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Background: Although IgA nephropathy (IgAN), an immune-mediated disease with heterogeneous clinical
and pathological phenotypes, is the most common glomerulonephritis worldwide, it remains unclear which
IgAN patients benefit from immunosuppression (IS) therapy.
Methods: Clinical and pathological data from 4047 biopsy-proven IgAN patients from 24 renal centres in
China were included. The derivation and validation cohorts were composed of 2058 and 1989 patients,
respectively. Model-based recursive partitioning, a machine learning approach, was performed to partition
patients in the derivation cohort into subgroups with different IS long-term benefits, associated with time to
end-stage kidney disease, measured by adjusted Kaplan-Meier estimator and adjusted hazard ratio (HR)
using Cox regression.
Findings: Three identified subgroups obtained a significant IS benefits with HRs < 1. In patients with serum
creatinine < 1-437 mg/dl, the benefits of IS were observed in those with proteinuria > 1-525 g/24h (node 6;
HR = 0-50; 95% CI, 0-29 to 0-89; P = 0-02), especially in those with proteinuria > 2-480 g/24h (node 8;
HR = 0-23; 95% CI, 0-11 to 0-50; P <0-001). In patients with serum creatinine > 1-437 mg/dl, those with high
proteinuria and crescents benefitted from IS (node 12; HR = 0-29; 95% CI, 0-09 to 0-94; P = 0-04). The treat-
ment benefits were externally validated in the validation cohort.
Interpretation: Machine learning could be employed to identify subgroups with different IS benefits. These
efforts promote decision-making, assist targeted clinical trial design, and shed light on individualised treat-
ment in IgAN patients.
Funding: National Key Research and Development Program of China (2016YFC0904103), National Key Tech-
nology R&D Program (2015BAI12B02).
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Immunosuppression (IS) therapy is a common treatment choice
for immune-mediated kidney disease [3]. Although IgAN has been

IgA nephropathy (IgAN) is the most common primary glomerulo-
nephritis worldwide, especially in Asian regions, where IgAN
accounts for approximately 50% of all cases [1]. IgAN is characterised
by the deposition of IgA in the mesangial area of the glomeruli,
accompanied by various clinical manifestations and histopathological
lesions. Up to one in four patients suffer from end-stage kidney dis-
ease (ESKD) within 20 years from diagnosis and require renal trans-
plantation [2].
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recognised as an immune-mediated disease, the pathogenesis of
IgAN has not yet been fully elucidated and the efficacy of IS in
patients with IgAN remains controversial [2,4]. Clinical trials have
been conducted to address the effects of IS therapy in IgAN patients
with “high-risk” factors including renal function, proteinuria and
hypertension [5,6]. The STOP-IgAN randomised controlled trial (RCT)
illustrated that IS reduced proteinuria but had no effects on the slope
of the eGFR decline or ESKD after 3 years [7]. Although the TESTING
trial showed that oral corticosteroids had potential renal benefit,
definitive conclusions about their efficacy could not be drawn since
the trial was terminated early owing to serious side effects [8].
Notably, kidney histological characteristics were not taken into con-
sideration when recruiting the patients into these two trials [9].
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Research in context

Evidence before this study

IgA nephropathy is the most common primary glomerulone-
phritis and an important cause of end-stage kidney disease
worldwide, especially in Asian regions. Although it is consid-
ered an immune-mediated disease with heterogeneous pheno-
types clinically and pathologically, which IgA nephropathy
patients will benefit from immunosuppression treatment and
how to identify these patients remains unclear. Previous clinical
trials regarding IgA nephropathy treatment decisions recruited
patients by merely relying on simplistic categories of clinical
risk factors rather than a comprehensive consideration of both
clinical and pathological characteristics, possibly leading to
inaccurate risk stratification and undetermined treatment
effectiveness. Some recently developed machine learning
methods can learn from data sets and be used to identify
patient subgroups with differential responses to treatment.

Added value of this study

A large national collaboration data set consisting 4047 IgA
nephropathy patients from 24 renal centres was collected. Sub-
groups with different immunosuppression treatment benefits
were identified automatically using a machine learning method
in IgA nephropathy patients based on a broad spectrum of clini-
cal and pathological characteristics. Potential subgroups of
patients benefiting from immunosuppression therapy on
reducing real-world kidney decisive outcomes were identified
in 2058 IgA nephropathy patients from 18 renal centres and
externally validated in 1989 IgA nephropathy patients from 7
renal centres.

Implications of all the available evidence

Our study suggested that comprehensive consideration of renal
function, proteinuria and renal histological characteristics
would serve as indicators for the selection of immunosuppres-
sion therapy in IgA nephropathy patients. These efforts pro-
mote decision-making, assist future targeted clinical trials, and
shed light on individualised treatment in IgA nephropathy
patients. We also illustrated the power of machine learning
methods in solving medical puzzles, discovering insight from
real-world data and facilitating precision medicine in patients
with kidney diseases.

Determining the disease status and making treatment decisions based
on a simplistic categorisation of clinical risk factors, such as renal func-
tion and proteinuria, with no consideration of kidney histological char-
acteristics may have resulted in insufficient and unpredictable results as
mentioned in the two trials [7,8,10,11]. Incorporating pathological fea-
tures into the evaluation indicators may be necessary to group IgAN
patients and guide treatment more precisely.

Recent advancements in machine learning provide an approach to
identify IgAN patients who may potentially benefit from IS therapy.
We can employ machine learning methods to jointly consider clinical
and pathological features, model their high-order interactions, and
effectively identify subgroups who may potentially benefit from IS
therapy. Model-based recursive partitioning [12], a machine learning
method used for the automated identification of subpopulations, has
recently been applied in medicine for discovering patient subgroups
with differential responses to treatment [13,14].

This study is the first to use machine learning to explore more
individualised IS treatment selection in IgAN patients. In our study, a

large national collaboration data set, which consisted of 4047 IgAN
patients from 24 renal centres, was analysed. We successfully identi-
fied and externally validated subgroups of patients who may poten-
tially benefit from IS therapy based on a broad spectrum of clinical
and pathological features, with direct consideration of ESKD (the
decisive kidney outcome), explicit modelling of high-order feature
interactions, and automatic selection of cut-off values in IgAN
patients. The findings of this study can provide insights into data-
informed decision making in treating IgAN patients and the inclusion
of targeted patients in future clinical trials, thus shedding light on
individualised therapy in IgAN patients.

2. Materials and methods
2.1. Study cohort

The study included the Nanjing cohort (n = 1026), which consisted
of patients from 18 centres associated with Jinling Hospital in Nanj-
ing (China) between January 1997 and June 2010; the Chinese Regis-
try of Prognostic Study of IgA Nephropathy (CRPIGA) cohort
(n = 2155), which included patients from 7 centres before December
2015; and the single-centre Nanjing Glomerulonephritis Registry
(NGR) cohort (n = 2354), which was retrieved consecutively from the
Nanjing Glomerulonephritis Registry (Jinling Hospital) between Janu-
ary 2006 and June 2011. The Nanjing and CRPIGA cohorts were col-
lected independently for research purposes, and details have been
previously described [15,16]. In the current study, we included
patients with biopsy-proven primary IgAN who were 18 years or
older with follow-up exceeding 12 months, estimated glomerular fil-
tration rate (eGFR) > 30 mL/min/1.73 m?, and proteinuria > 0.5 g/d.
Patients who progressed to ESKD within the first 12 months of fol-
low-up were also included. Patients with secondary causes or those
with comorbid conditions were excluded.

The derivation cohort included the Nanjing cohort and NGR
cohort I (data from January 2006 to June 2009), and the validation
cohort consisted of the CRPIGA cohort and NGR cohort II (data from
July 2009 to June 2011). The Department of Nephrology at Ruijin Hos-
pital participated both in the derivation and validation cohorts, and
the patients did not overlap.

This study followed the tenets of the Declaration of Helsinki, and
was approved by the ethics committee of Jinling Hospital (2010NLY-
023), Nanjing, China. Written informed consent was obtained from
all study participants.

2.2. Definitions of variables

The baseline data, including demographic and disease characteris-
tics, and clinical and pathological variables (Table S1) were collected
within 1 month of the renal biopsy. In the derivation cohort, blood
pressure, serum creatinine, and proteinuria during follow-up were also
recorded. Serum creatinine was measured using enzymatic methods
calibrated to the National Institute of Standards and Technology Liquid
Chromatography Isotope Dilution Mass Spectrometry method.

The definition of therapy was consistent with previous retrospec-
tive studies of IgAN [17,18]. IS therapy (corticosteroids, cyclophos-
phamide and mycophenolate mofetil) and renin-angiotensin system
blockade (any exposure to angiotensin-converting enzyme inhibitors,
angiotensin receptor blockers or both, RASB) prior to biopsy were
assessed. IS therapy and RASB use at biopsy and during the follow-up
time were reported separately. The patients’ treatment began imme-
diately after the biopsy unless there were contraindications or
adverse reactions. Patients who received corticosteroids, cyclophos-
phamide or mycophenolate mofetil were defined as having received
standard-of-care IS therapy in this study. Corticosteroids and cyclo-
phosphamide were recommended by the KIDGO guidelines for IgAN
[19], and mycophenolate mofetil was reported to lower proteinuria
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and ameliorate histopathological changes in RCTs, especially in Chi-
nese patients [20,21]. With reference to previous studies [17,18], IS
treatment was reported according to the intention to treat principle
regardless of the actual duration of therapy. Due to the limitation of
the retrospective study design, the dosage of IS therapy was not col-
lected.

The updated Oxford Classification [22] was applied for scoring
kidney pathological lesions and was defined as follows: mesangial
hypercellularity (MO, mesangial score <0-5; M1, mesangial score
>0.5), endocapillary hypercellularity (EO, absent; E1, present), seg-
mental glomerulosclerosis (SO, absent; S1, present), tubular atrophy/
interstitial fibrosis (TO, <25%; T1, 26%—50%; T2, >50%), and cellular/
fibrocellular crescents (CO, absent; C1, present in at least 1 glomeru-
lus; C2, in>25% of glomeruli). In the Nanjing cohort and the NGR
cohort, renal biopsies were scored centrally. In the CRPIGA cohort,
renal biopsies were scored by local pathologists who were experi-
enced in the classification and were blinded to the other clinical data.
The presence of necrosis and the condition of the arterioles were also
noted in the derivation analysis for comprehensive multivariate
adjustment.

The primary clinical outcome was ESKD, a long-term kidney hard
outcome, defined as eGFR<15 mL/min/1-73 m? for > 3 months, initia-
tion of dialysis or transplantation. Eligible patients were followed
from the time of biopsy until the earliest of any censoring event
(patient left data set or transferred out, death, study end date, or
most recent data upload from practice) or an outcome event. We also
addressed secondary outcomes including potential surrogate end
points for chronic kidney disease (40% decline in eGFR and 30%
decline in eGFR) [23] and the most used surrogate outcome in previ-
ous retrospective studies of IgAN (50% decline in eGFR) [17].

2.3. Statistical analysis

2.3.1. Data processing and description

A total of 40 variables (Table S1), including demographic charac-
teristics, disease and treatment characteristics, clinical characteris-
tics, and pathologic variables were included in the derivation dataset.
A total of 17 variables were collected for the validation cohort,
including the splitting factors identified from the derivation analysis
and other characteristics (Table S1). The overall rates of missing data
were 0-78% and 2-24% in the derivation and validation data sets,
respectively (the rates of missing data for each variable are shown in
Table S2a and Table S2b). Missing value imputation was conducted as
follows: (1) missing clinical history (including personal disease his-
tory, treatment history, and family history) was imputed as ‘not hav-
ing the history’; (2) missing clinical indicators were imputed with
random numbers generated from the distribution; and (3) missing
mean arterial pressure was calculated from imputed systolic blood
pressure and diastolic blood pressure.

Continuous variables were summarised as the mean (SD) or
median (interquartile range [IQR]) and compared using the t-test or
Mann—Whitney test. Categorical variables were summarised as num-
bers (percentages) and compared using the chi-squared test or Fish-
er’s exact test.

2.3.2. Benefiting cohort identification

Recursive partitioning is a classical method for multivariate analy-
sis, which, by creating a decision tree, divides a population into sub-
populations that have similar values of the response variable. Model-
based recursive partitioning [14], a variant of recursive partitioning,
is a machine learning method that embeds recursive partitioning into
parametric statistical model estimation and variable selection.
Model-based recursive partitioning is applicable when the response
to a treatment is not homogenous in the general cohort; it divides
patients into groups such that the responses to the treatment are
homogenous within each subcohort and are different between the

subcohorts. This method was applied in a previous study to analyse
the effect of riluzole on amyotrophic lateral sclerosis [24].

Model-based recursive partitioning was conducted with the fol-
lowing basic steps: (1) fit a model to a dataset (all patients or a
‘node’); (2) test for parameter instability, where for each candidate
partitioning variable and each of its possible partitioning criteria,
whether splitting the node into two segments would result in a
locally well-fitting model in each of the segments is tested; (3) split
the node with respect to the variable and partitioning criteria associ-
ated with the highest instability; and (4) repeat the procedure in
each of the daughter nodes, until the termination condition is met.

In this study, we employed model-based recursive partitioning for
patient subgroup identification with a combination of clinical and
pathological features. We defined the Cox regression model as the
parametric model, the time to the clinical outcome (ESKD) as the
response variable, and the IS treatment as the regressor. We defined
the other 39 variables (Table S1) as candidate partitioning variables,
which were used to partition the dataset. We applied the model-based
recursive partitioning implementation in the R package ‘partykit’ [25]
using negative log-likelihood as the objective function. The termina-
tion condition was set such that the maximum depth of the tree was 4
and the least number of patients in a subgroup was 50.

2.3.3. Evaluation of IS treatment benefits

In each patient subgroup, the long-term benefits of IS treatment
associated with reducing the clinical outcome was evaluated using
(1) univariate and multivariate Cox regression; and (2) the Kaplan-
Meier estimator and log-rank test adjusted with inverse probability
of treatment weighting (IPTW). For both evaluation approaches, the
propensity score was calculated to measure the probability of treat-
ment and used to reduce the confounding effects [26,27]. The pro-
pensity score for each patient was the fitted value from a
multivariate logistic regression model using the IS treatment as the
dependant variable and the other variables in Table S1 as indepen-
dent variables [28]. In the univariate regression scenario, a model
using the disease outcome as the response variable and IS as the only
regressor was fitted. The hazard ratio (HR), 95% confidence interval
(CI), and P value associated with the IS variable were reported. In the
multivariate regression scenario, the disease outcome was used as
the response variable, with IS treatment and the propensity score as
the regressors. The adjusted HR, 95% CI, and P value associated with
the IS treatment variable were reported. Adjusted Kaplan-Meier esti-
mation and log-rank test were conducted as previously described
[29-31] using the R package ‘IPWsurvival'.

2.3.4. Model validation analysis

External validation was performed to validate the findings from
the derivation analysis. The validation cohort was partitioned into
separate subsets following the same decision rules identified in the
derivation analysis. In each subset, both the unadjusted hazard ratio
and adjusted hazard ratio were estimated to evaluate the IS treat-
ment benefits using the same methods as in the derivation analysis.

Further details of the Methods are provided in Item S1 and Item S2.

SPSS 22.0 software (IBM Corporation, Armonk, NY, USA) and R
programming software (version 3.4.1) were used for the statistical
analysis. All P values were two-tailed, and values < 0-05 were consid-
ered statistically significant.

3. Results
3.1. Derivation analysis

There were 3380 patients in the combined Nanjing cohort and
NGR cohort I (from January 2006 to June 2009), of whom 2058 met

the inclusion criteria and were included in the derivation cohort
(Fig. 1), whose characteristics are shown in Table 1. The differences



4 T. Chen et al. / EBioMedicine 52 (2020) 102657

Derivation cohort

cohort

3380 Patients
1026 Nanjing cohort
2354 NGR cohort |

3734 Patients
2155 CRPIGA cohort
1579 NGR cohort Il

99 Age < 18y 109 Age < 18y

12 Age > 70y 33 Age > 70y

215 Follow-up time < 12m 433 Follow-up time < 12m
628 Urine protein < 0.5g/d | —>| 674 Urine protein < 0.5g/d

65 eGFR < 30mL/min/1.73m?
16 Total glomeruli on PAS <8
121 Secondary IgAN

130 Comorbid conditions

30 Renal allograft IgAN

139 eGFR < 30mL/min/1.73m?
13 Total glomeruli on PAS <8
91 Secondary IgAN

217 Comorbid conditions

19 Renal allograft IgAN

6 missing data on outcomes |~— —'| 17 missing data on outcomes

2058 Patients included
1024 Nanjing cohort
1034 NGR cohort |

1989 Patients included
1132 CRPIGA cohort
857 NGR cohort Il

Fig. 1. Enrolment of patients for the derivation and validation cohorts.

The NGR cohort I included patients retrieved consecutively from the Nanjing Glo-
merulonephritis Registry from January 2006 to June 2009, and the NGR cohort II
included patients from July 2009 to June 2011.

NGR, Nanjing Glomerulonephritis Registry; CRPIGA, Chinese Registry of Prognostic
Study of IgA Nephropathy; eGFR, estimated glomerular filtration rate; IgAN, immuno-
globulin A nephropathy; PAS, periodic acid—Schiff.

in characteristics between patients treated with IS and those without
in the derivation cohort are shown in Table S3.

In the derivation cohort, 857 (41.7%) patients had a follow-up less
than 5 years, and the median number of follow-up measurements

Table 1
Description of the derivation and validation cohorts.
Variables Derivation Cohort Validation Cohort PValue
(n=2058) (n=1989)

Age, years, mean 34.8(9-6) 34.8(10-3) 0-96
(SD)

Male 1015 (49-3) 1179 (59-3) <0-001

SBP, mm Hg, mean 127-5(18:2) 124-1(16-2) <0-001
(SD)

DBP, mm Hg, mean 81.8(12.9) 79-7(11.7) <0-001
(SD)

MAP, mm Hg, mean 96-9(14-4) 94.5(12.4) <0-001
(SD)

Serum creatinine, 1.05(0:41) 1.07 (0-40) 0.07
mg/dl, mean (SD)

eGFR, ml/min per 87-9(30-6) 88.5(29-1) 0-55
1.73m?, mean
(SD)

Proteinuria, g/24 hr, 1.1(0-8t01.9) 1.2(0-8t02-2) <0-001
mean (IQR)

Serum albumin, g/L, 38-3(5-8) 38.7(6-8) 0.05
mean (SD)

Pathology
No. with data 2058 1674
M1 702 (34-1) 628 (37.5) 0-03
E1 244 (11.9) 431(25.7) <0-001
S1 1571 (76-3) 1127 (67-3) <0-001
T1-2 516 (25-1) 391(23-4) 0-22
C1-2 882 (42.9) 785 (46.9) 0-01

RAS blockade 1914 (93.0) 1866 (93-8) 0-30

Immunosuppression 655(31-8) 928 (46-7) <0-001
treatment

Follow-up time, 5.8(3-7t08-6) 4.6 (2-5t06.7) <0-001
years, median
(IQR)

ESKD 216 (10-5) 172 (8-6) 0-05

Values are numbers (percentages) unless stated otherwise. SBP, systolic blood
pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure; eGFR, esti-
mated glomerular filtration rate; RAS, renin-angiotensin system; ESKD, end-
stage kidney disease.

was 13 (IQR, 8 to 20). The slope of the eGFR in the follow-up period
was —2.52 (SD, 9-12) mL/min/1.73 m? per year. Blood pressure was
well controlled during the follow-up time; the time-averaged mean
arterial pressure value was 94-6 (SD, 9-5) mmHg (126-8 [12.9]/78.3
[8,9] mmHg). The median time-averaged proteinuria was 0-7 (IQR,
0-4 to 1-1) g/24 hr. Overall, the median number of serum creatinine,
proteinuria, and blood pressure measurements were 13 (IQR, 8 to
20), 13 (8 to 19), and 10 (6 to 16), respectively.

The partitioning results are organised in a partitioning tree in
Fig. 2, where each node in the tree represents a patient subgroup sat-
isfying the conditions shown on the branches. The IS benefits for
patients in each subgroup, as stratified by the partitioning tree, are
shown in Table 2. Six features were selected as splitting factors,
including serum creatinine (SCr), urine protein, serum albumin (ALB),
hypertension, diastolic blood pressure (DBP), and C in the Oxford
Classification, contributing to 15 nodes (including internal nodes and
leaf nodes). Five subgroups were identified as having a significant
long-term treatment benefit at a significance level of 0-05: nodes 6, 8,
and 12 had a decreased hazard of ESKD and nodes 11 and 15 had an
increased hazard of ESKD.

Node 6, consisting of 546 patients, was characterised by having
SCr <1-437 mg/dl and proteinuria >1-525 g/24 hr. In this group, IS
was associated with favourable kidney survival (adjusted HR = 0-50;
95% CI, 0-29 to 0-89; P = 0-02). The benefits of IS were higher when
patients had proteinuria > 2-480 g/24 hr (node 8), with an adjusted
HR of 0-23 (95% CI, 0-11 to 0-50; P < 0-001). Therefore, the IS benefits
increased with a higher level of proteinuria when patients had SCr
<1.437 mg/dL

Of the patients with SCr > 1.437 mg/dl, IS was associated with
better outcome in node 12 (adjusted HR=0-29; 95% CI, 0-09 to 0-94;
P = 0.04), which consisted of 54 patients and was characterised by
SCr > 1-437 mg/dl, ALB < 35.95 g/L, and C > 0. Differing from node
12 only by crescent formation, node 11, a subgroup of 51 patients
characterised by SCr > 1.437 mg [ dl, ALB < 35.95¢g /Land C= 0,
showed a lack of benefits from IS therapy (adjusted HR = 4.78; 95%
C[,1-19 to 19-24; P = 0-03). Patients with SCr >1-437 mg/dl, ALB
>35.95 g/L and DBP >83 mmHg (node 15) also demonstrated a lack
of IS benefits (adjusted HR = 2.56; 95% CI, 1.23 to 5.33; P = 0.01). In
other nodes in the partitioning tree, the adjusted IS benefits were not
significant. Using the IPTW-adjusted Kaplan-Meier estimator, the
adjusted survival curve without ESKD during follow-up was also bet-
ter in the IS treatment group in three benefit nodes (node 6, node 8,
and node 12) (Fig. 3) but not in other nodes (Fig. S1).

Using the entire derivation cohort as a control, we compared its
clinical and pathological characteristics to those in the subgroups
with significant benefit including node 6 (n = 546), node 8 (n = 240),
and node 12 (n = 54) (Table S4) and to those in subgroups lacking
benefit, including node 11 (n = 51) and node 15 (n = 124) (Table S5).

Sensitivity analyses were performed to assess the robustness of
the findings using different imputation methods (Fig. S2 for relative
node size, and Fig. S3 and Table S6 for IS treatment benefits), and the
results from the benefit nodes were consistent with our findings. The
long-term benefits were also internally validated using a bootstrap
analysis, where the same treatment benefits were observed in each
of the benefit nodes (Fig. S4). We also validated our results in various
secondary outcomes (Table S7-S9), IS treatment reduces risk of all
three secondary outcomes (30%, 40% and 50% decline in eGFR) in the
benefit subgroups (node 6, 8 and 12), providing indirect evidence to
our conclusions.

3.2. Validation analysis

There were 3734 patients in the combined CRPIGA cohort and
NRG cohort II (from July 2009 to June 2011), of whom 1989 met the
inclusion criteria and were included in the external validation cohort
(Fig. 1), whose characteristics are shown in Table 1. The differences
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Node 1
Size: 2,058
HR: 0.86 (0.62-1.20)

Serum creatinine

(mg/dl)
<1437 >1.437
Node 2 Node 9
Size:1,730 Size: 328
HR: 0.63 (0.40-1.01) HR: 1.08 (0.67-1.72)
Urine protein Serum albumin
(g/24hr) (g/L)
<1.525 >1.525 <35.95 >35.95
Node 3 Node 6 Node 10 Node 13
Size: 1,184 Size: 546 Size: 105 Size: 223
HR: 1.08 (0.50-2.30) HR: 0.50 (0.29-0.89) HR: 0.84 (0.37-1.95) HR: 1.50 (0.86-2.63)
Hypertension Urine protein DBP
(Yes/No) (g/24hr) Oxford_C (mm Hg)
No Yes <248 >248 =0 >0 <83 >83
Node 4 Node 5§ Node 7 Node 8 Node 11 Node 12 Node 14 Node 15
Size: 728 Size: 456 Size: 306 Size: 240 Size: 51 Size: 54 Size: 99 Size: 124

HR: 0.80 (0.20-3.16) | HR: 1.15(0.45-2.95) = HR:1.28 (0.59-2.78) ' HR: 0.23 (0.11-0.50)

Fig. 2. Model-based recursive partitioning results.

HR:4.78(1.19-19.24)

HR: 0.29 (0.09-0.94) | HR:0.88 (0.37-2.12) | HR: 2.56 (1.23-5.33)

Partitioning results are organised as a model-based recursive partitioning tree, where upper level nodes are split into child nodes based on certain branching criteria, thus form
subgroups. Summary statistics of the nodes and branching criteria are included in the model-based recursive partitioning tree. Summary statistics of each node are shown in a grey
box, which includes the node name, node size (number of patients in the node), and the hazard ratio (HR, with 95% confidence interval) for immunosuppression treatment after
adjusting for confounding variables. The partitioning variable for each branching criterion is shown in a white box, with the criteria shown on the line connecting a parent node and

its child node.

HR, hazard ratio; Oxford_C, presence of crescent (C1: present in at least 1 glomerulus; C2: present in > 25% of glomeruli); DBP, diastolic blood pressure.

in characteristics between patients treated with IS and those without
in the validation cohort are shown in Table S10.

The external validation results were highly consistent with findings
from the derivation analysis. In the validation cohort, significant long-
term treatment benefits were observed in the same significant benefit
subgroups (Table 3 and Fig. S5). In node 6, which consisted of 569
patients, IS was associated with favourable kidney survival (adjusted
HR = 0-44; 95% (I, 0-19 to 0-99; P = 0-04). The benefits of IS were higher
in patients in node 8, with an adjusted HR of 0-24 (95% CI, 0-09 to 0-66;
P = 0-006). IS was also associated with better outcome in node 12
(adjusted HR = 0-53; 95% CI, 0-32 to 0-90; P = 0-02), which consisted of 75
patients.

4. Discussion

In clinical practice, which IgAN patients should be treated with IS
therapy and how to choose them rationally and objectively remains
unclear. The treatment strategies for patients with IgAN are mainly
based on the categorisation of proteinuria and renal function [19],
which clearly has several limitations in this highly heterogeneous
disease. A previous study [17] verified that corticosteroid benefits
were associated with proteinuria levels and renal function status in
IgAN patients, and a recent prospective multi-centre RCT [11] vali-
dated that IgAN patients with active proliferative lesions had a good
response to IS therapy. Repeat-biopsy also revealed that active

Table 2

Immunosuppression long-term benefits comparison for patients in each subgroup stratified by model-based recursive partitioning in the derivation cohort.
Node  Size® Unadjusted Adjusted”

coefficient HR 95% CI PValue coefficient HR 95% Cl PValue

1 2058 0-06 1.06 0-79to 1.42 069 -015 0-86 0-62to0 120 0.37
2 1730 0-10 111 0-74 to 1-66 0-61 —0-45 0-63 0-40 to 1-01 0-06
3 1184 0-19 121 0-60 to 2-44 0-59 0-08 1.08 0-50to 2-30 0-85
4 728 -017 0-85 0-23 t0 3.08 080 -022 0-80 0-20to03-16 0.76
5 456 0-39 1-48 0-64 to 3-41 0-36 0-14 115 0-45t02:95 0.77
6 546 -0-39 0-68 0-41to 1-12 013 068 0-50 0-29t0 0-89 0.02
7 306 0-31 136 0-68to 2.74 0-38 0-25 1.28 0-59t02-78 053
8 240 -1.29 0-27 0-13 to 0-57 <0-001 —1-46 023 0-11 to 0-50 <0:001
9 328 0-04 1.05 0-69to 1-59 0-83 0-07 1.08 0-67to1.72 0.76
10 105 —-0-83 0-44 0-23t0 0-85 0.01 -0.17 0-84 0-37to 1.95 0-69
11 51 0-06 1.06 0-39t0 290 0.91 1.56 4.78 1.19t0 19-24 0.03
12 54 -1.58 0-21 0-08 to 0-55 <0.001 -1.24 0-29 0-09 to 0-94 0.04
13 223 0-47 1.59 0-92to 2.77 0-10 0-41 1.50 0-86t02-63 0-16
14 99 -0-12 0-88 0-37to2-12 078 -013 0-88 037t02-12 0.78
15 124 1.04 2.82 1.37t0 583 <0-001 0-94 2.56 1.23t05-33 0.01

HR, hazard ratio; CI, confidence interval.
¢ Node size means number of patients in this node.
b Adjusted by confounding variables.
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Fig. 3. IPTW-adjusted Kaplan-Meier curves without end-stage kidney disease according to immunosuppression treatment in benefit nodes.

Inverse probability of treatment weighting (IPTW)-adjusted Kaplan-Meier curves without end-stage kidney disease according to immunosuppression treatment in benefit
nodes including node 6 (a; adjusted log-rank test P = 0-01), node 8 (b; adjusted log-rank test P = 0-007), and node 12 (c; adjusted log-rank test P = 0-007), which were stratified by
model-based recursive partitioning; comparisons of curves were conducted by the adjusted log-rank test. The risk table below each figure shows the crude number of patients at

risk (without adjustment of weights). IS, immunosuppression.

lesions were reversed after IS therapy. The above results suggest that
comprehensive consideration of clinical indicators and renal patho-
logical changes may provide better instruction for choosing which
IgAN patients to treat with IS therapy.

A large national cohort of 4047 IgAN patients with a broad spec-
trum of clinical and pathological data was collected in this study.
Using model-based recursive partitioning for grouping, using the
real-world decisive kidney outcome ESKD as the objective endpoint,
and adjusting for a variety of confounding factors in the evaluation of
long-term treatment benefits, we identified and externally validated
patient subgroups who may potentially benefit from IS therapy. The
benefits of IS increased with elevated proteinuria in patients with sta-
ble renal function (SCr <1-437 mg/dl). Of the patients with impaired
renal function (SCr >1-437 mg/dl), those with high proteinuria and
crescent formation in their renal tissue obtained significant IS bene-
fits and favourable kidney outcome.

The machine learning method can automatically divide patients
into subgroups of different treatment responses based on relevant
characteristics, thus reducing bias due to subjective human experi-
ence and resulting in more objective groups. The merits of our

Table 3

model-based recursive partitioning approach also include: (1) model-
ling higher-order interactions among covariates in a real world set-
ting; (2) using a hypothesis-free data-driven approach to reduce bias
and discover novel factors or interactions; and (3) employing statisti-
cal tests as partitioning criteria for continuous variables to reduce
human impact (and thus minimizing the bias introduced) in the
selection of cut-off values. Through this data-driven machine learn-
ing approach, nephrologists can decide on treatment based on the
combination of clinical and pathological features in addition to the
categorisation of clinical features [19] and may obtain a more individ-
ualised treatment plan for IgAN patients.

Proteinuria is a strong risk factor for poor prognosis that has been
widely recognised in IgAN patients [5,32]. The VALIGA study [17] sug-
gested a graded benefit of corticosteroids according to proteinuria
level, but the 1-3 g/24 h category remains a “grey zone.” Proteinuria
alone is insufficient for grouping patients; thus, many studies incor-
porated renal function with proteinuria. A secondary investigation of
the STOP-IgAN study [33] concluded that corticosteroids reduced
proteinuria in IgAN patients with relatively well-preserved eGFR
(>60 ml/min/1-73 m?), neither IS prevented eGFR loss in patients

Immunosuppression long-term benefits validation for patients in each subgroup stratified by model-based recursive

partitioning in the validation cohort.

Node  Size® Unadjusted Adjusted”
coefficient ~ HR 95% CI PValue  coefficient ~ HR 95% CI PValue

1 1989 0.03 1.03 0.76 to 1-40 0-83 -0-23 0.79 0-58 to 1-09 0-15
2 1645 -0-43 0.65 0-38to1-12 0-12 —0-54 0-58 0-33t01-02 0.06
3 1076 -0-24 0.78 0-37to 1-68 0-53 -0-16 0-85 0-39to 1-87 0-69
4 836 -0-37 0-69 0-28to 1-68 0-43 -0-25 0.78 0-31to 1.96 0-60
5 237 0.01 1.01 049to 211 0.97 -0.03 0.97 0-28to 3-38 0.97
6 569 -0-83 043 0-20to 0-95 0.04 -0-83 0-44 0-19to 0-99 0.04
7 263 -0-01 0-99 0-28 to 3-51 0-99 -0-14 0.87 0-22to3-44 0-84
8 306 -1.55 0-21 0.08 to 0-58 0.002 —1.44 0-24 0.09 to 0-66 0.006
9 344 0-16 118 0-80to1.73 0-41 0.02 1.02 0-69to 151 0.93
10 131 -0-24 0.79 0-44to01-39 0-41 -0-33 0.72 040to 1-28 0-26
11 28 016 117 0-37to03.74 0-79 0-15 1.16 0-36t0 3-70 0-80
12 75 -0-58 0-56 0-32t0 0.97 0.04 -0-63 0.53 0-32t0 0-90 0.02
13 192 013 114 0-64to 2.03 0-65 0.05 1.06 0-59to 1.90 0-86
14 95 023 1.26 0.52 to 3-06 0-61 0-14 115 0.45to0 291 0.77
15 97 0.09 11 0-50to 2-42 0.82 0.07 1.07 0-48 to 2-38 0.87

HR, hazard ratio; CI, confidence interval.
2 Node size means number of patients in this node.
b Adjusted by confounding variables.
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with lower baseline GFR (eGFR < 60 ml/min/1-73 m?) even though
they had high proteinuria. This result indicated that renal function
status is also one of the important determinators of the response to
IS in patients with IgAN. The influence of histological lesions on the
above IS effect was hard to assess because these studies did not
include renal pathology data. Coppo [34| summarised that IS treat-
ment success occurred mostly in individuals who were highly protei-
nuric with better renal function. Most of these previous studies
grouped patients to evaluate IS response based on cut-off values set
empirically. Automatic detection of the subgroups that benefitted
from IS and were associated with reduced real-world decisive kidney
outcome (ESKD) and optimal cut-off values was fulfilled in this paper,
making the results more robust and objective.

Proteinuria can be caused by active glomerular lesions or chronic
lesions, including glomerular sclerosis and tubular atrophy/interstitial
fibrosis [35], which are difficult to distinguish, although the degree of
proteinuria can provide some clue. In this study, kidney biopsies were
scored according to the Oxford Classification [22] and active (cellular
and/or fibrocellular) crescents, but not fibro crescents were included.
Theoretically, active lesions require aggressive IS therapy, but severe
chronic lesions do not [20,36,37]. However, doctors are not capable of
identifying the specific type of lesions through proteinuria and SCr
alone, and the combination with renal pathologic features can offer a
more comprehensive evaluation, which is extremely important for
guiding treatment [4,34]. In our study, nodes 11 and 12 were both pro-
teinuric subgroups with impaired renal function but they displayed
completely opposite responses to IS, which were parallel to their dif-
ferent pathological changes. Both subgroups had severe tubulointersti-
tial lesions, but node 12 had more active lesions (endocapillary
hypercellularity and crescent formation) than the entire cohort, and
node 12 showed a better IS therapy benefits than node 11. An interna-
tional multi-centre study also supported that crescent lesions might
be an indicator for IS therapy in patients with IgAN [38]. Therefore, in
patients with impaired renal function, in addition to proteinuria and
Scr, the histological features of the renal lesions can provide useful
information to evaluate the long-term benefits of IS. ALB and DBP
were included in many risk prediction models and were reported to
be strongly associated with kidney outcomes in patients with IgAN
[6,39,40]. In our analysis, ALB and DBP were also identified as variables
associated with long-term benefits of IS therapy.

Nodes 6 and 8 had relatively well-preserved renal function and
marked proteinuria with advanced proliferative histological lesions
(mesangial and endocapillary proliferative lesions and crescent forma-
tion). In contrast to the entire cohort, the patients in these two sub-
groups had less glomerular sclerosis and fewer tubulointerstitial lesions.
Therefore, the IS benefits seen in these subgroups were expected.

The strengths of the study include: (1) the large, national and
multi-centre IgAN cohort; (2) external validation of the results; (3)
the employment of a “hard outcome”, ESKD, as the study endpoint;
(4) the first use of a combination of potential clinical and pathologi-
cal features for patient grouping; (5) automated identification of
subgroups benefitting from IS and high-order interactions between
features using a more objective machine learning approach; (6)
detailed covariate data that enabled comprehensive multivariate
adjustment; and (7) multiple sensitivity analyses that support the
robustness of the primary results. Additionally, RASBs were applied
in the majority of patients in both the IS-treated and untreated
groups, which shows the benefit of IS therapy in addition to RASB
therapy. This study also had limitations. First, we were prevented
from drawing causal conclusions due to the observational nature of
this study. Although we adjusted for potential confounders, unob-
served confounders may exist; randomised trials are needed to fur-
ther support our findings. Second, the conclusions of this study
were established on the basis of data acquired from a Chinese popu-
lation, and the applicability of the results to other ethnic groups and
regions still needs to be verified.

This study was the first to identify and externally validate the
potential subgroups of IgAN patients benefiting from IS therapy, as
indicated by a reduction in a real-world decisive kidney outcome
(ESKD), using machine learning method and comprehensively analy-
sing renal function, proteinuria and histological lesions. While the
findings of the study should be confirmed in future randomised trials
because retrospective analyses alone are not sufficient to determine
the treatment choice for patients with IgAN, and the potential
adverse effects of IS should not be ignored, this study shed light on
individualised therapy in IgAN.
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