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Abstract

The new-shoot-growing stage is an important period of apple tree nutrition distribution. The

objective of this study is to provide technical support for apple tree nutrition diagnosis by

constructing quantitative evaluation models between the apple leaf nitrogen content during

the new-shoot-growing stage and characteristic spectral parameters. The correlation coeffi-

cients between the original spectral data and the nitrogen content were calculated. Then,

the sensitive bands of the nitrogen content were selected using the theory of two-dimen-

sional (2D) correlation spectroscopy. Finally, partial least squares regression (PLSR) and

support vector machine (SVM) evaluation models were established using 2 parameters: Rx

(maximum spectral reflectivity in the waveband) and Sx (total spectral reflectivity in the

waveband). The results showed that the sensitive bands in the 2D correlation synchronous

and asynchronous spectrograms were 537–560 nm and 708–719 nm. The PLSR model

can be used to estimate the nitrogen content. Compared with PLSR, SVM provided better

modeling and testing results, with a larger coefficient of determination (R2) and a smaller

root-mean-square error (RMSE). The SVM model based on Sx was a good backup method.

The calibration R2 of the model was 0.821, its RMSE was 0.710 g�kg-1, the validation R2 was

0.768, and its RMSE was 1.019 g�kg-1. The SVM model based on 2D correlation spectros-

copy can be used to quantitatively estimate the nitrogen content in apple leaves.

Introduction

For apple trees, the new-shoot-growing stage is a critical period of nutrient storage and trans-

formation. In this stage, newborn sprouts are growing rapidly and the leaves gradually mature.

This stage is therefore vital for nutritional-content measurements. Nitrogen is required for

plant growth [1,2]. Therefore, the ability to quickly measure the nitrogen content in the new-

shoot-growing stage is important for monitoring the growth of apple trees. Compared with the

chemical method, a spectroscopic technique is fast, economical, and non-destructive and pro-

vides a new method for determining the nitrogen content [3,4].
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In recent years, spectral technology has been used to estimate the nitrogen content of wheat

(Triticum aestivum L.) [5,6], rice (Oryza sativa L.) [7,8], and maize (Zea mays L.) [9,10]. The

hyperspectral technique collects information of a target across the electromagnetic spectrum,

from ultraviolet to long-infrared. The technology has the advantages of a continuous band, but

the large data volume causes information redundancy [11]. Therefore, screening the sensitive

waveband is one of the key techniques in hyperspectral technology [12]. It can reduce redun-

dant features, improve the image-processing speed and improve the modeling accuracy. The

sensitive wavebands have been selected using correlation analysis [13,14], principal compo-

nent analysis [14], a genetic algorithm [15], sequential forward selection [16], the minimal-

redundancy–maximal-relevance criterion [17], and a receiver operating characteristic curve

[18]. These methods optimize the one-dimensional spectral data and screen out sensitive

bands but do not analyze the source of the sensitive functional group.

Two-dimensional (2D) correlation analysis was first used in the field of nuclear magnetic

resonance [19]. In 1993, Noda proposed the concept of a generalized 2D correlation spectrum,

which led to its wide application [20]. The 2D correlation analysis extends the spectrum to a sec-

ond dimensional space, reveals spectral feature information that is difficult to observe in the

one-dimensional spectrum, and improves the spectral resolution [21]. Simultaneously, it studies

different intermolecular or intramolecular interactions and confirms the origin of the functional

group through analysis of the correlations among different spectral lines [19,22]. The 2D corre-

lation analysis provides another method to screen sensitive bands. Zhang et al [23] used a 2D

synchronous and asynchronous spectrogram to determine the feature waveband that repre-

sented the chlorophyll concentration of the water. They then combined a support vector

machine to establish the model, where the determination coefficient of calibration (Rc
2) was

0.960, and the determination coefficient of validation (Rv
2) was 0.884. Song [24] treated water

as an outer interference and applied 2D correlation spectroscopy to analyze it. Their results

showed that the functional group at 1929 nm was most sensitive to water, that at 2210 nm was

the second-most sensitive to water, and that at 1415 nm was the least sensitive to water.

In this study, we examined the nitrogen content of apple leaves in the new-shoot-growing

stage. The objectives of this study were: i) to obtain the dynamic spectrum of nitrogen in apple

leaves using the nitrogen content as the perturbation factor; ii) to select the waveband most

sensitive to the changes in nitrogen content using 2D synchronous and asynchronous correla-

tion spectroscopy; and iii) to establish an evaluation model of the nitrogen content in apple

leaves using the PLSR and SVM method.

Materials and methods

Sampling site and sample collection

Apple leaves were collected from the Qixia City of Shandong Province, China (37˚05’ N to 37˚

32’ N, 120˚33’ E to 121˚15’ E). The orchard area thereof reaches 4.3 × 104 ha and the main

planting variety is Red Fuji apple tree. In the second half of May 2013 (the new-shoot-growing

stage), 100 Red Fuji apple trees at different growth potentials were selected randomly from 15

towns of Qixia City. Twenty leaves with different growing were collected in four orientations

around the tree canopy. The study was supported by the Qixia Fruit Industry Development

Bureau of China, which issued the permission for each orchard. The leaves were immediately

deposited into a plastic bag, which was placed in an ice-filled foam box.

Spectral data measurements

The reflectance spectra of apple leaves were collected using a portable object spectrometer

called FieldSpec 3 (Analytical Spectral Devices Inc., Boulder, CO, USA). This portable
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spectrometer has a spectral range of 350 to 2500 nm. The device was calibrated with a standard

whiteboard before measurements [3]. Spectral measurements were performed for the upper,

middle and lower parts of each leaf. After each single leaf was fixed by the leaf clip, the spectral

reflectance was measured with the built-in probe in the clip. The veins must be avoided when

measuring. Ten spectra were collected for each part. The average value of all spectral values of

a leaf was considered the spectral reflectance data.

Measurement of the nitrogen content

All leaves were dried to a constant weight at 70˚C in a forced-draft oven. The dried-leaf sam-

ples were ground and passed through a 0.25 mm screen. Approximately 0.2 g powder was

weighed for boiling. The leaf nitrogen content was determined using the Kjeldahl method

[25]. Then, 75 samples were randomly selected from 100 samples to build quantitative models;

the remaining 25 samples were used to quantify the accuracy of quantitative models. The sta-

tistical results for the nitrogen content are shown in Table 1.

Two-dimensional correlation spectroscopic analysis

The spectral signal analysis was extended to two dimensions using two-dimensional (2D) cor-

relation analysis, which can improve the spectral resolution and disassemble overlapping and

mixed spectra. It can be used to extract feature information [26].

The 2D correlation analysis examined the variability of dynamic spectra. The dynamic spec-

trum ~yðv; tÞ is defined in formula (1) [27]:

~yðv; tÞ ¼

(
yðv; tÞ � �yðvÞ Tmin < t < Tmax

0 else
ð1Þ

where t is the outer interference; Tmin ¼ �
T
2
, Tmax ¼

T
2
, T is the cycle of external interference;

�yðvÞ is the reference spectrum. In the presence of external interference, ~yðv; tÞ is the original

spectrum minus the reference spectrum; in the absence of an external disturbance, it is equal

to zero.

The 2D correlation spectrum includes two types of synchronous and asynchronous spectra.

The synchronous spectrum intensity ø(v1,v2) is the vector product of the dynamic spectrum

intensity at different wavelengths (v1,v2). The asynchronous spectrum intensity ψ(v1,v2) is the

Hilbert-Noda converted vector product of the dynamic spectrum intensity at different wave-

lengths (v1,v2) [28]:

o= v1; v2ð Þ ¼
1

m � 1
~yðv1Þ

T
~y v2ð Þ ð2Þ

c v1; v2ð Þ ¼
1

m � 1
~yðv1Þ

TN~y v2ð Þ ð3Þ

where m is the number of spectra and N is the Hilbert-Noda transformation matrix.

Table 1. Characteristics of the nitrogen concentration of the samples.

Samples Observations Maximum/g�kg-1 Minimum/g�kg-1 Mean/g�kg-1 Standard deviation/g�kg-1

Total 100 34.75 26.84 30.56 1.69

Calibration 75 34.49 26.84 30.55 1.65

Validation 25 34.75 27.04 30.56 1.82

https://doi.org/10.1371/journal.pone.0186751.t001
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The synchronization spectrogram represents the synergetic degree of signal strength caused

by two independent optical variables with external disturbance. The correlation peak is divided

into an auto-peak and a cross peak. The auto-peak is located at the diagonal of the synchro-

nous spectrogram and is obtained from the autocorrelation of the dynamic spectral signal

under the same disturbance, which represents the sensitivity of the spectral strength at this

position. The cross peak at the non-diagonal represents the degree of correlation among

spectra with different frequencies. If the peak at (v1,v2) is positive, the change direction of the

spectral intensity is consistent; otherwise, it is different. An asynchronization spectrogram

indicates the difference of the intensity variance under external disturbance. When v1 > v2, if

the peaks at (v1,v2) of either the synchronous or asynchronous spectrograms are positive, v1

changes before v2; otherwise, v1 changes after v2 [18].

The nitrogen contents were considered the external interference. The 2D correlation analy-

sis results were obtained using the Shige software, which was written by Shigeaki Morita and

Yukihiro Ozaki (Shigeaki Morita, Kwansei-Gakuin University, 2004–2005). The contour line

layer was set to 8. The average spectrum was considered the reference spectrum.

Establishment and validation of the model

The PLSR and SVM methods were used to establish the hyperspectral evaluation model. As

the most common modeling method, PLSR uses dimension reduction, which implies simplifi-

cation of independent variables without loss of information [29,30]. This method has superior

modeling effects and prediction accuracy because of its obvious advantages in processing mul-

ticollinearity and autocorrelation problems [31]. http://zh.wikipedia.org/wiki/%E7%BB%9F%

E8%AE%A1%E5%88%86%E7%B1%BBhttp://zh.wikipedia.org/wiki/regression analysisSVM

overcomes the problems of overfitting and trapping the minimum value via the principle of

structural risk minimization. It has superior generalization ability and effectively solves the

dimensionality problem [32]. The SVM method is used widely in statistical classification and

regression analysis [33].

The coefficient of determination (R2) and RMSE were used to inspect the model. The indi-

ces were calculated from the predicted and actual values of the samples. The evaluation model

with the highest R2 and lowest RMSE were considered the best [9].

Results

Spectral characteristics of different nitrogen contents

First, 100 samples were divided into 3 groups on the basis of their average nitrogen contents:

� 2.975 g�kg-1, 2.975–3.171 g�kg-1, and� 3.171 g�kg-1. The reflectance spectral curve was

obtained to show the mean reflectance value in each group (Fig 1). The spectral curve shapes

of all samples were similar and formed a convex parabola. The band was not considered when

modeling at 350–400 nm because this region may be affected by device noise. At 430–470 nm

and 620–760 nm, chlorophyll in the leaves absorbed the optical radiation for photosynthesis

and formed 2 reflection troughs. The leaves with high nitrogen contents exhibited lower reflec-

tivity than those with low nitrogen contents. In the green-light waveband, the reflection of the

leaves formed an obvious reflection peak and the reflectivity value decreased with increasing

nitrogen content. In the wavelength region beyond the red waveband, the reflection of the

leaves sharply increased. In the 780–1300 nm range, after initially decreasing, the reflectivity

increased with increasing nitrogen content. In the 1300–2500 nm region, the reflectance spec-

tral curve formed 2 obvious absorption troughs and reflection crests, which may be related to

moisture in the plant, mesophyll cell tissue and dry matter. The reflectivity showed staggering

changes with increasing nitrogen content.

Evaluation of N content using two-dimensional correlation spectroscopy
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Two-dimensional spectral characteristics of leaves

The correlation coefficient at each wavelength between the raw spectral value and the nitrogen

content was calculated for the entire 350–2500 nm region (Fig 2). The nitrogen content was

correlated significantly with the spectra in the 493–656 nm, 688–751 nm, 1362–1458 nm, and

1834–1895 nm regions (P </ = 0.01, rmax = -0.591). The 1362–1458 nm and 1834–1895 nm

regions were excluded because they are strongly influenced by absorption bands associated

with moisture and the atmosphere [31,34].

Two-dimensional correlation analysis was conducted for the 493–656 nm and 688–751 nm

ranges. Fig 3 shows the 2D synchronous and asynchronous spectrograms of the nitrogen con-

tent in leaves at 450–800 nm. The synchronous spectrogram contained two auto-correlation

peaks at approximately 537–560 nm and 708–719 nm (Table 2); these results indicate that

these two wavebands were the most sensitive to the external interference and that their spectral

Fig 1. Spectral reflectance characteristics of leaves with different nitrogen concentrations.

https://doi.org/10.1371/journal.pone.0186751.g001

Fig 2. Correlation analysis between the spectral reflectance and the nitrogen concentration.

https://doi.org/10.1371/journal.pone.0186751.g002
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strengths fluctuated with the nitrogen content. Meanwhile, positive cross peaks were observed

at 537–560 nm and 708–719 nm (Table 2), which indicates that the reflectivity strength corre-

sponding to the two wavebands synchronously changed with the external disturbance and was

affected by the same substance in the apple leaf. The wavebands sensitive to the chlorophyll

content in apple leaves were contained in the ranges from 515 to 590 nm and from 688 to 715

nm [35]. Furthermore, Li [36] concluded that chlorophyll exhibits strong reflectivity at

approximately 530–570 nm and that the reflectivity in the 700–725 nm range also is related to

the chlorophyll content. Given the results of the 2D correlation analysis, the reflectivity inten-

sity at 545–559 nm and 688–715 nm synchronously changed with the chlorophyll content.

Because nitrogen is a component of chlorophyll, the nitrogen content is related closely to these

two wavebands.

There are four cross peaks in the asynchronous spectrogram (Table 2). These cross peaks

indicate that the functional groups that vibrated at 450–456 nm vibrated in a different direc-

tion than those associated with the bands at 534–565 nm and 714–728 nm and that the spectral

strength reversibly changed under the external disturbance. The functional group associated

with the band at 744–800 nm vibrated in the opposite direction than those associated with the

bands at 556–561 nm and 709–721 nm. Therefore, the reflection peaks at (534–565 nm, 709–

728 nm) and (450–456 nm, 744–800 nm) did not reflect the same substance in the leaf. A

strong absorption trough of xanthophyll was observed at 450–456 nm [37,38]. Furthermore, Li

Fig 3. Synchronous (a) and asynchronous (b) two-dimensional correlation spectra.

https://doi.org/10.1371/journal.pone.0186751.g003

Table 2. The peak of synchronous and asynchronous two-dimensional correlation.

Peak Horizontal axis/nm Vertical axis/nm

Auto-correlation peak 537~560 537~560

Auto-correlation peak 708~719 708~719

positive cross peak 537~560 708~719

Cross peak 450~456 534~565

Cross peak 450~456 714~728

Cross peak 556~561 785~800

Cross peak 709~721 744~800

https://doi.org/10.1371/journal.pone.0186751.t002
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[36] reported that the water content in apple leaves is correlated strongly with the reflection

spectrum within in the 420–500 nm and 740–860 nm regions. Finally, 537–560 nm and 708–

719 nm were selected as the sensitive bands for the nitrogen content estimation, consistent

with previous research results [39,40]. These wavebands are the green- and red-light regions,

which are typical spectral regions of plants and are consequently reliable and sensitive regions

associated with the nitrogen content.

Establishment and validation of the evaluation model

Two characteristic spectral parameters were constructed to establish the evaluation model: Rx

(maximum spectral reflectivity in the waveband) and Sx (total spectral reflectivity in the

waveband).

Partial least squares regression. The characteristic spectral parameters within the 537–

560 nm and 708–719 nm regions were considered independent variables and the nitrogen con-

tent was considered a dependent variable to establish the partial least square regression model.

Model (4) and model (5) are the estimation models based on the Rx and Sx characteristic spec-

tral parameters, respectively:

y ¼ 5:629 � 7:241Rx1 � 5:697Rx2 ð4Þ

y ¼ 5:232 � 0:304Sx1 � 0:458Sx2 ð5Þ

For the model based on Rx, the calibration Rc
2, root-mean-square error of calibration

(RMSEc), validation Rv
2, and root-mean-square error of validation (RMSEv) were 0.778, 0.773

g�kg-1, 0.665, and 1.378 g�kg-1, respectively. For the model based on Sx, the calibration Rc
2,

RMSEc, validation Rv
2, and RMSEv were 0.773, 0.782 g�kg-1, 0.664, and 1.368 g�kg-1, respec-

tively (Table 3). The PLSR model based on the Rx parameter was slightly better than the PLSR

model based on Sx. The two models can be used to estimate the nitrogen content. Although

the linear model is simple and intuitive, the estimation accuracy must be improved.

Support vector machine. A multivariate nonlinear model was established to take the

characteristic spectral parameter corresponding to the 537–560 nm and 708–719 nm ranges as

the condition attributes and the nitrogen content as the decision attributes of the SVM model.

Through parameter optimization and model verification, the SVM type and the kernel func-

tion type were determined to be v-SVR and RBF, respectively. Other model parameters are

shown in Table 4.

For the model based on Rx, the calibration Rc
2, RMSEc, validation Rv

2, and RMSEv were

0.819, 0.703 g�kg-1, 0.759, and 1.102 g�kg-1, respectively. For the model based on Sx, the calibra-

tion Rc
2, RMSEc, validation Rv

2, and RMSEv were 0.821, 0.710 g�kg-1, 0.768, and 1.019 g�kg-1,

respectively (Table 3). The SVM model based on the Sx parameters was slightly better than

that based on Rx. The R2 of the SVM models were larger than the R2 of the PLSR models, and

Table 3. Establishment and validation of the evaluation models.

Modeling method Characteristic parameter Rc
2 RMSEc/g�kg-1 Rv

2 RMSEv/g�kg-1

PLSR Rx

Sx

0.778

0.773

0.773

0.782

0.665

0.664

1.378

1.368

SVM Rx

Sx

0.819

0.821

0.703

0.710

0.759

0.768

1.102

1.019

Rc
2: determination coefficient of calibration; Rv

2: determination coefficient of validation; RMSEc: root-mean-square error of calibration; RMSEv: root-mean-

square error of validation

https://doi.org/10.1371/journal.pone.0186751.t003
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the RMSE of the SVM models were smaller the RMSE of the PLSR models. The SVM models

were better than the PLSR models. According to the established model, we constructed a 1:1

relationship diagram between the measured and predicted values to show the reliability and

consistency of the SVM model; the result is shown in Fig 4. The measured and predicted values

of the modeling and testing were approximately 1:1. The SVM model can be used to estimate

Table 4. Support vector machine regression model parameters.

Degree Gamma Coef0 Nu Epsilon Cashesize Cost Shrinking Prob P

3 0.5 0.001 0.5 0.001 100 1 1 1 0.01

Degree: set degree in kernel function; Gamma: set gamma in kernel function; Coef0: set coef0 in kernel function; Nu: set the parameter nu of nu-SVC, one-

class SVM, and nu-SVR; Epsilon: set tolerance of termination criterion; Cashesize: set cache memory size in MB; Cost: set the parameter C of C-SVC,

epsilon-SVR, and nu-SVR; Shrinking: whether to use the shrinking heuristics, 0 or 1; Prob: whether to train a SVR model for probability estimates, 0 or 1; P:

set the epsilon in loss function of epsilon-SVR.

https://doi.org/10.1371/journal.pone.0186751.t004

Fig 4. Comparison of the SVM measured values and the values predicted on the basis of the (a) calibration with

Rx, (b) validation with Rx, (c) calibration with Sx, and (d) validation with Sx.

https://doi.org/10.1371/journal.pone.0186751.g004
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quantitatively the nitrogen content and represents an effective 2D correlation spectrum tech-

nology for the evaluation of the nitrogen content in leaves.

Conclusions

The nitrogen content was considered an external interference to obtain the dynamic spectrum

of nitrogen in leaves. The nitrogen-sensitive bands were those at 537–560 nm and 708–719 nm

in the synchronous or asynchronous spectrograms. The SVM models were better than the

PLSR models, with larger R2 and smaller RMSE values than PLSR models’. The SVM model

with the 2D correlation analysis and Sx served as the optimal method to estimate the nitrogen

content in apple leaves in the shoot-growing stage (Rc
2 = 0.821, RMSEc = 0.710 g�kg-1, Rv

2 =

0.768, RMSEv = 1.019 g�kg-1). The model achieved a notably high accuracy and provides tech-

nical support for the scientific management of the nitrogen content. The leaf nitrogen and

spectral data must be measured in the estimation process, which inevitably may involve

human error. In future work, we will establish the leaf optical model to test the effect of the

estimation model, thereby providing a theoretical basis for the development of spectral analysis

technology for apple leaves.
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