P = 0.0919). There was no significant difference in the two comparisons. In the average sensitivity, 
the DL models were significantly higher than that non-corneal specialty ophthalmologists (P = 0.0042) and very 
close to that of the corneal specialty ophthalmologists. However, the DL models were lower than either type of 
ophthalmologists in the average specificity, especially when compared to corneal specialty ophthalmologists 
(P = 0.0385). We further compared the majority decision of ophthalmologists with the DL model. In compari-
son to NCS-Oph diagnosis, the DL model had significantly higher sensitivity and lower specificity, but had no 
significant differences in PPV and NPV (Fig. 4a). However, when compared with the Expert diagnosis, the DL 
model had significantly lower specificity and PPV, but had comparable performance in sensitivity and NPV 
(Fig. 4b). Namely, the diagnostic accuracy of DL model is equivalent to that of the NCS-Oph diagnosis, but is 
significantly lower than that of the Expert diagnosis.

Discussion
For MK, clinical diagnosis is the most important step to initiate confirmative assays and to provide effective 
empirical treatment for patients before pathogen confirmation. Clinical diagnosis of FK has been recognized as 
the most challenging work among MK9. The sensitivity, PPV, and diagnostic accuracy based on clinical image 
were approximately 38%, 45% and 66%, respectively9,10. In this study, a novel DL-based diagnostic model for 
identifying FK was developed based on the corneal photo with direct white light illumination. The average 
sensitivity, PPV, and diagnostic accuracy of this model were about 71%, 60%, and 70%, respectively (Table 1).

This is the first study to diagnose FK with corneal photographs using DL-based machine learning techniques. 
Saini et al. used the basic neural network structure to classify infective keratitis26. Their input consists of 40 vari-
ables on patients’ history and lab data for training and testing. Therefore, the performance of their classification 
model was based on the completeness of the input variables. In practice, once their model is used to aid clinicians 
for diagnosis, the clinicians have to wait for the results of lab tests and collect necessary input variables. In con-
trast, our approach needs only the corneal photos for keratitis classification, such that it offers higher feasibility 
in real-world applications. Besides, our approach and their model achieve comparable performance in terms of 
diagnostic accuracy. However, they used only 63 cases for training and 43 cases for testing. Also, they did not 
use cross validation to minimize the bias, which may exist in the distribution of training and testing datasets. 
In contrast, we applied fivefold cross validation to validate the robust performance of our model. By observing 
the misclassified images, we found that most of the misclassifications were not because the model misclassified 
the classes of keratitis. Instead, it was due to incorrect focusing of unwanted regions of the photo, such as eyelid, 

Table 2.   Average performance of non-corneal and corneal specialty ophthalmologists in diagnosing fungal 
keratitis.

Results of ophthalmologists

Diagnostic performance (95% confidence interval)

% Sensitivity % Specificity
% Positive
Predictive value

% Negative
Predictive value % Accuracy

Non-corneal specialty
51.8 77.2 59.8 71.0 67.1

(42.7–60.7) (70.9–83.3) (43.1–61.1) (64.0–76.9) (62.5–72.3)

Corneal specialty
71.9 78.5 68.7 81.0 75.9

(63.1–79.4) (72.0–84.1) (60.3–76.7) (74.3–86.1) (70.7–80.5)
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eyelash, and sclera of the eye. The major reason for misclassifications of keratitis lies in the limited number of 
training data, which made the model incapable of identifying the region of interest. We plan to solve the above 
problems in the future through approaches like increasing the number of images for training, utilizing more 
machine learning techniques like transfer learning, and applying region-of-interest detection method. We expect 
the misclassifications to be reduced significantly through these reinforcements. Although the average diagnostic 
performance of DL models was not as good as the overall performance of Expert diagnosis, the DL model has 
comparable diagnostic accuracy with the NCS-Oph diagnosis (Fig. 4). This result implies that DL diagnostic 
model may be a practical tool in a primary care or emergency services, where patients with MK are often pre-
sent. In clinical practice, the false-negative diagnosis for FK may lead to delayed diagnosis and consequently, a 
disastrous visual prognosis that is worse than expected since anti-fungal agents are not usually prescribed as a 
part of empirical treatment for MK.

Since most eye care practitioners are inexperienced with FK, delayed diagnosis is common and early mor-
phological features are easily missed, resulting in poor clinical diagnosis. Therefore, many on-demand laboratory 
tests are being developed to increase the diagnostic accuracy of FK27. Corneal scrapes for direct microscopy and 
microbial culture are commonly applied in medical referral centers but often results in low sensitivity due to inad-
equacy of tissue sampling, examination by novice examiners, and confrontation of fastidious microorganisms28,29. 
Therefore, several highly sensitive DNA-based molecular tests have been developed in the past decade17,30,31. How-
ever, these molecular tests often need sophisticated instruments or heavy laboratory procedures. In vivo confocal 
microscopy provides an alternate way for identifying FK32, but the diagnostic sensitivity was only moderate (71%) 

Figure 4.   Diagnostic performance of the deep learning model and senior ophthalmologists in the identification 
of cases of fungal keratitis from total 288 photographs of microbial keratitis. (a) Comparing the DL-based model 
with the NCS-Oph diagnosis. (b) Comparing the DL-based model with the Expert diagnosis. DL deep learning, 
NCS-Oph non-corneal specialty ophthalmologists, PPV positive predictive value, NPV negative predictive 
value; each box was constructed by five parameters, including the mean (center of box), lower and upper 90% 
confidence limits (floor and top of box), and lower and upper 95% confidence limits (lower and upper error 
bars). P < 0.05 was recognized as statistical difference and determined by two-tailed Fisher exact test.
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even for experienced observers33. An AI approach with an image recognition algorithm combined texture analy-
sis with support vector machine was therefore adopted to improve the performance of confocal microscopy34.

Despite drastic improvements in laboratory diagnostic tests for FK, clinical image diagnosis is still irreplace-
able. In reality, first impression of FK is almost always made with clinical images and consequently affects the 
decisions on the ordering of laboratory tests, prescription of medications, and referral to medical center. AI-
assisted diagnosis in confocal microscopy shows high potential in diagnosing FK through a machine learning 
technique34; however, this equipment is unpopular even in medical centers due to low cost-effectiveness. Fur-
thermore, ophthalmologists are already scarce in rural areas, not to mention corneal specialists. Therefore, the 
refinement of DL model for immediate image diagnosis of FK can definitely benefit primary care practitioners 
and rural patients.

There are some potential limitations in this study. The compliance during photographing may be reduced 
due to pain and photophobia in patients with MK, probably resulting in poorer image quality for inexperienced 
photographers. In addition, a corneal photograph is more complex than a fundal photograph due to prominent 
light reflections (Fig. 2), which might influence the training quality and diagnostic performance of a developed 
DL model. Nonetheless, poor image quality reflects the real-world challenges and put the robustness of DL 
diagnostic model into test. By increasing the training datasets, DL-based models can become more robust, but 
the amount of dataset needed to reach this top level of performance is still inconclusive. For FK, corneal image 
data is probably limited by high dimension and small sample size. By including massive image data, Andre Esteva 
et al. trained a DL model to classify skin tumor reaching dermatologist-level classification of skin cancer with an 
accuracy rate of 91%35. Thus, we believe a future study collecting more MK photographs from several medical 
centers will refine and greatly reinforce the current DL model. Moreover, before the DL model is adopted as a 
primary care device, a prospective study for diagnosing FK patients will be also required for external validation.

In conclusion, the performance of the DL model for diagnosing FK was better than the previously reported 
diagnostic performance of ophthalmologists and comparable to that of the NCS-Oph diagnosis. In addition, the 
DL model had better sensitivity than that of the NCS ophthalmologist. This result suggests the current DL model 
can help FK in clinical practice, especially in primary care units or rural area. The clinician can use it as an adjunc-
tive test with personal diagnostic experience and historical information of a patient to increase the diagnostic 
sensitivity of FK. Hence, we anticipate a robust and clinically useful AI device for diagnosing FK by including 
more training dataset with high image qualities of MK, historical variables, and integrating multiple models.
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