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Abstract: Disinfectant-impregnated wipes are broadly used in hospitals, as an important approach
for infection prevention and control. But their ageing performance has rarely been studied. Untreated
and Dielectric Barrier Discharge (DBD) plasma pre-treated wiping materials made of nonwoven 100%
polyester (W1), nonwoven 55% cellulose/45% polyester (W2) and woven cotton (W3) were impregnated
with a quaternary ammonium compound solution (ADBAC) for 30 min, 3, 7, 15, and 30 days of
storage time and characterized in term of chemical, thermo-mechanical and antimicrobial efficacy.
X-ray photoelectron spectroscopy analysis on the plasma-treated polyester wipes demonstrates the
incorporation of reactive oxygen species on the fiber surface. Laser scanning microscopy demonstrates
the plasma etching effect in smoothing the surface of the cotton wipe reducing the adsorption of
ADBAC. The result showed no significant changes in breaking force and elongation during storage
for W1 and W2. However, plasma treatment affects W3 in weft direction reducing the force at
break in water and ADBAC treated wipes. Dynamic mechanical analysis results show that ADBAC
and plasma treatment have a significant influence in W1 and W3 viscoelastic properties improving
the elastic response limiting the polymeric chains mobility and the non-elastic response due to the
etching effect, respectively. Overall, the plasma pre-treatment of ADBAC-impregnated wipes is able
to enhance the antimicrobial performance and the storage time of polyester-containing wipes.

Keywords: dielectric barrier discharge (DBD); pre-wetted disinfecting wipes; ageing; ready-to-use
disinfectant wipe; antimicrobial; quaternary ammonium compounds; plasma

1. Introduction

Surface disinfectants integrated with textile materials as disinfectant-impregnated wipes are the
most prevalent disinfection methods used in nosocomial environment, food processing industry and
other domestic situations [1–3]. Their simple application, reliable performance and user-friendly
features contribute to their wide-spreading for surface disinfection application [2]. Particularly, the
participation of textile material could remove visible debris and organic matters that could hinder the
disinfectant performance [3,4]. Typical disinfectants found in the market are alcohol, chlorine, and
chlorine compounds (hypochlorite, chlorine dioxide, and chloramine-T), hydrogen peroxide, peracetic
acid, and quaternary ammonium compounds (quats or QACs) [4,5]. The most commonly used textile
material in wipe application is composed by cellulosic fibers such as cotton, woodpulp, viscose etc.,
and thermoplastic fibers like polyester and polypropylene [6,7].
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Adsorption of disinfectants due to the presence of certain textile materials have been previously
reported in the literature [8–10]. The use of an inappropriate wipe material (e.g., cellulosic material)
could interact with the absorbed active ingredient (e.g., quats) resulting in lowering, or even inhibiting,
the disinfectant efficacy [9]. In spite of this, some research has been performed on the effectiveness of
commercially available disinfecting wipes in clinical use, it remains unknown regarding the ageing
of disinfectant-impregnated wipes in storage [11,12]. In polymer material, five types of ageing
classifications exist, physical ageing, photochemical degradation, thermal degradation, chemical
attack, and mechanical stress [13]. For professional use (industry, hospital, healthcare centre, etc.), the
disinfectant-impregnated wipes have to be stored in a shaded, cool, dry, stable and well-ventilated
place. Thus, photochemical, thermal and mechanical degradations usually have a low impact and
physical ageing occurs all along the lifetime of the product [13,14]. However, to the best knowledge of
the authors, the understandings of the storage chemical ageing of wipes in the presence of disinfectant
are very poor. Chemical attack on textiles due to disinfectants can change the material properties from
soft to hard and stiff or lowering the lint levels [13]. Furthermore, the interaction between wipe material
and disinfectant during storage can also affect the products’ disinfection performance. The following
questions remain to be answered: (i) How does the wiping materials degrade in terms of structure,
properties and function? (ii) How does the adsorption of active ingredients onto textile substrate
change with storage time? and (iii) How does the antimicrobial efficacy vary by time?

Plasma treatment has been extensively applied for surface modification of textile material. It is
a dry, environmentally- and worker-friendly method to achieve surface alteration without modifies the
bulk properties of different materials [15,16]. In the last years, atmospheric cold plasma, as dielectric
barrier discharge (DBD), was widely employed because it does not need expensive vacuum equipment
and allow continuous and uniform processing of fibers surfaces [17]. The DBD plasma treatment
has been reported in the literature improving the surface energy and surface oxidation of polyester
material [18]. For cellulose material, DBD plasma treatment usually provides only an etching effect in
terms of surface ablation and surface morphology change [19]. However, it was recently reported that
DBD plasma not only effectively cleaning cotton fibers, increasing roughness and wettability but also
increase the polar surface functional groups and alter the surface charge [20,21]. All these possible
changes resulting from plasma treatment could have an impact on the wipe material properties and the
adsorption of quats onto textile materials. Hence, DBD plasma treatment was considered as a possible
solution to reduce the binding of quats and to improve absorption onto wipe materials.

This paper studied the ageing of the untreated and DBD plasma-treated disinfectant-containing
wipes after 30 min, 3 days, 7 days, 15 days and 30 days of storage. Quaternary ammonium compounds
(ADBAC) as the disinfectant and 3 commercial wiping materials of polyester (PET), 55% cellulose/45%
PET (CELPET) and 100% cotton (CO) have been selected. X-ray photoelectron spectroscopy (XPS)
was used to assess the chemical interaction between ADBAC and untreated and plasma-treated wipe
samples. The concentration reduction of bulk ADBAC solution before and after wipe immersion
at different aged time was analyzed by the means of UV-Vis spectrophotometry. Fourier-transform
infrared spectroscopy (FTIR) and Dynamic mechanical analysis (DMA) were used to evaluate the
interaction of ADBAC with wipe materials for a certain storage time. Breaking force and elongation
change were also recorded with a universal testing machine (UTM). Finally, the antimicrobial efficacy
changes of disinfectant impregnated wipes along storage time was investigated based on the test
standard ASTM E 2149-13a [22]. By studying the ageing performance of the disinfectant-impregnated
wipes it was noted that plasma treatment can increase the ADBAC concentration on the polyester wipe
surface. Moreover, it was also possible to prolong the antimicrobial efficacy of polyester-containing
wipe samples during storage time by increasing the adsorption of ADBAC and slowly releasing the
adsorbed ADBAC over time.
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2. Materials and Methods

2.1. Materials

The quaternary ammonium salt used for the tests is alkyldimethylbenzylammonium chloride
(ADBAC) and it was purchased from the company EMD Millipore Corporation, a subsidiary of
Merck KGaA, Germany and reserved in a plastic bottle in solid status. The chemical formula is
C6H5CH2N(CH3)2RCl (where R = C8H17 to C18H37). Once the bottle was open, it was reserved in the
desiccator containing silica gel desiccants to avoid the degradation from humidity. The commercial
wipe samples (W1 and W2 in Table 1) used in this project belong to the category of disposable and
semi-disposable wiping cloths (areal density of below 80 g m−2). W1 is TX409 Absorbond® (Texwipe
Inc., Kernersville, NC, USA) and W2 is Wipe EcoCloth (Contec Inc., Spartanburg, SC, USA). White
bleached cotton woven fabric with a warp density of 34 threads cm−1, a weft density of 30 threads
cm−1 was used. All other chemicals were purchased from Sigma-Aldrich (Waltham, MA, USA) and
used without further purification steps.

Table 1. Information of material, structure, dimension, fabric thickness and areal density. The data was
reported as average of 10/5 repetitions including their coefficients of variance in percentage (CV%).

Sample Components Structure Dimension (cm)
of a 0.05 g Sample

Fabric Thickness
(mm ± CV%)

Areal Density
(g m−2

± CV%)

W1 100% polyester Hydroentangled
nonwoven 2.5 × 4.5 0.36 ± 5.93 40.92 ± 1.59

W2 55% cellulose
45% polyester

Hydroentangled
nonwoven 2.5 × 2.5 0.54 ± 3.02 69.58 ± 0.96

W3 100% bleached cotton 1/1 plain weave 2.5 × 1.5 0.98 ± 5.09 118.72 ± 0.41

2.2. Sample Characterization

Wipes were pre-washed with 0.05% non-ionic detergent Diadavin UN (Tanatex chemicals, Ede,
The Netherlands) in a standard washing process carried out by a long bath equipment, model IBELUS
IL-720 (Labelus, Braga, Portugal) integrated with an infrared heating system. The program started at
20 ◦C and rose up to 40 ◦C with a gradient of 3 ◦C min−1, and the temperature remained for 30 min.
The liquor ratio for the washing process is 1:100 (fabric mass in g: detergent solution in mL) with an
agitation speed of 40 rpm. Then, the samples were rinsed with distilled water by 1:100 liquor ratio three
times. Afterwards, wipe samples were placed in an oven at 40 ◦C for 24h to dry for further use. Fabric
thickness and area density were determined at the standard atmosphere of 20 ± 2◦C and 65± 2% RH.
All wipe samples were conditioned for 48 h before testing. The thickness of the fabrics was measured
according to the standard ASTM D1777-96 (2015) with the digital thickness gauge M034 A at a pressure
of 100 Pascal [23]. Every sample was repeated 10 times and the mean and coefficient of variance were
calculated. A circular cutter with a surface area of 100 cm2 was used to prepare the sample wipes for
further areal density measurements. Every sample wipe was taken 5 times measurement. The data are
reported as mean ± coefficient of variance% (CV).

2.3. DBD Plasma Treatment of Wipe Samples

The dielectric barrier discharge (DBD) plasma treatment was conducted in a semi-industrial
prototype (Softal Electronics GmbH/University of minho, Braga, Portugal) working at room temperature
and atmospheric pressure, using a system of metal electrode coated with ceramic and counter electrodes
coated with silicon, with 50 cm effective width, gap distance fixed at 3 mm, and producing the discharge
at high voltage 10 kV and low frequency 40 kHz. The machine was operated with the optimized



Polymers 2019, 11, 1769 4 of 23

parameters: 1 kW power, 4 m min−1 velocity, 5 passages corresponding to a dosage of 2.5 kW min m−2

adopted from the previous study [24]. Plasmatic dosage was defined by Equation (1):

Dosage =
N·P
v·l

(1)

where, N = number of passages, P = power (W), v = velocity (m min−1), and l = width of treatment
(0.5 m). The wipe was passed through a laminar plasma between a cylindrical silicone rotating drum
and ceramic electrodes for one side then treated on the other side. A schematic diagram using a photo
of the used equipment was provided in Figure A1 in the Appendix A.

2.4. Contact Angle Measurement

The contact angle measurement of the wipe samples before and after dielectric barrier discharge
(DBD) plasma treatment was performed with an OCA apparatus from Dataphysics Instruments
GmbH (Filderstadt, Germany), associated with the OCA20 software. Measurements were done with
10 replicated on every sample and the average and standard deviation were calculated.

2.5. Laser Scanning Microscope (LSM)

LSM was performed on cotton woven wipe to characterize the surface roughness before and after
plasma treatment. An LSM from Keyence microscope (Osaka, Japan), model VK-X160 with a red
semiconductor laser supplied at wavelength 658 nm was used. The surface roughness was evaluated
from the measurement of arithmetical mean height (Sa) and developed interfacial area ratio (Sdr).
Scanning was stitched 80 times and an area of 10 mm2 of the untreated and plasma-treated wipe
samples were analyzed.

2.6. Storage of Wipe Samples in ADBAC Solution

ADBAC solution was prepared freshly at the concentration of 0.8 g L−1 by adding 0.8 g (±0.5%) of
ADBAC to a 1000 mL volumetric flask filled up with distilled water. The wipe samples were immersed
in the prepared ADBAC solution in the liquor ratio of 1:20 (fabric mass g: bulk solution mL). To fulfil
the sample requirement from UTM measurement, two pieces of wipe sample with 0.5gram mass were
immersed in 40 mL ADBAC solution. Wipe samples and ADBAC solution was maintained in a 50 mL
conical tubes and stored in a shaded, cool, dry, and well-ventilated cabinet for 30 min, 1 day, 3 days,
7 days and 30 days. When the due time elapsed, wipe samples were taken out by a tweezer and dry
in the oven at 40 ◦C for 24 h for further tests. The remained bulk solution was analyzed by UV-Vis
spectrophotometry. For the ASTM E 2149-13a test, wipes were cut in samples of 0.05 g (Table 1) [22].
Six pieces of the same wipe samples were immersed in 6 mL ADBAC solution in a 15 mL volume
high-density polypropylene conical tubes with an adjustable pipette (1 to 10 mL). Every wipe sample
set was coupled with water control under the same experimental conditions.

2.7. X-Ray Photoelectron Spectroscopy (XPS)

The XPS analyses were carried out on the PHI-TFA XPS spectrometer produced by Physical
Electronics Inc., Chanhassen, EUA. Wipe samples with immersion time 30 min (D0) were selected
for evaluate the chemical interaction between the ADBAC and untreated and plasma- treated wipe
samples. Samples were mounted on the metallic sample holder and introduced in ultra-high vacuum
spectrometer. The vacuum during the XPS analyses was in the range of 10−9 mbar. The analysed area
was 0.4 mm in diameter and the analysed depth was about 3–5 nm. All the measures were taken with
an angle tilt of 45◦. Sample surfaces were excited by X-ray radiation from monochromatic Al source
at photon energy of 1486.6 eV. The survey wide-energy spectra were taken over an energy range of
0–1400 eV with a pass energy of analyser of 187 eV in order to identify and quantify present elements
on the surface. Two places on every sample were analysed and average composition was calculated.
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The smallest concentration of elements which can be detected with XPS method (sensitivity) is about
0.5 at.%. XPS spectra were analysed for elemental composition by a Multipak software, version 8.0
from Physical Electronics Inc. company, Chanhassen, EUA.

2.8. Spectrophotometric Assessment of ADBAC Concentration

The concentration of ADBAC was assessed by UV-Vis spectrophotometry (Shimadzu, Kyoto, Japan,
UV-1800) with quartz cuvettes. Initially, a full wavelength scans from 200–800 nm was performed
to determine the λmax. The ADBAC solution showed three peaks at 268.5, 262.5, and 256.5 nm.
The wavelength at 262 nm was chosen for its highest response. A calibration curve of concentration
[C] versus absorbance (abs) was developed. The obtained calibration equation was [C] = 0.806 Abs
− 0.007 (R2 = 0.9999). This formula was adopted to calculate the concentration of ADBAC solution
in the subsequent tests. The UV-Abs of every ADBAC solution after wipe removal at all aged time
were recorded.

2.9. Fourier Transform Infrared Spectroscopy (FTIR)

The FTIR spectra of untreated/plasma-treated wipes samples immersed in water/ADBAC at all
aged time were recorded using an IR-Affinity 1 FTIR spectrophotometer (Shimadzu, Kyoto, Japan)
with an attenuated total reflectance accessory (ATR) to determine the surface chemical changes. Spectra
were collected at room temperature in the spectral range of 4000–700 cm−1 at the resolution of 4 cm−1

and summations over 45 scans. All the samples were dried in an oven at 40◦C for 24h prior testing.

2.10. Breaking Force and Elongation Measurement

Fabric strain versus applied force and time was measured (at 20 ◦C and 65% RH) with a Universal
Testing Machine (Model 4500, Instron Corporation, Norwood, MA, USA) using a 250 N load cell at the
crosshead speed of 1 mm min−1. Samples of 2 × 10 cm were tested in warp and weft (or cross and
machine) directions at the maximum load of 250 N using the standard test method for breaking force
and elongation of textile fabrics (Strip Method, ASTM D 5035:11 2019) [25]. Wipe samples at all aged
time were tested.

2.11. Dynamic Mechanical Analysis (DMA)

DMA was conducted with a DMA 7100 from Hitachi® (Tokyo, Japan) in programmed tension
mode. The storage and loss moduli, tan delta was measured in the temperature range 30 to 200 ◦C,
with a heating rate of 3 ◦C min−1. The geometry of the testing sample was set 20 mm in length, 10 mm
in width and the thickness in mm of each wipe as reported in Table 1. Specimens were prepared in
duplicate to conduct thermo-mechanical analysis. These analyses were carried out under nitrogen
purge of 200 mL min−1. 7 days’ ADBAC/water immersed untreated and plasma-treated wipe samples
were investigated by DMA. The wipe samples were dried in an oven at 40 ◦C for 24 h prior testing.

2.12. Microbiology Test ASTM E 2149-13a

The ASTM E 2149-13a Standard Test Method for Determining the Antimicrobial Activity of
Immobilized Antimicrobial Agents under Dynamic Contact Conditions was modified to assess the
antimicrobial efficacy change over storage time [22]. The most important modification of the standard
was the enhancing of the bacteria inoculum concentration in order to allow more evident distinction in
differentiating the antimicrobial performance among the three wipe samples. Therefore, the bacteria
inoculum concentration was rose up between 1.5 to 3.0 × 109 CFU mL−1. However, other modifications
with the intent of saving material due to the high number of used samples and bacterial suspensions
were made in terms of wipe sample size and volume of bacteria inoculum. The wipe sample size was
defined at 0.05 g and the volume of the bacteria inoculum was reduced to 5 mL. Due to the different
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areal densities of wipe sample materials, the approximate dimension of wipe samples is reported in
Table 1.

The working bacteria are Staphylococcus aureus (S. aureus), ATCC 6538 and Escherichia coli (E. coli),
ATCC 25923 representing Gram-positive and Gram-negative bacteria, respectively. The stock culture
was prepared from the freeze-dried ampule into several vials and stored at −80 ◦C. A subculture (G1)
was prepared from the frozen stock culture on tryptone soya agar (TSA) plates and incubated at 37 ◦C
for 24 h. The working culture for the test is freshly prepared from G1 in the sterile Tryptic Soy Broth
(TSB) for 18 h at 35 ± 2 ◦C prior to performing the test. The testing samples were prepared in three
repetitions, obtained from the wipes immersed in ADBAC solution under storage conditions (at 30 min,
3, 7, 15, 30 days). The testing samples with 5 mL bacterial suspension were maintained in a 15 mL
sterilized conical tubes for 1 h with orbital shaking at 120 rpm and 37 ◦C. Afterwards, liquids were
collected from each tube for plating. Plates were incubated at 35 ± 2 ◦C for 18–20 h. The plate counting,
log reduction calculation and other detailed test procedure were performed according to the standards.

3. Results and Discussion

3.1. Chemical Interaction Assessment (XPS Analysis)

The degree of chemical modifications on the surface of the wipes was studied by XPS (Table 2
and Figures A2–A4 in the Appendix A). The relative chemical composition (C, N, O) and oxygen and
nitrogen atomic ratios (O/C and N/C) were exhibited in Table 2. Plasma-treated wipes containing
polyester (W1 and W2) were significantly altered in terms of oxygen content showing an increase of
O/C ratio about 42% and 18% for W1 and W2, respectively. DBD plasma discharge in air at atmospheric
pressure is able to generate a wide range of active species such as atomic oxygen, ozone, nitrogen
oxides and radicals. After plasma treatment, the considerable increase in the oxygen content is due
to the incorporation of oxygen-containing polar groups onto the polyester fibres surface generating
hydroxyl and carboxyl groups [26,27]. W3 shows only a slight increase of about 5% in O/C ratio
confirming that this DBD plasma is not able to substantially oxidize the cellulose polymer chain. Most
of the work demonstrating cotton surface oxidation by atmospheric plasma in the air were developed
using raw cotton that contains several non-cellulosic components in cuticle and primary wall [20,28].
However, in this work, a white bleached woven cotton was used preventing further surface oxidation.
Some nitrogen was detected in the untreated wipes control surfaces probably due to contamination.
After plasma treatment, there is a small increase in nitrogen relative atomic percentage resulting from
the introduction of air nitrogen from the atmosphere, as previously reported [29]. However, all the
wipes did not show any significant difference in the N/C ratio.

Table 2. Relative chemical composition and atomic ratio of untreated and dielectric barrier discharge
(DBD) plasma-treated wipes.

Untreated Plasma Treated

Chemical Composition (%) Atomic Ratio Chemical Composition (%) Atomic Ratio

C O N O/C N/C C O N O/C N/C

W1 73.3 26.2 0.5 0.36 0.01 65.2 33.2 0.7 0.51 0.01
W2 69.1 30.5 0.4 0.44 0.01 65.2 33.8 1.1 0.52 0.02
W3 61.9 37.7 0.4 0.61 0.01 60.7 38.7 0.6 0.64 0.01

W1Q 82.2 15.1 1.7 0.18 0.02 79.2 18.5 2.2 0.23 0.03
W2Q 60.8 38.6 0.6 0.63 0.01 61.3 38.2 0.5 0.62 0.01
W3Q 62.9 36.1 1.0 0.57 0.02 62.3 37.0 0.7 0.59 0.01

After the introduction of ADBAC on the wipes, the nitrogen content increased, as expected since it
is part of the quaternary ammonium salt molecule. Polyester-based W1 wipe (W1Q) showed the higher
amount of nitrogen content (1.7%). This is due to the higher hydrophobicity of pure polyester compared
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to the other wipe materials which hamper ADBAC solution to be absorbed in the bulk of the wipe
resulting in higher ADBAC concentration on the wipe surface. After plasma treatment the nitrogen
content increase of about 30% due to the plasma-induced oxygen species present onto the polyester
fibres surfaces that can both improve wipe wettability and also adsorption of the ADBAC molecules.
The cellulose/polyester blend W2 and the cotton W3 wipes showed lower nitrogen content compared
to W1. Moreover, W2 and W3 nitrogen percentage decrease after plasma treatment suggesting a lower
ADBAC adsorption due to the cleaning effect on the cellulose fibres by etching, removing the more
hydrophilic surface microfibrils. This was confirmed by laser scanning microscopy (LSM) that shows,
after plasma treatment, a decrease in both developed interfacial area ratio (from 6.74 to 4.93) and
arithmetical mean height (from 31.49 to 25.91). LSM images of untreated and plasma-treated wipes at
magnifications of 10× and 100×were presented in Figure A5 in the Appendix A.

3.2. Adsorption of ADBAC During Storage Time

Figure 1 exhibits the concentration change of bulk ADBAC solution during storage time up to
30 days. For W1 (100% PET), both untreated and plasma-treated wipes showed extreme low adsorption
(expressed as the percentage of concentration reduction in Figure 1). However, the plasma-treated
wipe showed slightly higher adsorption than the untreated one. This can be explained by the
plasma-induced increase of surface energy polar component by surface oxidation (as also observed by
the fiber yellowing), which can enhance the interaction between polyester and ADBAC molecules [18].
Plasma treatment can generate active oxygen species on the polyester surface, such as hydroxyl groups,
providing partially negative charge on the surface which can interact with the positively charged
ADBAC molecules [30]. Meanwhile, the increased hydrophilicity of polyester samples improves the
absorption of ADBAC solution on the textile substrate. The measured contact angle for W1 dropped
from 147.6◦ to 0◦ after plasma treatment. All the other samples showed contact angle of 0◦ before
and after plasma treatment. Due to these two reasons, which was previously confirmed by XPS
analysis, the adsorption increased. Plasma treated polyester sample displays an evident increase in the
adsorption up to 7 days, then it stabilized. Even though polyester samples showed an increase after
plasma, its adsorption remains the lowest of the studied wipes.
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W2 (CEL/PET) shows medium adsorption because of the negatively charged cellulose fibres
interacting with the positively charged ADBAC active ingredient promoting adsorption. After plasma
treatment, W2 wipes duplicated the adsorption ability (from 15% to about 30%) by the mutual action of
the plasma oxidation of polyester fibres and by the already hydrophilic cellulose component. It seems
that plasma treatment is able to enhance the cellulose absorption ability of W2 by increasing the
liquid mass transfer into the inner part of the wipe. The swelling effect becomes more pronounced
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after plasma treatment facilitated by the shift of the cellulose shear plane towards the solution and
furthermore increasing the adsorption [21,31].

W3 is a 100% cellulose wipe exhibiting the highest adsorption ability among all the wipe samples.
However, plasma-treated W3 showed a decrease in adsorption compared to its control. On one hand,
in literature, plasma treatment is efficiently used to clean raw cotton by removing its non-cellulosic
components such as waxes, proteins and pectin, oxidizing its surface and increasing polar functional
groups [20,32]. On the other hand, in this case, the used wipe was a white bleached cotton woven
fabric that is already chemically oxidized as proved by XPS analysis (see Table 2). Plasma treatment
reduces the surface roughness (see LSM results in Section 3.1) by etching the microfibrils on the cotton
surface and promotes reorientation of the polar surface functional groups which significantly reduce
the adsorption of ADBAC of around 10% [33].

Taking into account the XPS surface analysis results, it is noted that even though there is large
adsorption of ADBAC in W2 and W3 (Figure 1), more ADBAC can be detected on the surface of W1
(Table 2), indicating that the absorbed ADBAC is more present on the surface of W1 comparing with
the other two.

3.3. Chemical Change of the Wipe Surface Over Storage Time (FTIR)

In order to determine the chemical change of the wipe samples over storage time in ADBAC
(ATR-FTIR spectrum in Figure A6) solution, FTIR spectroscopy measurements were performed with
untreated/plasma treated in water/ADBAC immersed wipe samples. The ATR-FTIR spectrum (Figure 2)
displays the polyester profile peaks in untreated W1 wipe at about 1712 cm−1 assigned to carbonyl
(C=O) stretching vibration in ester, at 1234 cm−1 appointed to asymmetric stretching of aromatic ester,
at 871 cm−1 attributed to a carbon-carbon bond (C–C) out of plane bending mode of the benzene rings,
and at 720 cm−1 associated to the aromatic hydrogen bond (C–H) bending vibrations [34]. W2 and
W3 show similarities in the ATR-FTIR spectra. A typical band such as the one at around 2900 cm−1

assigned to the cellulose structure’s symmetric stretching vibrations of hydrogen bond (C–H) as well
as strong peaks at 1150, 1100 and 1020 cm−1 of the glycoside bridges C–O–C bond vibrations and broad
bands at 3340 and 3270 cm−1 indicating the hydroxyl (O–H) group in stretching vibration mode [35–37].
However, in W2 no peak of the polyester appears in the FTIR spectra due to the strong intensity of the
cellulose peaks covering the polyester ones. The FTIR result did not exhibit any significant change
over storage time or plasma treatment for all the tested wipes (Figures A7–A9 in the Appendix A),
indicating that FTIR is not sensitive enough in detecting the chemical changes after plasma treatment
since penetration depth of FTIR is around 2 µm [38]. FTIR-ATR is not able to detect the small amount of
ADBAC (Figure A6 in the Appendix A) on the wipes as well as changes in the non-covalent bonds such
as ionic, hydrogen, van der Walls or electrostatic forces that can significantly influence the adsorption
of the active ingredient. Therefore, the XPS technique was employed to further investigate and quantify
the physico-chemical modifications induced by the ADABC adsorption and by the plasma treatment.

3.4. Breaking Force and Elongation at Break Over Storage Time

Wipes used for disinfection purpose should exhibit high tear resistance and tensile strength,
low elongation and good abrasion resistance allowing even heavy dirt removal without fiber shedding
or breaking and size deformation in the cleaning process. Breaking force and elongation at break of the
wipe samples were tested in cross direction (CD) and machine direction (MD) for nonwovens (W1 and
W2) and in warp and weft directions for woven structure (W3). As expected, the breaking force is
greater in machine direction than in the cross direction in both nonwoven wipe samples (Figure 3).
W1 showed double breaking force in CD direction than W2 attributable to the wipes production feature.
After plasma treatment, a slight decrease in the breaking force is noted but with no significant changes
during ageing. In W3 the ADBAC seems to have a small effect in increasing the force during the time
up to 7 days compared to water. Plasma treatment clearly has an effect in weft direction reducing the
force at break in water and ADBAC treated wipes of about 26% and 33%, respectively. No significant
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difference can be noted in the warp direction. This decrease in breaking force can be explained by the
reduction in inter-fiber friction after plasma treatment. As observed by LSM, inter-fiber frictional forces
of the plasma-treated W3 wipe decreased by the smothering of the cotton fiber surface by etching.
Lower forces are needed to overcome the decreased inter-fiber friction resulting in lower breakage
loads [39,40].
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Figure 3. Breaking force (N) change of control (R) and plasma-treated (P) wipe samples during 30 days
of storage time. (D0 to 30 represented 30 min, 1, 3, 7, 15, and 30 days’ immersion time).

Elongation at break is larger in CD than in the MD for all the nonwoven wipes (Figure 4).
The plasma-treated wipes showed a slight decrease in CD but not in MD directions. Control W3 shows
a clear decrease in elongation in function of the storage time in water after 7 days and in ADBAC after
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3 days. The storage of wet wipes clearly has a significant effect on the reduction of the elongation due to
the swelling of fibres which restrict the movement of the yarns resulting in a significant loss in elasticity
(8%). As previously observed, quaternary ammonium salts, enhancing fibres swelling and accelerate
the ageing of the fibres reducing the time in which the fibres lost their elasticity [41]. Surprisingly,
plasma-treated W3 in weft direction did not show any loss but a slight increase in elasticity during
storage time. This is in accordance with the previously observed decrease in breaking force in the weft
direction. No significant changes can be depicted in the warp direction.Polymers 2019, 11, x FOR PEER REVIEW 10 of 23 
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30 days of storage time. (D0 to 30 represented 30 min, 1, 3, 7, 15, and 30 days’ immersion time).

3.5. Dynamic Mechanical Analysis Over Storage Time (DMA)

To study the thermo-mechanical properties of the wiping materials over storage time without
and with plasma treatment, the dynamic mechanical analysis (DMA) was performed. Loss modulus,
storage modulus and tan delta are the DMA parameters, providing profile information regarding the
viscoelastic properties of the polymer, relaxation process, structural hetero groups, molecular motion,
and morphology of the polymer blends [42]. Storage modulus (E’) describes the stored energy in the
polymer, which reflects the measure of elastic response of a material, while loss modulus (E”) defines
the energy dissipated as heat, representing the plastic response. Figure 5 display the storage modulus
of control wipe samples (R) and their plasma-treated wipe samples (P) at Day 7. W1 (100% polyester)
control and plasma-treated samples show a significant difference for water and ADBAC immersion
treatment. In the untreated wipe sample, the storage modulus at 30 ◦C increased three times with
the addition of ADBAC from 1.3 GPa to 3.8 GPa. Meanwhile, in the plasma-treated wipe sample,
the storage modulus increased from 1.7 GPa to 4.5 GPa. The increased storage energy in ADBAC
immersed wipe samples shows that the quaternary ammonium salt is able to alter the intermolecular
bonding that hinders the mobility of polymer chains in the wipes [43]. This value maintained relatively
stable up to 100 ◦C. After this temperature, all samples storage modulus starts to decrease due to the
increased mobility of the polymer chains. However, ADBAC samples (untreated and plasma-treated)
display a higher decrease to values similar to water storage modulus probably due to the rapid
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ADBAC molecule degradation. Plasma-treated wipe samples give a higher storage modulus than
the control wipe in either ADBAC or water samples. The improvements in the thermo-mechanical
properties of the plasma-treated wipes can be associated to the improved adhesion among fibers in the
interface region promoted by the plasma generated species such as free radicals and other oxidized
functional groups introduced on the surface of the polyester wipes [44]. W2 wipes (Figure 5B) did not
show any significant differences among all the sample behaving like a composite blend showing both
the mechanical properties of cellulose and polyester at the same time. Untreated W3 wipes display
significant differences between ADBAC and water immersed samples due to the interaction between
ADBAC and cellulose. The ADBAC immersed wipe sample shows higher storage energy than the
one immersed in water resulting from the electrostatic forces between the quaternary ammonium salt
and the cellulose structure [45,46]. Despite the XPS analysis did not show significant oxidation of
the cellulose surface, plasma-treated W3 wipes showed dramatic changes in the thermo-mechanical
properties in both water and ADBAC immersed wipes (Figure 5C). Contrarily to W1, the control
W3 wipe exhibits a much higher storage modulus than the plasma-treated one (1 GPa vs. 0.3 GPa).
This change may result from the etching effect of plasma treatment on cotton fabric. The etching
effect smoothens the cotton fabric surface by removing crosslinked impurities and surface cellulose
microfibrils, as previously discussed, leading to a decrease in storage modulus. Similar behavior was
observed for all the wipes in the loss modulus (Figure A10 in Appendix A).
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Figure 5. Temperature dependence at 4 Hz of storage (E’) modulus of W1 (A), W2 (B), W3 (C) of
untreated (R) and plasma-treated samples (P) at Day 7 immersed in water and ADBAC.

The tan delta, also known as the damping factor is the ratio between the loss (E”) and storage
modulus (E’) and it is an indicator of the molecular motions in a material. A low tan δ value exhibits
a material possessing a more elastic strain component, on the contrary, a high value implies a more
non-elastic feature. The presence of ADBAC and plasma treatment results in a decrease in tan δ in
W1 samples (Figure 6A) due to the stress transfers between wipe and the ADBAC and the plasma
introduced functional groups altering the intermolecular bonding that change the mobility of polymer
chains in the wipe. The decrease in the magnitude of tan δ upon addition of ADBAC or plasma
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treatment to the wipes suggests limited mobility of polymeric chains of polyester because of the
interactions of the ADBAC or by the plasma-generated functional groups that cause the decrease in
damping factor [47]. The glass transition temperature shift of the ADBAC in untreated control to lower
temperature confirm the plasticizing effect of the quaternary ammoniums salt on the polymeric network
only when no plasma-generated oxygen species are present [48,49]. As expected, W2 did not show
a significant difference in tan δ values with different treatments suggesting that the overall viscoelastic
properties of the blend are not perturbed by the ADBAC immersion and plasma treatment probably
due to the absorption/adsorption ability of cellulose compensating the interaction of the ADBAC and
plasma-generated species in polyester. W3 wipe is clearly the most affected in its thermo-mechanical
properties by ADBAC immersion and plasma treatment. Control W3 immersed in water displays
a decrease in tan δ values indicating a more elastic property by the rise of temperature. However, the
ADBAC immersed control samples gives a much lower tan δ value due to the interaction between
ADBAC and cellulose. It seems that the electrostatic forces interactions enhance the elastic property
of cellulose. However, the influence from the interaction is getting weak by raise of the temperature,
especially after 110 ◦C. Surprisingly, the tan δ values of plasma-treated W3 samples were found to be
temperature independent both for water and ADBAC samples. The plasma effect in cotton clearly
increases the non-elastic strain component due to the etching effect that removes the crosslinked
impurities and the entangled micro-fibrillated structures as previously discussed.
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plasma-treated samples (P) at Day 7 immersed in water and ADBAC.

3.6. Antimicrbial Efficacy

The antimicrobial efficacy (ASTM E2149-13a) as Log reductions are presented in Figure 7 in the
function of the storage time (30 min–30 days) and bacterial strain (Gram-positive and Gram-negative).
This test method allows direct and complete contact between microorganism and active ingredients,
which eliminates interferences from other parameters (i.e. mechanical action or surface contact
only). The chosen method gives a straightforward observation of how the interaction impacts on
the biocidal effect. ANOVA analysis shows that storage time does not have any significant influence
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on the antimicrobial efficacy of the control and plasma-treated wipe samples (Tables A1 and A2 in
Appendix A). However, sample type has a significant influence on the Log reduction (control wipe
with p-value 6.30615 ×10−5 and plasma-treated wipe sample with p-value 2.55926 ×10−5). Due to
the adsorption of ADBAC active ingredient on cellulose material, untreated and plasma-treated W3
showed the lowest Log reduction among all the testing samples. The Log reduction result corresponds
to the previously observed quaternary ammonium salt inactivation in cotton due to the adsorption
on the fibers that not release the antimicrobial agents [8,50]. The adsorbed active ingredients lost its
bactericidal function (Log reduction <3) and thereby failed the antimicrobial efficacy test. In the case
of the other W1 and W2, the wipes are acting like a carrier that transfers the ADBAC solution from the
bulk onto the target surface. Thus, the Log reduction shows almost the same result as the pure ADBAC
solution. In addition, ADBAC is clearly more effective in Gram-negative E. coli than gram-positive
S. aureus for every type of wipe including plasma-treated ones. ANOVA analysis of untreated W1 and
W2 shows that the storage time has a significant influence on their Log reduction of E. coli (control
wipe samples with a p-value of 0.036 and plasma-treated wipe samples with a p-value of 0.005).
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Figure 7. Log reduction of S. aureus and E. coli on the untreated (R) and plasma-treated (P) disinfecting
wipes stored for 30 min, 3, 7, 15, and 30 days.

Despite the great variability of the antimicrobial effect, plasma treatment displays a significant
effect in W1 and W2 wipes for S. aureus and for W1 for E. coli. In S. aureus plasma-treated W1 wipe
enhance the antimicrobial efficacy increasing the Log reduction from 2.5 to 4.5 at day 1 and from 6
to 8 after 15 days while after 30 days both untreated and plasma-treated samples show a significant
reduction in antimicrobial efficacy. Similar behaviour can be observed in W2 wipe but only up to
7 days. In the case of E. coli, the plasma treatment seems to preserve the antimicrobial activity during
storage time for W1 wipe while no changes in W2 can be depicted. As expected, plasma treatment did
not affect the very low antimicrobial activity in cotton-based W3 wipe. Plasma treatment in polyester
wipes (W1) is able to minimize the main drawback on ADBAC absorption, namely the hydrophobicity
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of the polyester surface which does not allow ADBAC to remain on the wipe. Plasma treatment
improve the surface adsorption of ADBAC due to the plasma-generated oxygen species that allow
a controlled release of the disinfectant over storage time conditions [51].

4. Conclusions

XPS analysis demonstrates the presence of relevant plasma-generated oxygen species on W1
and W2 wipes while LSM demonstrates the plasma etching effect in smoothing the cotton surface
of W3 wipe. Plasma treatment also shows to have a significant effect on the thermos-mechanical
properties of the wipes slightly reducing the force at break and elongation in water and ADBAC
treated wipes. Plasma-treated W3 cotton wipe did not show any loss but a slight increase in elasticity
during storage time in weft direction due to the reducing of the cellulose fiber swelling. DMA analysis
demonstrates that the blend wipe (W2) is not affected in its viscoelastic properties and highlights
the opposite mechanical behavior of W1 and W3 wipes. The presence of plasma treatment in W1
improve the elastic response of the wipe limiting the mobility of the polymeric chains of polyester,
while the plasma treatment in W3 clearly increases the non-elastic strain component due to the etching
effect. DBD plasma treatment is able to duplicate the shelf life in term of antimicrobial efficacy of
pure polyester wipes (W1) up to 15 days for Gram-positive bacteria and 30 days for Gram-negative
bacteria compared to the untreated samples. In a less extend also in the blend polyester /cotton wipe
(W2) plasma treatment is able to enhance the antimicrobial efficacy of about 30% for Gram-positive
bacteria and continue to have excellent activity in Gram-negative bacteria. The adsorption of ADBAC
on cellulose (W3) completely block the biocidal effect of active ingredients, which is a high risk for
infection control.
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Table A1. ANOVA analysis of antimicrobial test result over storage time: control wipe samples.

Source of Variation SS df MS F P-value F crit

ANOVA result
of S. aureus

Sample Type 54.160191 3 18.053397 19.676001 6.30615 × 10−5 3.490295
Storage Time 6.8844590 4 1.7211148 1.8758052 0.179495939 3.259167

Error 11.010406 12 0.9175339
Total 72.055057 19

ANOVA result
of E. coli

Sample Type 149.61623 3 49.872078 68.638708 7.98187 × 10−8 3.490295
Storage Time 2.3886352 4 0.5971588 0.8218669 0.535746027 3.259167

Error 8.7190589 12 0.7265882
Total 160.723929 19

Table A2. ANOVA analysis of antimicrobial test result over storage time: plasma treated wipe samples.

Source of Variation SS df MS F P-value F crit

ANOVA result
of S. aureus

Sample Type 74.189835 3 24.729945 23.570227 2.55926 × 10−5 3.4902948
Storage Time 18.446129 4 4.6115324 4.3952731 0.02034882 3.2591667

Error 12.590432 12 1.0492027
Total 105.22640 19

ANOVA result
of E. coli

Sample Type 156.03905 3 52.013016 54,090543 3.03227 × 10−7 3.4902948
Storage Time 22.149016 4 5.5372540 5.7584253 0.00798589 3.2591667

Error 11.539100 12 0.9615917
Total 189.72717 19
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