
����������
�������

Citation: Wiest, G.M.; Rosales, K.P.;

Looney, L.; Wong, E.H.; Wiest, D.J.

Utilizing Cognitive Training to

Improve Working Memory, Attention,

and Impulsivity in School-Aged

Children with ADHD and SLD. Brain

Sci. 2022, 12, 141. https://doi.org/

10.3390/brainsci12020141

Academic Editors: Joel Sneed,

Dakota Egglefield and Sophie Schiff

Received: 11 December 2021

Accepted: 20 January 2022

Published: 21 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

brain
sciences

Article

Utilizing Cognitive Training to Improve Working Memory,
Attention, and Impulsivity in School-Aged Children with
ADHD and SLD
Grahamm M. Wiest 1, Kevin P. Rosales 2 , Lisa Looney 3, Eugene H. Wong 3,* and Dudley J. Wiest 3

1 Department of Psychology, Alliant International University, Alhambra, CA 91803, USA; gwiest12@gmail.com
2 Division of Behavioral and Organizational Sciences, Claremont Graduate University,

Claremont, CA 91711, USA; kevin.rosales@cgu.edu
3 Department of Child Development, California State University, San Bernardino, CA 92407, USA;

lisa.looney@csusb.edu (L.L.); office.wiest@gmail.com (D.J.W.)
* Correspondence: ewong@csusb.edu

Abstract: Students’ use of working memory (WM) is a key to academic success, as many subject areas
and various tasks school-aged children encounter require the ability to attend to, work with, and
recall information. Children with poor WM ability typically struggle with academic work compared
to similar-aged peers without WM deficits. Further, WM has been shown to be significantly correlated
with inattention and disorganization in those with ADHD, and WM deficits have also been identified
as a potential underpinning of specific learning disorder (SLD). As an intervention technique, the
use of computerized cognitive training has demonstrated improved attention and working memory
skills in children with WM deficits, and children that have completed cognitive training protocols
have demonstrated performance improvements in reading and math. The current study aimed to
examine the effectiveness of cognitive training (conducted in a clinical setting) for students diagnosed
with ADHD and SLD. Using paired-samples t-tests and a psychometric network modeling technique,
results from data obtained from a sample of 43 school-aged children showed (1) that attention
and working memory improved following cognitive training and (2) that cognitive training might
be related to cognitive structural changes found pre- to post-training among the variables being
measured. Implications for clinical practice and school-based interventions are discussed.

Keywords: cognitive training; ADHD; network analysis; school setting

1. Introduction

Working memory (WM) refers to the active, top-down manipulation of information
held in short-term memory [1] and includes distinct components including the central
executive (responsible for active manipulation of stored information), the phonological
loop (responsible for short-term storage and rehearsal of verbal/auditory information),
and the visuospatial sketchpad (which is responsible for short-term storage and rehearsal
of visual/spatial information) [1]. Throughout development, WM manifests in mental
processing in a variety of ways [1,2]. For school-aged children, WM becomes a key to
academic success, as many subject areas (e.g., reading, writing, spelling, and math) and
various tasks school-aged children encounter (e.g., remembering and meeting deadlines;
following multi-step instructions) require the ability to attend to, work with, and recall
information [2–5].

1.1. Working Memory and Academic Skills

The role of WM in the classroom has received much attention in the literature, demon-
strating the importance of WM processes for critical academic skills such as math and
reading [6,7]. For instance, it has been well documented that the components of WM
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are involved in children’s performance on addition and subtraction tasks, as the use of
mental manipulation or images of numerical digits requires the use of visuospatial re-
sources [8,9], while counting skills are related to verbal resources through the phonological
loop [10]. Further, word decoding skills and reading comprehension are also related to
WM, as reading tasks require holding information (e.g., letter sounds, words, and word
meanings) in short-term memory while continuing to extract additional information from
upcoming text [11]. Successful reading ability (and its established association with WM
skills) extends into success in other subject-area content, as children in mid-late elementary
school and beyond begin to rely on reading as a primary source of information gathering
for content in all areas of study [12]. Given the reliance on WM resources for successful
completion of critical academic tasks, it follows that children who demonstrate good WM
skills tend to also show strong levels of academic success, a conclusion demonstrated in
the literature [3,13–15].

As children move through the early schooling years, their WM performance in-
creases [16]. Children transition from a heavy reliance on visuospatial resources to an
increased ability to convert information to a phonological code and utilize verbal resources,
likely as a result of their increased language and reading proficiency [14,16,17]. In addition,
increased attentional capacity, higher rates of processing speed, and increased content
knowledge in long-term memory also contribute to higher levels of WM performance [16].
These strengthened WM skills assist children in academic tasks as they progress through
school, since school tasks, responsibilities, and content extend in size and difficulty through-
out the school years.

The developmental nature of WM resources is of particular note, as studies have
shown that WM skills measured before the start of formal schooling predict academic
performance in subsequent academic years [3,14,18] and these skills serve as an even more
powerful predictor of later academic success than IQ in the early school years [3]. In short,
WM skills are critical to current and future academic success. Therefore, findings such as
those discussed are significant as they underscore the importance of early identification of
difficulties and implementation of intervention, so as to not deter learning of basic, founda-
tional skills in the early grades [14,19] that will ultimately impact academic performance in
later grades.

1.2. Working Memory Deficits

While WM relates to academic performance, variation occurs in WM functioning
across individuals [20]. Even when children are provided adequate and effective academic
foundations, deficits in WM can impede academic progress [2,5,21], creating frustrations
for students, parents, and educators [22–24]. Children with poor WM ability typically
struggle with academic work compared to similar-aged peers without WM deficits [25].
Evidence has linked WM capacity to the ability to learn novel ideas in both reading [7]
and mathematics [6,26,27]); however, impairments in verbal or visuospatial WM have been
associated with poorer writing and reading skills [26,28,29], spelling difficulties [29], and
math performance [6,26], in addition to struggles in classroom activities such as following
instructions or skipping steps in complex tasks [2] and higher identification of problem
behaviors by teachers [21,30].

Deficits in WM have been documented in approximately 10% of children in main-
stream classrooms [30]; a percentage significant enough to warrant efforts to bolster WM
for school-aged children. As has already been established, WM supports tasks that children
routinely encounter in the school environment, and given the associations found between
WM deficits and poor academic achievement, these deficits put school-aged children at risk
for learning disabilities [30], suggesting that an emphasis toward the improvement of WM
could help to ameliorate learning issues for some children.
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1.3. Working Memory and Clinical Populations

Attention Deficit Hyperactivity Disorder. While WM deficits are a matter of importance,
in general, for school-aged children, concerns are noticeably greater for children diagnosed
with attention deficit hyperactivity disorder (ADHD), in particular. WM has been shown to
be significantly correlated with inattention and disorganization in those with ADHD [31,32].
Attention is a crucial component of WM [33,34], since one must first attend to information
to store, manipulate, and retrieve it. Therefore, it follows that children with a diagnosis
of ADHD often experience WM deficits [19,35–38]. Structured learning demands often
overload WM in these populations, resulting in a loss of critical information needed for
task completion [2].

ADHD is characterized by difficulties with hyperactivity, impulsivity, and sustained
attention [39] and affects approximately 3% to 7% of the childhood population [40]. In many
ways, the symptoms of ADHD hamper academic achievement [41], and core symptoms
such as inattention and behavioral dysregulation are the main culprits in creating disruption
in the classroom [41]. Students with ADHD (as well as those with WM problems without
an ADHD diagnosis) present with symptoms of inattentiveness and are often characterized
by educators as being off task or as poor listeners, rather than depicted as students with
memory problems [13]. Gathercole [13] argues that inattentiveness is a symptom of WM
deficits experienced by these children, and that the overload of WM processes that results
in the loss of information needed to complete a task shifts attention away, leading WM
deficits to be misinterpreted as lack of attention. Experimental studies have suggested
a potential causal relationship between WM difficulties and inattentive and hyperactive
behavior brought about by ADHD [32]. Further, studies have documented a decrease in
ADHD symptoms in children who demonstrated age-related improvements in WM [36].

Specific Learning Disorder. WM deficits have also been identified as a potential under-
pinning of specific learning disorder (SLD), and children with this diagnosis present with
identified academic struggles in reading, writing, and/or math [42]. Similar to children
with ADHD, problems in WM processing have been documented in children experienc-
ing a SLD. Specifically, deficits in phonological processing [4], inhibited central executive
functioning [43], and difficulties with sustained attention have been associated with SLD
diagnoses [44].

Enhancing WM skills in ADHD and SLD populations has significant potential implica-
tions. Given the established importance between WM and academic success, finding ways
to intervene and improve WM in those with deficits (such as within clinical populations
with ADHD and/or SLD) could help to improve academic performance.

1.4. Cognitive Training: An Approach for Enhancing Working Memory

Relationships have been established between WM and academic performance, as well
as between WM and the inattention, poor inhibition, and mental organization of children
with ADHD [40] and SLD [42], resulting in school-aged children with ADHD and/or SLD
exhibiting difficulties with academic performance [3,43,45]. In order to improve academic
performance through attention, inhibition, and mental organization, treatment protocols
for children (particularly those with ADHD) have consisted of behavioral interventions,
psychostimulant medications, or a combination of both [40,46], with varying degrees of
efficacy. However, another intervention approach—computerized cognitive training—
has shown promising results. Specifically, studies have demonstrated that the use of
computerized training protocols has been associated with improved attention and visual
and auditory WM [47–49]. In the last couple of decades, as evidence about the effectiveness
of such programs has made its way into the literature, increased attention has been given
to how these programs can be effectively used for school-aged children within the school
or classroom setting [50].

Computerized cognitive training involves the use of brain games, targeting different
cognitive skills, including attention, concentration, verbal and visual WM, processing
speed, and inhibition [47]. Using a model that is adaptive in nature (i.e., the activity
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increases or decreases in difficulty, depending upon a student’s performance), cognitive
training programs have demonstrated performance gains in various cognitive and WM
tasks after 20 h of intervention [47,50,51], with maintained improvements observed over a
six-month period [52,53]. Specifically, the use of n-back tasks (those that require individuals
to examine whether a stimulus is the same as one presented in a previous trial) that address
aspects of WM have been shown to decrease WM deficits over time [49].

1.5. The Use of Cognitive Training in Schools

Increased awareness of the educational difficulties experienced by those with deficits
in WM has led to higher demands for educational interventions. Computerized cognitive
training offers one potential intervention approach. Studies examining computerized
cognitive WM training have revealed promising results, demonstrating greater performance
improvements in such academic skills as reading [54,55] and math [54,56]. Variability exists
in effectiveness of transfer effects (from WM training to academic performance) depending
on such factors as duration of training [57]), baseline performance [55], sleeper effects [58],
supervision during training [57], the addition of game elements to training tasks [55],
motivation [59], and the types of academic skills measured [54,60].

While variability across studies exists due to the factors mentioned, another potential
influence is the setting in which training takes place. One limitation to existing cognitive
training research is the lack of examination of children in school or clinical settings. In
other words, a considerable amount of work in this area has examined training effects that
occur outside of a more controlled setting. One common methodology across cognitive
training studies is to conduct pre- and post-test analyses on WM tasks, while the actual
intervention occurs in the home environment (e.g., training sessions took place for specified
time intervals in the home, outside of clinical supervision). Methodologies that examine
cognitive training protocols within school or clinical settings (with the continuous presence
of trained examiners) are needed, as this might provide additional information related to
the effectiveness of this approach.

1.6. The Current Study

The current study’s aim was to examine the effectiveness of cognitive training for
students diagnosed with ADHD and a co-occurring learning disorder. Of particular note,
this project was conducted in a clinical setting; thus, students were pre-tested for baseline
cognitive abilities, received training, and post-tested for the same cognitive abilities in a
more controlled environment. All hypotheses are stated directionally based upon previous
work, e.g., see [50];

Hypothesis 1 (H1): it is expected that inhibition capabilities will improve after cognitive training;

Hypothesis 2 (H2): it is expected that attention capabilities will improve after cognitive training;

Hypothesis 3 (H3): it is expected that overall working memory capabilities (verbal and visual
working memory) will improve following cognitive training;

Hypothesis 4 (H4): it is expected that verbal working memory will improve after cognitive training;

Hypothesis 5 (H5): it is expected that visuospatial working memory will improve after cogni-
tive training.

Further, this study examined the underlying structure of cognitive abilities using
a more novel psychometric technique: network analysis. This analysis uses observed
variables and the partial correlations between those observations. Importantly, network
analysis does so without assuming latent common causes (which is the case with traditional
latent variable models). Instead, network analysis conceptualizes psychological constructs
as connected networks. In these models, the observed variables are referred to as nodes
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and the connections between them are referred to as edges. This approach lends itself well
to cognitive abilities research given that these theoretical models regard cognitive processes
as dynamic and interactive [61]. Thus, this aspect of the project provides important insights
into the interconnectedness of cognitive abilities which has direct implications for clinical
practice and school-based interventions for students identified with learning needs.

2. Method
2.1. Research Design and Participants

This project examined the effectiveness of computerized cognitive training for enhanc-
ing working memory and attention in children and adolescents (between 6 and 17 years of
age; M = 11.7, SD = 3.87) with ADHD and co-occurring SLD. Twenty-six were diagnosed
with a reading SLD, 6 with a writing SLD, 4 with a math SLD, and the remaining with no
SLD. This study utilized an archival data review from a local private practice clinic in south-
ern California where the cognitive training occurred. Taken together, this project employed
a quasi-experimental, within-subjects design. Pre- and post-test scores on WM, attention,
and inhibition were used to evaluate the effectiveness of cognitive training. The sample
(n = 43) consists of 22 males and 21 females. Additional information such as ethnicity, fam-
ily income, and academic information was not initially gathered and therefore not reported
here. However, all participants had received a psychoeducational evaluation because of
continuing educational concerns; and each participant received a recommendation to enroll
in the cognitive training as a result of their diagnoses.

2.2. Measures

Integrated Visual and Auditory Continuous Perform Test, Second Edition (IVA-2).
The IVA-2 is decision support software that helps clinicians test and evaluate both visual
and auditory attention and response control functioning. Validity research using the IVA
CPT with children ages 7 to 12 had a sensitivity rate of 92% in accurately identifying
individuals with ADHD. The IVA CPT also correctly identified the 90% of non-ADHD
children (i.e., false positives = 10%) [62]. Another validity study for a typical mixed
age clinical population (ages 6 to 55) found that as part of a clinician’s comprehensive
psychological evaluation, the combination of the ADHD rating scale data with the IVA CPT
matched the clinical diagnosis 90% of the time. In addition, this study did not misclassify
89% of individuals who did not have ADHD (i.e., 11% false positives) [63].

Wide Range Assessment of Learning and Memory, Second Edition (WRAML-2). The
WRAML-2 is a norm-based measure of memory functioning and learning in individuals
ranging from 5 to 90 years of age. In this study, the finger windows and number-letter sub-
tests were used to examine the construct of attention, while the symbolic working memory
and verbal working memory subtests measured the construct of working memory [64].
Alpha coefficients for the WRAML-2 are strong for the subtests used in this study (alpha of
0.81 to 0.84).

Wechsler Intelligence Scale for Children, Fifth Edition (WISC-V). The WISC-V is a
norm-referenced measure of intelligence for children ages 6 to 16 years. The digit span and
picture span subtests were administered to assess working memory. Both subtests have
strong psychometric properties; alpha coefficients of 0.93 and 0.82 were reported for digit
span and picture span, respectively [65]. While the reliability and validity exchanges for the
WRAML-2 have adequate psychometric properties, the WISC-V working memory subtests
were also utilized due to its stronger norms with a focus on children and adolescents [64].

In summary, this study utilized several outcome measurements examining overall work-
ing memory, verbal working memory, visuospatial working memory, attention, and inhibition.

1. Overall Working Memory

a. Working Memory Index from the WISC-V which is comprised of Digit Span
and Picture Span subtests

2. Verbal Working Memory



Brain Sci. 2022, 12, 141 6 of 16

a. Verbal Working Memory subtest from the WRAML-2

3. Visuospatial Working Memory

a. Symbolic Working Memory subtest from the WRAML-2

4. Attention

a. Attention Index from the IVA-2

5. Inhibition

a. Response Inhibition Index from the IVA-2

2.3. Procedures

Two criteria were set for participation in this study: (a) a diagnosis of ADHD and
SLD and (b) a resulting clinical recommendation for a cognitive training program. Parents
who chose to have their children participate in the training program provided consent
for their children. Baseline data, or pre-treatment data were gathered shortly before the
commencement of the training intervention.

Intervention. Each child received cognitive training via the Captain’s Log program.
Captain’s Log is a suite of computer-based games (developed by BrainTrain) that target
cognitive abilities. For example, one activity, Space Race, requires participants to “shoot” a
laser at space obstacles as they travel through space. Alternatively, “Fire Dragon” requires
participants to protect a castle wall from a dragon and an opposing knight. A recent
meta-analysis conducted by Rossignoli-Palomeque and colleagues [66] noted the valid
and effective nature of Captain’s Log as a computer-based cognitive training program for
remediating WM deficits in children.

The intervention program utilized in this project consisted of 20 sessions which were
completed in approximately 4–8 weeks, with each session lasting 60 min. Sessions took
place in a clinic setting and were supervised by a psychometrician or staff member to
increase effort and motivation. Task frustration tolerance was addressed through encour-
agement, active praise, positive reinforcement, short breaks, rewards, and/or a token
economy. One week after the 20 sessions were completed, the participants were given a
post-test examination and feedback session with the parents. Training-related improve-
ments were monitored with the same measures as the pre-test analysis which included
verbal working memory, symbolic working memory from the WRAML-2; digit span and
picture span subtests from the WISC-V; and the IVA-2 continuous performance task.

2.4. Data Analysis

Each participant was given a face sheet which tracked their pre-treatment scores,
session date, number of sessions, and post-training scores. This archival information served
as the data for this project.

Paired-sample t-tests were used to evaluate each of this project’s hypotheses. These
hypotheses were driven by the current literature pertaining to cognitive training for children
with academic impairments. More specifically, each hypothesis utilized in this study was
directed by research conducted with children with ADHD and SLD. Within this context,
children with ADHD and SLD have shown improvement in cognitive abilities (e.g., WM)
following cognitive training; thus, all hypotheses were directed toward positive changes
after training.

Cohen’s d, was used to determine the magnitude of the effect of treatment. Generally
speaking, an effect size of 0.2 is considered small, 0.5 represents a medium effect, and 0.8 a
large effect size [67]. This study included 43 participants which is sufficient for statistical
power.

Network analysis. Psychometric network models were conducted on the post-test
correlation matrix for the current study. Analyses were conducted using the qgraph and
open MX packages in R. Results were visualized using qgraph. The network models were
produced using the graphical least absolute shrinkage and selector operator (gLASSO)
regularization technique [68]. Two parameters were manually set: hyperparameter gamma



Brain Sci. 2022, 12, 141 7 of 16

(set to 0.50) and the tuning parameter lambda (set to 0.01). Setting the hyperparameter
conservatively as in this study allows for the regularization technique to prefer simpler
models with fewer edges. The lambda parameter settings set here allowed for only the
detection of true edges and not any spurious edges.

3. Results

Data for forty-three school-aged children (22 female) were contained in the archival
record. However, the number of children who fully completed each assessment varied.
There were 43 students who completed the attention and inhibition assessment. Thirty-one
students completed the overall working memory assessment. Twenty-eight total students
completed the visuospatial task, and 27 students completed the verbal working memory
task. There were several reasons for this variability. On the IVA-2, if a student scored
below a certain threshold, their score became invalid, and a standard score was not given.
Additionally, differences in the N on specific measures were attributed to either selection
survival or attrition.

All full-scale scores were represented by standard scores (M = 100; SD = 15; effective
range = 69–131) while individual subtests scores were represented by scaled scores (M = 10,
SD = 3; range = 0–19). Table 1 shows the mean, number of students, and the standard
deviation of scores.

Table 1. Descriptive statistics for all cognitive measures.

Assessment N Mean Std. Deviation

IVA-2 Response Inhibition Pre-Test 40 71.6 38.64
IVA-2 Response Inhibition Post-Test 40 93.25 26.76

IVA-2 Attention Pre-Test 41 68.39 40.70
IVA-2 Attention Post-Test 41 86.37 26.43

WISC-V Working Memory Index Pre-Test 31 86.55 8.17
WISC-V Working Memory Index Post-Test 31 101.10 9.11

WRAML-2 Verbal Working Memory Pre-Test 27 10.11 1.80
WRAML-2 Verbal Working Memory Post-Test 27 11.11 2.28

WRAML-2 Symbolic Working Memory Pre-Test 28 9.35 1.89
WRAML-2 Symbolic Working Memory Post-Test 28 10.03 1.48

Figure 1 shows the average scaled scores pre- and post-training for the verbal and
visuospatial working memory tasks, while Figure 2 shows the mean in standard scores pre-
and post-training for inhibition, attention, and overall working memory tasks. The reason
for differentiating between scaled scores and standard scores was because overall working
memory, attention, and inhibition indices were recorded using standard scores, while
the WRAML-2 subtests such as verbal working memory and symbolic working memory
utilized scaled scores.

Figure 1. The mean in scaled score pre- and post-training for verbal and visuospatial working
memory tasks.
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Figure 2. The mean in standard score pre- and post-training for the inhibition, attention, and overall
working memory tasks.

Paired-samples t-tests were conducted to evaluate the impact of Braintrain on students’
inhibition, attention, overall working memory, verbal working memory, and visuospatial
working memory. Overall, paired comparisons supported the hypothesis that cognitive
training improves working memory, attention, and inhibition.

The inhibition index (Hypothesis 1) was significantly higher from pre-assessment
(M = 71.6, SD = 38.64) to post-assessment (M = 93.25, SD = 26.76), t(39) = 4.35, p = < 0.00
with a large effect size (d = 0.65).

The attention performance (Hypothesis 2) was significantly higher from pre-assessment
(M = 68.39, SD = 40.69) to post-assessment (M = 86.37, SD = 26.42), t(40) = 3.06, p = 0.004
with a medium effect size (d = 0.52).

Overall working memory (Hypothesis 3) was significantly higher from pre-assessment
(M = 86.55, SD = 8.17) to post-assessment (M = 101.10, SD = 9.1), t(30) = 8.40, p < 0.00. with
a large effect size (d = 1.68).

The verbal working memory scores (Hypothesis 4) were significantly higher from
pre-test (M = 10.11, SD = 1.80) to post-test (M = 11.11, SD = 2.28), t (26) = 2.70, p = 0.012
with a small effect size (d = 0.48).

Lastly, the visuospatial working memory (Hypothesis 5) scores were significantly
higher from pre-test (M = 9.35, SD = 1.89) to post-test (M = 10.03, SD = 1.48), t (27) = 2.14,
p <0.05 with a small effect size (d = 0.41).

Network Model Results

Although the original intent was to produce two network models (one for pre-training
data and one for post-training results), it was not possible to establish a model for the
pre-training data because of the lack of intercorrelations among the pre-training variables
included in this project. See Tables 2 and 3 for correlations among pre-test and post-test
variables. This suggests that (prior to training), there was a lack of connectedness among
the cognitive abilities measured although one would expect notable correlations among
working memory, attention, and inhibition. Following cognitive training, the correlations
among the measured constructs were sufficiently strong to conduct a network analysis. The
change in connectedness of cognitive abilities pre-training to post-training is particularly
worthy of note, as it suggests that the cognitive training might be related to structural
changes among the cognitive variables being measured (see Section 4 for further analysis
of this finding).
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Table 2. Correlations among pre-test measures of cognition.

Measure 1 2 3 4 5 6 7 8 9 10 11 12

VWM (1) -
SWM

(2) 0.46 -

Digit Span (3) 0.22 0.28 -
Picture Span (4) 0.17 0.10 −0.22 -

Response
Control

(5)
0.09 −0.29 −0.20 −0.14 -

Auditory
Response
Control

(6)

0.10 −0.35 0.00 −0.02 0.75 -

Visual
Response
Control

(7)

0.07 −0.28 −0.15 −0.20 0.97 0.62 -

Full
Attention

(8)
0.15 −0.07 −0.20 0.01 0.88 0.64 0.83 -

Auditory
Attention

(9)
0.15 −0.15 0.00 −0.04 0.66 0.81 0.61 0.80 -

Visual Attention
(10) 0.10 −0.06 −0.17 −0.01 0.88 0.63 0.84 0.97 0.71 -

Auditory
Sustained
Attention

(11)

0.12 −0.13 −0.03 0.16 0.70 0.76 0.64 0.81 0.89 0.75 -

Visual
Sustained
Attention

(12)

0.25 0.05 −0.09 0.01 0.87 0.63 0.84 0.90 0.65 0.94 0.75 -

VWM = visual working memory, SWM = symbolic working memory.

Overall, the network model analyses showed an underlying structure of cognitive
abilities, where the working memory tasks, attentional tasks, and inhibition tasks each
form their own respective clusters. This shows appropriate construct validity as well as
convergent validity. As can be seen in Figure 3, the underlying structure of cognitive
abilities in school-aged children with ADHD and SLDs is seemingly well defined. The
WM, inhibition, and attention constructs are clearly separate (but related), and thus are
compatible with current models of cognition. However, it is important to note that model
fit indices for the current network model do not indicate appropriate fit. See Table 4 below.
Nonetheless, clear clusters can be observed and provide important information regarding
the psychometric structure of these abilities.
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Table 3. Correlations among post-test measures of cognition.

Measure 1 2 3 4 5 6 7 8 9 10 11 12

VWM (1) -
SWM

(2) 0.48 -

Digit Span (3) 0.70 0.32 -
Picture Span (4) 0.29 0.28 −0.21 -

Response
Control

(5)
−0.10 −0.20 0.01 −0.01 -

Auditory
Response
Control

(6)

−0.10 −0.09 −0.08 −0.02 0.65 -

Visual
Response
Control

(7)

0.05 −0.25 0.14 −0.03 0.91 0.43 -

Full
Attention

(8)
0.07 0.10 0.14 0.04 0.49 0.38 0.34 -

Auditory
Attention

(9)
0.03 0.08 0.08 −0.01 0.38 0.45 0.21 0.93 -

Visual Attention
(10) 0.09 0.12 0.20 0.09 0.51 0.27 0.42 0.94 0.77 -

Auditory
Sustained
Attention

(11)

0.20 0.16 0.13 0.11 0.47 0.49 0.31 0.89 0.91 0.78 -

Visual
Sustained
Attention

(12)

0.11 0.00 0.26 0.06 0.61 0.36 0.64 0.72 0.58 0.79 0.71 -

Figure 3. A network model of working memory, attention, and inhibition. 1 = verbal WM,
2 = symbolic WM, 3= digit span, 4 = picture span, 5 = full inhibition, 6 = auditory inhibition, 7 = visual
inhibition, 8 = general attention, 9 = auditory attention, 10 = visual attention, 11 = auditory sustained
attention, and 12 = visual sustained attention. Red = WM; green = inhibition; blue = attention.
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Table 4. Model fit indices for network model of post-test measures.

Model χ2 df CFI (TLI) RMSEA AIC(BIC)

Network 156.76 *** 42 0.81 (0.70) 0.25 1084 (228)

Note. *** p < 0.001; χ2 = model chi-square value; df = degrees of freedom; AIC = Akaike information criteria;
BIC = sample size-adjusted Bayesian information criteria; CFI = comparative fit index; TFI = Tucker–Lewis fit
index; RMSEA = root mean square error of approximation.

4. Discussion

This project had two primary purposes. First, the efficacy of cognitive training (im-
plemented within a clinical setting) for students who were diagnosed with ADHD and a
learning disorder was examined. Second, this project examined the underlying structure
among the included cognitive abilities. Overall, the findings support the effectiveness of
cognitive training in improving specific cognitive abilities within a clinical sample. Fur-
ther, the current project demonstrates structural changes following 20 hours of computer-
based intervention.

4.1. Pre- to Post-Training Improvement in Cognitive Abilities

Working memory is the ability to temporarily store, manipulate, and retrieve infor-
mation while completing cognitive tasks [1]. Working memory deficits are commonly
seen in children with attention-deficit/hyperactivity disorder (ADHD) and specific learn-
ing disorders (SLD) [19,32,43]. Working memory is linked to reading and mathematics
achievement, making it an essential component for the academic success of school-aged
children [6,7]. Deficits in working memory may lead children to fall behind their peers as
well as miss important academic benchmarks in their school experience [3]. Being attentive
is an important precursor to effective WM [33]. It is, of course, a core symptom of the
inattentive type of ADHD.

Within groups paired-samples t-tests demonstrated that attention and working mem-
ory were improved following a 20 hour individually administered cognitive training
program. Specifically, participants’ scores in attention, inhibition, overall working memory,
verbal working memory, and visuospatial working memory were significantly higher after
the intervention. Associated effect sizes ranged from small to large. These findings are
consistent with a growing body of research that documents the effective use of cognitive
training in ameliorating deficits in certain cognitive abilities (e.g., see [31,47–50]. Further,
a number of meta-analyses have shown that cognitive training is effective in enhancing
cognitive abilities, especially among clinical populations, e.g., see [69].

It is important to note that the program (Captain’s Log) utilized in this project is
adaptive in nature. That is, the level of challenge that a participant experiences at any
point is calibrated to their performance. Thus, the current task should not be too easy nor
too difficult. This characteristic of the training is especially important in a clinical setting
(and with diagnosed individuals) as there is generally a need to “adjust” in real-time when
providing a therapeutic experience. In fact, it may be the targeted nature of the cognitive
training that is, in part, responsible for the effectiveness of the intervention itself. Future
work can further address this possibility by having some participants receive an adaptive
version of training while others do not.

In general, a methodological weakness associated with previous cognitive training
research is that it has been conducted in a variety of settings (e.g., in the participant’s home),
as opposed to formal settings such as schools and clinical practices. Thus, this project offers
important insights into the potential value of cognitive training as it focused on a clinically
diagnosed sample that received the intervention within a clinical practice. In this study,
participants worked one-on-one with a technician while completing the training activities
during after-school hours. In having a technician present at all times, it was possible (a) to
verify that the participant understood the “game” they were playing, (b) to offer support to
the participant (as needed), and (c) to address any issues with attentiveness/engagement
during each session.



Brain Sci. 2022, 12, 141 12 of 16

Ultimately, the pre- to post-training differences that were documented in this clinical
sample provide further evidence for near-transfer effects (i.e., train a specific skill/ability,
see a change in that ability) in the cognitive training literature. This is clearly an important
finding within the context of a clinical sample as we expect to observe a “therapeutic effect”
in the clinic. However, future work (both in clinical settings and school environments)
should also address far transfer effects (i.e., skills not directly trained demonstrate a change
as a result of an intervention); this can be referred to as generalization of training. In both
clinical practice and schools, such an effect has important implications for typical outcomes
of interest (e.g., academic performance).

4.2. Underlying Structure of Cognitive Abilities Prior to and following Training

In regard to the second aspect of the current study, this project used a novel exploratory
technique, network analysis, to examine the underlying cognitive structure in school-aged
children with ADHD and SLDs. As reported, the current set of results shows a clear
structure of cognitive abilities (for the post-training data) in which the constructs of WM,
attention, and inhibition are distinct but related cognitive constructs. In line with previous
research [70], the current findings show a cohesive structure between WM, attention,
and inhibition. This corroborates decades of research on the executive attention theory
of WM [71] that postulates that attention is a central component to variation in WM
abilities. However, the inability to establish a network model for the pre-training data was
unexpected but could be an especially important finding. Specifically, as noted above, there
is considerable work that establishes interconnections among WM, attention, and inhibition;
the lack of such correlations in the pre-training data with this learning differences sample
suggests that cognitive abilities that should “operate together” are not, in fact, doing so.
This may contribute to (or explain) some of the real-time challenges that students with
ADHD and/or SLD experience in the school setting. Further, because a clean network
model could be established for the post-training data (because there were significant
correlations among the construct), there is some evidence for true effects associated with
the cognitive training program. It will be very important for future research to examine a
number of questions. First, do other samples of students with learning differences also show
a lack of intercorrelations among WM, attention, and inhibition? Do typically developing
samples of students demonstrate these correlations? Do intercorrelations emerge among
WM, attention, and inhibition following training that facilitate a specification of a network
model that is consistent with previous research documenting the interrelated nature of these
constructs? Addressing these questions has important implications for cognitive research
as well as clinically oriented and school-based work with specific student populations.

It is also worth noting the tight cluster formed by the attention measures. Importantly,
attention seems to form one cluster independent of the domain-specificity of the measures.
In other words, the verbal and visual measures of attention and sustained attention do not
form their own domain-specific clusters. This is important for both theoretical and practical
purposes. Specifically, this finding shows that for selection of measures, the distinction
between auditory and visual is not critical. One can administer either of the measures and
still be assessing the same underlying ability. This is important given the limited amount
of time and financial resources that sometimes is a significant consideration in the clinical
and school settings.

Ultimately, this is one of the first studies to implement network analysis with these
kinds of data and with this specialized population. We see initial evidence here for a
cohesive structure of cognitive abilities in school-aged children with ADHD and SLDs
following cognitive training. Since this is among the first studies to document this type of
evidence, future studies of the same nature should implement network analysis as a psycho-
metric model to continue to explore the nature of cognitive abilities in typical and atypical
populations. Addressing this issue has important implications for clinical assessment.
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4.3. Limitations

Taken together, the current study uses a quasi-experimental and psychometric ap-
proach to understanding the effects of cognitive training and to explore the nature of
cognitive abilities in a clinical sample. We corroborate previous findings that demonstrate
the effectiveness of cognitive training while also providing novel evidence of the under-
lying psychometric structure of cognitive abilities using network analysis. However, it is
also important to highlight potential limitations in the study design. It should be noted, for
instance, that the current study’s methodology did not utilize a control group. While the
use of a control group would strengthen an argument for the efficacy of cognitive training
on working memory and attention outcomes, the current study aimed to examine the
effect of cognitive training in a clinical sample, which raises some concerns for the use of a
control group. For instance, the field has noted possible ethical implications of standard
no-treatment control groups among clinical populations, highlighting the denial of possible
“best treatment” options for those placed in comparison groups [72]. Relatedly, clinicians
have discussed the use of active comparison control groups as an alternative [72]; however,
in the case of cognitive training, any alternative form of treatment could potentially still
impact an individual’s working memory and attention, thereby diminishing the different
form of treatment as a true comparison.

The lack of control group also raises the concern of possible practice effects as an
explanation for study outcomes. Calamia and colleagues [73] highlight this concern, as
increases in performance outcomes might be due to factors such as memory of testing items
and perfection of testing strategies. However, research has highlighted the inconsistency of
practice effects, demonstrating that such factors as test construction, age of participants,
neurological status of participants, and time between tests can alter the presence of practice
effects [73]. Given (1) the issues surrounding the use of control groups in clinical samples
and with cognitive training (as discussed above), (2) the inconsistencies present in practice
effects, and (3) the lack of control groups in much of the cognitive training literature to
date, this study falls in line with those that have come before in the field. Nevertheless,
future research should consider ways to mitigate these limitations in order to unequivocally
highlight cognitive training as an effective intervention.

4.4. Conclusions

This project presents findings from a clinical application of cognitive training among
students identified with an attention disorder and/or a specific learning disability. Notwith-
standing the limitations discussed above, the current results add to the growing literature
that supports the efficacy of cognitive training in building specific abilities (e.g., working
memory and attention). For example, de Oliveira-Rosa et al. [47], Gray et al. [48], and Jones
et al. [49] have each reported increased WM capabilities following training. Recently, Wiest
et al. [50] among others have demonstrated the positive impact of cognitive training in the
school setting. Thus, there is promising evidence for the use of computer-based programs
to build cognitive abilities that predict academic performance. Such results have important
implications for clinical practice and the development of interventions for students. Fur-
thermore, the current work provides some evidence for the underlying structure among
multiple cognitive skills using a novel analytical technique (i.e., network analysis). Demon-
strating the interconnectedness of cognitive abilities in this manner provides important
insights into how these construct are related to one another and substantiates previous
cognitive research. Additionally, the network analysis has potential clinical significance in
that it can inform intervention/remediation protocol development.
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