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Abstract
has a plastic genome, and drug pressure can select for gene copyLeishmania 

number variation (CNV). CNVs can apply either to whole chromosomes,
leading to aneuploidy, or to specific genomic regions. For the latter, the
amplification of chromosomal regions occurs at the level of homologous direct
or inverted repeated sequences leading to extrachromosomal circular or linear
amplified DNAs. This ability of  to respond to drug pressure byLeishmania
CNVs has led to the development of genomic screens such as Cos-Seq, which
has the potential of expediting the discovery of drug targets for novel promising
drug candidates.
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Introduction
Leishmania are dimorphic parasites living as extracellular pro-
mastigotes in the digestive tract of Phlebotomus or Lutzomyia 
sandflies and as intracellular amastigotes within phagocytic cells 
(mainly macrophages) of the vertebrate hosts. Leishmania species 
cause leishmaniasis, the second largest parasite killer; there are  
1.3 million new cases annually, 12 million people are affected 
worldwide, and 350 million people are currently at risk1. The  
Leishmania genus includes several species, among which more than 
20 are pathogenic to humans2. Leishmania can be divided into two 
subgenera: the Leishmania Leishmania subgenus responsible for 
visceral and cutaneous leishmaniasis and the Leishmania Viannia 
subgenus often associated with either cutaneous or muco-cutaneous 
forms of the disease2. Visceral leishmaniasis is mainly caused by 
L. donovani and L. infantum and is characterized by fever, hepat-
osplenomegaly, and pancytopenia3, making it the most severe and 
deadly form of the disease when compared with the self-healing but 
nonetheless debilitating skin lesions of cutaneous leishmaniasis4,5.

No effective human vaccine is currently available against  
Leishmania (a canine Leishmania vaccine was recently registered 
in Europe6), and control measures mainly involve chemotherapy7–9. 
Pentavalent antimony (Sb) has been the standard drug for 70 years 
and remains the mainstay in many endemic regions, apart from 
Northern India, where antimonial formulations have been rendered 
obsolete because of widespread parasite resistance. Other first-line 
therapies include the polyene antibiotic amphotericin B (AMB) 
for which a single dose was shown to be 95% effective against 
visceral leishmaniasis in India10. Liposomal AMB has become 
a standard treatment in many countries11 but requires adminis-
tration by the intravenous route. Geographical differences in the 
response to liposomal AMB were reported, and visceral leishma-
niasis cases in India were more responsive than those from East 
Africa or South America12. Clinical AMB resistance is scarce and 
parasites remained susceptible even after multiple rounds of treat-
ment in the same patient13. The alkyl-lysophospholipid analogue 
miltefosine (MTF) is the only oral drug against Leishmania14,15. It 
has been successfully used for the treatment of visceral leishmania-
sis since its registration in 2002 in India16. However, relapse rates 
are on the rise in India17,18 and Nepal19,20, making MTF resistance a 
likely problem. The aminoglycoside paromomycin (PMM) is also 
approved for the treatment of visceral leishmaniasis in India21,22. 
So far, the scarce use of PMM has limited the emergence of resist-
ance, but geographical variations in PMM efficacy against visceral 
leishmaniasis were noted between East Africa (especially Sudan) 
and India23,24. Lastly, pentamidine (PTD) has been abandoned for 
the treatment of visceral leishmaniasis because of serious toxicities 
and is mainly restricted to patients with cutaneous leishmaniasis in 
South America25–27.

Despite six decades of use, the mode of action (MOA) of antimo-
nials is not known. It has been shown to lead to the production 
of reactive oxygen species28–31, the depletion of trypanothione32, 
and apoptosis-like death33–36, but an exact MOA is still awaited. 
The same applies for MTF, AMB, PTD, and PMM, with the pos-
sible exception of AMB, which kills Leishmania by forming pores 
in ergosterol-containing membranes. New molecules with well-
defined drug targets are clearly needed.

Leishmania and its genome
The Leishmania genome is around 32 Mb and displays over 8,300 
coding genes37,38. Within the Leishmania genus, gene synteny is con-
served for more than 99% of genes between L. major, L. infantum,  
and L. braziliensis, and only few species-specific genes were 
found38. Leishmania species have between 34 and 36 chromo-
somes ranging in size from 0.3 to 2.8 Mb37–41. One unique feature 
characterizing trypanosomatid parasites lies in their genome archi-
tecture, their protein-coding genes being organized as large poly-
cistronic units42,43. In the absence of defined RNA polymerase II 
promoters, transcription of the long polycistronic units occurs in a  
bidirectional fashion from transcriptional start sites located at 
strand switch regions43,44. Processing into individual messenger 
RNAs (mRNAs) occurs by the addition through trans-splicing of a 
spliced leader RNA (39 nt) to the 5′ ends of each mRNA, coupled 
to 3′ end polyadenylation45,46. Because of its lack of transcriptional 
control, Leishmania uses several adaptive mechanisms to regulate 
gene expression when facing changing environmental conditions 
during its development. 3′ untranslated regions (3′ UTRs) were 
shown to be major players in monitoring mRNA stability and 
translation rates in this parasite47–53. To overcome stressful condi-
tions like drug pressure, Leishmania also often relies on DNA copy 
number variations (CNVs) (aneuploidy, gene amplification, or gene 
deletion) for regulating the expression of drug targets, drug trans-
porters, or other determinants of resistance. This is not restricted 
to Leishmania, however, and variations in gene dosage or chromo-
some copy numbers also influence drug susceptibility, adaptability, 
and proliferation in fungi and cancer cells54–57. In addition to CNVs, 
single-nucleotide polymorphisms (SNPs) in drug targets or in  
transporters can lead to drug resistance without the need for altering 
gene expression.

Copy number variations
During the last few decades, Leishmania parasites were consid-
ered to be essentially diploid but recent data have shown that aneu-
ploidy seems to be the norm58–64. Within populations of Leishmania  
parasites, distinct aneuploidy patterns were shown to occur at 
the level of individual cells. This phenomenon was called mosaic 
aneuploidy and can translate into a seemingly average diploid  
population when the cumulative ploidy is derived from next- 
generation DNA sequencing data but in which few parasites actu-
ally share the same ploidy for individual chromosomes62,63,65.  
Interestingly, variations in the size and content of chromosomes 
have also been observed between different strains of the related 
trypanosomatid parasite Trypanosoma cruzi66,67. In the case of 
Leishmania, circumstantial links between the presence of supernu-
merary chromosomes or chromosomal losses and drug resistance 
have been observed58–60,64,68–71, suggesting that a particular group 
of genes on the variant chromosomes may possibly act together in 
establishing resistance, but this has yet to be demonstrated.

Aneuploidy is generally linked to developmental abnormali-
ties as best exemplified by the trisomy 21 syndrome in humans.  
However, Leishmania uses aneuploidy as a lifestyle. This is raising 
a number of questions about aneuploidy generation, stability, trans-
mission, and biological significance (reviewed elsewhere60,62,72). 
In the absence of transcription initiation control, increases (or 
decreases) in chromosome copy number may serve as a strategy for  
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regulating expression under environmental cues. This can  
happen at the level of whole chromosomes, and indeed there  
was a good correlation between chromosome ploidy and the level 
of DNA and RNA expression59. Increasing the copy numbers of 
entire chromosomes may lead to the overexpression of toxic  
genes, but the Leishmania genome (32 Mb) is spread in 34 to 
36 chromosomes, thus reducing the co-expression of many 
genes. However, as explained in detail below, Leishmania also 
has the ability to amplify (or delete) specific smaller regions of 
DNA as part of extrachromosomal elements by recombination/ 
rearrangements at the level of homologous repeated sequences 
(RSs). RNA levels derived from these amplifications are correlated 
to DNA copy number.

The genome of Leishmania is populated with repeated DNA 
sequences. A recent study highlighted the entire set of RSs in 
different Leishmania species, and it was found that the whole  
Leishmania genome has the potential to be rearranged at the level 
of those RSs for generating extrachromosomal elements73. Indeed, 
almost 2,000 RSs are distributed over the genome of L. infantum 
and these potentially support the formation of more than 3,000 
extrachromosomal DNA elements73. Short interspersed degenerate 
retroposons (SIDERs) account for up to 65% of all RSs. SIDERs 
are truncated versions (~0.55 kb) of formerly active retroposons 
that are predominantly located in 3′ UTRs and have been asso-
ciated with post-transcriptional regulation at the levels of both 
mRNA stability and translation47,48,52,53,74,75. Because SIDERs are  

degenerated, they were found in different RS groups.  
Remarkably, SIDER elements would have dual roles: one func-
tional by regulating gene expression and a second one structural, 
providing the backbone to facilitate gene rearrangements for  
changing copy number of chromosomal DNA regions.

Extrachromosomal DNA amplifications are frequently detected 
in Leishmania parasites challenged with drugs or other stressful 
conditions58,59,64,76–87. The episomes are amplified as either circular 
or linear extrachromosomal DNA and formed through rearrange-
ments at the level of direct or inverted homologous RSs, respec-
tively (Figure 1)73,80,88. Interestingly, between 60% and 80% of the 
predicted amplicons appear to be already present in the population 
in the absence of selection and these pre-existing stochastic gene 
amplifications were shown to foster the selection of adaptive traits 
in response to drug pressure73. Beneficial amplicons were shown to 
increase in abundance upon higher drug pressure and to decrease 
when the drug is removed, allowing parasites to respond to a  
changing environment73.

Since gene rearrangements through RSs are primary responses to 
drug pressure, a reasonable hypothesis was that identifying recom-
binase proteins involved in these rearrangements could lead to  
strategies to prevent the emergence of resistance. A first candidate 
was the RAD51 DNA repair protein, a key protein involved in  
homologous recombination (HR), a mechanism evolutionarily con-
served in trypanosomatids89. Interestingly, the expression of RAD51 

Figure 1. Potential mechanisms for gene amplification in Leishmania. (a) The RAD51 recombinase mediates homologous recombination 
between direct repeated sequences (DRS) and leads to (i) extrachromosomal circular amplicon or (ii) intrachromosomal tandem duplication 
by unequal sister chromatid exchange or RAD51-mediated break-induced replication. Black arrows represent DRS. (b) The MRE11 nuclease 
processes DNA ends after single-strand break (SSB), double-strand break (DSB), or hairpin formation during replication and leads to 
extrachromosomal linear amplification. Black arrows represent inverted repeated sequences (IRS). The green segments represent the 
amplified DNA regions. dsDNA, double-stranded DNA; ssDNA, single-stranded DNA.
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was induced in Leishmania by DNA double-strand breaks (DSBs)90,91. 
Inactivating RAD51 led to viable parasites unable to generate  
circular extrachromosomal elements but still capable of produc-
ing linear amplicons upon drug pressure73. Leishmania has three 
RAD51 paralogs (RAD51-3, RAD51-4, and RAD51-6) that were 
shown to work as a complex in promoting HR through their capac-
ity to stimulate RAD51 activity92. Inactivation of RAD51-4 was also 
shown to prevent the formation of circular amplicons in L. infantum 
exposed to drugs, but not of linear amplicons92.

Linear amplicons are formed by the annealing of RSs found in an 
inverted orientation64,73,93. MRE11 is a DNA repair nuclease that 
interacts with RAD50 and NBS1 to form the MRN complex94,95 and 
is important for DSB repair by HR96,97 or for non-homologous end 
joining89 (Figure 1b). Inactivation of MRE11 impaired the ability 
of L. infantum to form linear amplicons upon drug selection at the  
level of inverted RSs, although the capacity to generate circular 
amplicons was similar to that of wild-type parasites93. Moreover, 
a fully functional MRE11 is important for linear amplification, 
as parasites expressing DNA-binding-proficient but nuclease- 
deficient MRE11 exclusively generated circular amplicons during  
drug selection93. Interestingly, inactivation of MRE11 alone or 
along with its partner RAD50 led to extensive chromosomal 
translocation in L. infantum98, showing that the MRE11/RAD50  
complex is important for the maintenance of genome integrity in 
addition to its role in gene rearrangements. The number of enzymes 
involved in the formation of extrachromosomal elements sug-
gests that targeting this pathway may not be a viable strategy for  
preventing the emergence of resistance, although this remains to be 
experimentally tested.

Single-nucleotide polymorphisms and small nucleotide 
insertions or deletions
Although CNVs are important contributors of drug resistance,  
SNPs and small nucleotide insertions or deletions (indels) can 
also contribute to resistance. This was proven with experimen-
tal drugs99,100 and was highlighted with MTF where amino acid  
substitutions or non-sense mutations were observed in the MTF 
transporter (MT)101 or in its Ros3 subunit102. This was further con-
firmed in additional mutants using whole genome sequencing103,104 
or by deep sequencing of MT105. Mutations detected in the MT 
gene of L. infantum isolates serially collected from an MTF-treated 
patient who had multiple relapses were shown to correlate with 
resistance106, suggesting that MTF resistance could become a clini-
cal reality in the near future.

Genome-wide surveys of genetic variations in L. donovani isolates 
from the Indian subcontinent supported the notion that resistance 
to antimonials emerged on several distinct occasions58,107. Isolates 
could also be clustered on the basis of their genetic structure and 
haplotypes, with some groups being enriched for non-responsive 
strains58,107,108. Interestingly, a particular group of highly resistant 
isolates that clustered together were found to share genomic fea-
tures associated with resistance107. Among these were a higher copy 
number for the H-locus, coding for the well-characterized ABC 
transporter MRPA109, and a homozygous two-base-pair insertion 
in the aquaglyceroporin 1 (AQP1) gene involved in Sb uptake and 
whose inactivation or downregulation is strongly correlated with 

resistance71,107,110–117. The potential for these genomic variants in  
predicting treatment outcome is exciting, given the lack of molec-
ular markers for Sb resistance, but will need to be thoroughly 
evaluated by using larger and geographically diversified sets of  
well-defined isolates.

Exploiting copy number variations for understanding 
drug mode of action and resistance mechanisms
Target-based assays and phenotypic whole-cell-based assays 
are the cornerstones of drug discovery. The current trend for 
anti-parasitic agents is for whole cell assays. A drawback of  
phenotype-based assays is the lack of knowledge about the targets  
of hit compounds. Although the molecules could be brought 
to the clinic without further knowledge about their MOA, a 
clear understanding of the molecular targets will facilitate the 
improvement of a candidate drug through lead optimization. 
Characterization of drug-resistant mutants, which often revealed  
mutations or CNVs in drug targets or in proteins responsible for 
drug transport, is one strategy to pinpoint drug targets. However, 
it is salient to point out that this strategy has not yet led to targets  
against the current anti-leishmanials, although amplification of gene 
targets was observed in mutants made resistant to experimental 
drugs64,99. Since CNVs are often associated with resistance, forward 
genetic tools can experimentally mimic this. One such gain-of- 
function screen was based on functional cloning where  
Leishmania cosmid libraries were electroporated into Leishmania 
and these transfectants were selected for a specific phenotype118. 
Selection is possible because of the high copy number (and gene 
expression) of the cosmids. This screen was successfully applied 
while selecting for drug resistance or susceptibility101,114,119–123. This 
technique selects for cosmids conferring dominant phenotypes  
(leaving out less enriched cosmids) and is not easily amenable 
to high-throughput screening. The sensitivity of cosmid-based 
functional screening was enhanced by its recent coupling to next- 
generation sequencing in an approach termed Cos-Seq124. The pro-
portion of parasites with cosmids providing a selective advantage 
is expected to rise with increasing drug pressure, and these can be  
tracked and quantified at each drug increment by Illumina  
sequencing124,125. Thus, the dynamics of cosmid enrichment can 
be followed over the entire course of selection instead of being  
monitored only at endpoint. Published or ongoing Cos-Seq screens 
using experimental drugs with known targets (for example, meth-
otrexate, terbinafine, and 5-fluorouracil) confirmed the recovery 
of the relevant target genes by Cos-Seq124. Interestingly, Cos-Seq  
supported the hypothesis that the current anti-leishmanials (MF, 
AMB, Sb, PMM, and PTD) may not act via specific major pro-
tein targets124. Indeed, although an unprecedented number of  
resistance genes (known and novel) were isolated using Cos-Seq, 
none emerged as a clear target candidate and it is conceivable  
that these antiquated drugs are broadly cytotoxic by disrupting  
multiple minor targets. Whether some of the genes are genuine drug 
targets remains to be established, and non-protein targets represent 
another possibility as these would not be detected by Cos-Seq.

The advent of high-content screening for intracellular L. donovani 
amastigotes126 is also key in the search for novel molecules  
having favourable anti-leishmanial properties directly on the 
intracellular stage of the parasite. This allowed the discovery of  
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192 new leads against visceral leishmaniasis from an initial set 
of 1.8 million compounds from GlaxoSmithKline127. An MOA  
could be hypothesized for 80 of the lead compounds using prior 
proprietary knowledge and bioinformatics analyses of TriTryp 
genomes, which revealed an over-representation of putative kinase 
inhibitors127. Cos-Seq was initially carried out with the insect form 
of the parasite but this could easily be adapted to intracellular  
parasites and this technique could be used to find the targets of  
these promising novel molecules or of other drugs repurposed 
against Leishmania128.

The Cos-Seq technique does not allow the isolation of loss-of-
function mutations such as those found in the aquaglyceroporin 
AQP1 or in the MT transporter genes (see above). These require 
high-throughput dominant negative screening approaches, like 
inducible RNA interference target sequencing (RIT-Seq), which 
proved instrumental in elucidating mechanisms of drug uptake in 
trypanosomes129. Although RNA interference is absent from the  
L. Leishmania subgenus, it is active in species of the L. Viannia 
subgenus130. The lack of inducible expression in Leishmania was 
also a limitation of this technique, but two recent reports have 
shown the feasibility of inducible expression in Leishmania131,132. 
Thus, it is theoretically possible to develop a technology simi-
lar to RIT-Seq in L. Viannia parasites. An alternative approach to  
RIT-Seq would be to rely on RNA-guided nuclease systems using 
clustered regularly interspaced short palindromic repeats (CRISPR) 
and CRISPR-associated (Cas) enzymes, as these have proven very 
efficient for achieving targeted genomic modifications in a wide 
range of genomes133–135. In trypanosomatid parasites, the CRISPR/
Cas9 system derived from Streptococcus pyogenes has been used 
for disrupting genes in L. major136, L. donovani137, and T. cruzi138 
and in principle could be used for generating whole-genome Cas9-
mediated gene deletion libraries.

Concluding remarks
The toolkit for drug target discovery and resistance mechanism 
elucidation for Leishmania is expanding. With new promising drug 
candidates in the pipeline and further technological developments, 
it should now be possible to find new targets which should further 
help in the control of this important neglected tropical disease.
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