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ABSTRACT: Accumulating evidence has shown that the lung is one of the target organs for microangiopathy 

in patients with either type 1 or type 2 diabetes mellitus (DM). Diabetes is associated with physiological and 

structural abnormalities in the diabetic lung concurrent with attenuated lung function. Despite intensive 

investigations in recent years, the pathogenic mechanisms of diabetic lung injury remain largely elusive. In this 

review, we summarize currently postulated mechanisms of diabetic lung injury. We mainly focus on the 

pathogenesis of diabetic lung injury that implicates key pathways, including oxidative stress, non-enzymatic 

protein glycosylation, polyol pathway, NF-κB pathway, and protein kinase c pathway. We also highlight that 

while numerous studies have mainly focused on tissue or cell damage in the lung, studies focusing on 

mitochondrial dysfunction in the diabetic lung have remained sketchy. Hence, further understanding of 

mitochondrial mechanisms of diabetic lung injury should provide invaluable insights into future therapeutic 

approaches for diabetic lung injury. 

 

Key words: diabetic hyperglycemia, diabetic lung injury, diabetes mellitus, mitochondria, oxidative stress 

 

 

 

 

 

 
Diabetes mellitus (DM), characterized by persistent blood 

hyperglycemia, is a leading cause of morbidity and 

mortality in the world. A recent report released by the 

World Health Organization reveals that there were 1.5 

million (2.7%) deaths caused by diabetes in 2012, up from 

1.0 million (2.0%) in 2000. The major cause of death in 

diabetic patients is glucotoxicity-induced complications. 

There are now increasing evidence showing that lung is 

also one of the target organs for diabetic microangiopathy 

in patients with either type 1 or type 2 DM [1-3]. Because 

the lung microvascular system has huge reserve function, 

diabetic lung damage is quite subclinical and often 

ignored by patients and physicians. With continued 

increase in the occurrence of diabetes in an aging 

population, more and more pulmonary dysfunction is 

likely to be attributed to diabetic pulmonary 

complications. Pulmonary disease associated with 

diabetes includes a predisposition to infections and 

chronic obstructive pulmonary disease such as pneumonia, 

asthma, pulmonary fibrosis, and pulmonary tuberculosis 

as well as impaired breathing during sleeps [4-11]. 

Furthermore, it has been reported that incidence death due 

to pulmonary diseases among Japanese diabetic patients 

has been found to be greater than 50% [12]. When 

compared with healthy subjects, patients with type 1 or 

type 2 DM are at increased risk for respiratory tract 
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infections and the risk further increases with repeated 

occurrence of common infections [13, 14]. Relative risks 

of developing pulmonary tuberculosis of all types and 

bacteriologically confirmed cases were 3.47 times and 

5.15 times higher, respectively, in diabetic patients than 

in matched healthy controls [15-18].  

Therefore, elucidating the pathogenesis of the 

diabetic lung injury has become an important research 

topic. Several concepts of pathogenesis such as oxidative 

stress, non-enzymatic glycation of proteins, and the 

polyol pathway have been identified to be involved in the 

etiology of diabetic lung injury. In this paper, we attempt 

to provide an overview of the potential and major 

biochemical mechanisms of morphological changes and 

pulmonary dysfunction implicated in diabetic lung injury. 

A deeper understanding of the underlying mechanisms 

should provide invaluable insights into novel approaches 

for attenuating diabetic lung injury in the future. It should 

be noted that this review is by no means to exhaust all the 

possible mechanisms of diabetic lung injury documented 

in the literature. 

 

Morphological changes in diabetic lung injury 
 

Numerous studies indicate physiological and structural 

abnormalities in diabetic lungs. A histological 

investigation in rabbit lung shows that diabetic rabbits 

exhibit morphological abnormalities within 3 weeks of 

diabetes induction [19].  It has been reported that diabetic 

hyperglycemia damages the respiratory system due to the 

pulmonary interstitial injury caused by microangiopathy, 

which in the meantime could also contribute to autonomic 

neuropathy [20]. It has also been reported that there is a 

widely increase in the volume proportion of alveolar wall 

and alveoli per unit volume, in the relative amounts of 

collagen, elastin, and basal laminae, and in the surface-to-

volume ratio of the lungs of the diabetic rats [21]. The 

basal membranes were thickened, along with an intense 

inflammatory reaction in diabetic lungs [22]. The 

structures of lung tissue and lamellar bodies showed 

collapse in DM group [23], neutrophil infiltration or 

aggregation and alveolar wall thickening in lung tissue 

were significantly higher in the DM group than in the 

control group [24]. In diabetic lung models, histological 

examination with Sirius red and eosin and hemotoxylin 

staining showed fibrosis along with massive 

inflammatory cell infiltration [25]. The number of tiny 

villus and the quantity of osmiophilic multilamellar body 

decreased markedly, while hyperplasia was found in 

collagen fiber [26]. The mechanisms underlying 

morphological changes in diabetic lung injury might be 
the following: (1) Activation of NADPH oxidase that 

mediates oxidative and nitrosative damage [25]. (2) 

Activation of the polyol pathway that is one of the most 

popular candidate mechanisms to explain the cellular 

toxicity of diabetic hyperglycemia. When glucose 

concentration in the cell becomes too high, aldose 

reductase is activated to reduce glucose to sorbitol [27]. 

Sorbitol can induce cellular osmotic pressure, leading to 

cell death [28]. On the other hand, as the polyol pathway 

also consumes NADPH and produces NADH, cellular 

redox imbalance can occur and trigger oxidative stress, 

leading to changes in cell membrane integrity and 

function. (3) Generation of advanced glycation end-

products (AGEs) that can impair protein structure and 

function.  

 

Pulmonary dysfunction in diabetic lung injury 

 

Decreased lung function is associated with diabetes, both 

cross-sectionally and longitudinally [29-33]. It has been 

found that pulmonary function abnormalities appeared 

within 3 years of diabetes diagnosis in 51.2% of children 

with type 1 diabetes [34]  and there is also a statistically 

significant increase in total airway resistance in children 

with type 1 diabetes [35]. Airflow restriction is a predictor 

of demise in type 2 diabetes after adjusting for other 

recognized risk factors [36]. One study in the Strong Heart 

Study involving 2,396 adults shows a significantly 

decreased pulmonary function in American Indians with 

DM; moreover, lung functional impairment was found to 

already appear in this ethnic group before the 

development of overt DM [37] . 

 
 Lung ventilatory dysfunction 

 

Ventilation is an important reflection of lung function. 

Diabetic patients exhibit a high risk of pulmonary 

disorders that are often associated with restrictive 

impairment of lung function. Many cross-sectional 

studies have consistently shown that when compared with 

healthy subjects, patients with diabetes have significant 

decreases in many parameters including lower vital 

capacity, medium expiratory flow, expiratory residual 

volume, the total lung capacity (TLC), forced vital 

capacity (FVC), and forced expiratory volume in one 

second (FEV1) [38-41]. It has also been reported that the 

restrictive, but not the obstructive ventilatory dysfunction, 

is associated with development of prediabetes and 

precedes the development of type 2 diabetes [42]. 

Moreover, it has been found that the early stage of 

diabetes modulates the bronchial reactivity to both 

acetylcholine and isoproterenol by disrupting the nitric 

oxide (NO), KATP channels, and cyclooxygenase 

pathways in guinea pigs [43]. There have been several 
hypotheses proposed on the mechanism of ventilatory 

dysfunction in the diabetic lung: (1) Respiratory muscle 

strength decreased, which was significantly related to 
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attenuated lung volumes and ill metabolic control in type 

2 diabetes [44-46]. (2) The restrictive type of pulmonary 

impairment is likely due to non-enzymatic glycosylation 

of pulmonary proteins and subsequent accumulation of 

collagen in the lungs and chest wall [30]. Moreover, 

glycosylation of elastin fibers can also cause improper 

cross-linking and emphysema-like diminution in alveolar 

surface area, resulting in stiffening of the lungs, reduced 

elastic recoil, impaired vascular diffusion, and 

inflammatory changes in lungs [47, 48]. (3) Nearly one-

third of subjects with diabetes showed abnormal 

ventilatory response to hypoxia, hypercapnia, or exercise, 

a symptom of autonomic neuropathy [20].  Moreover, 

neuroadrenergic bronchopulmonary denervation may also 

occur in diabetic patients with autonomic neuropathy [49]. 

Indeed, it has been reported that neuroadrenergic 

denervation of the lung is associated with the decline of 

respiratory functional indexes in diabetic patients [50], 

leading to lung diastolic stress disorder [49]. (4) Non-

adrenergic non-cholinergic neurotransmitter release is 

decreased due to diabetic autonomic neuropathy [51], 

which could deregulate the pulmonary vascular tone and 

pulmonary ventilation. 

 

Pulmonary diffusing capacities 
 

Transfer of oxygen and carbon dioxide over the 

alveolocapillary membrane is the main function of the 

lung. Lung diffusing capacity for carbon monoxide 

(DLCO) is a measure of gas conductance across alveolar 

tissue membrane into capillary erythrocytes and 

subsequent chemical binding to hemoglobin. DLCO is 

influenced by alveolar-capillary membrane conductance 

and pulmonary capillary blood volume, both of which are 

reduced in adults with type 1 diabetes [52]. Evidence 

shows that children with type 1 diabetes also had impaired 

pulmonary functions including DLCO, airway resistance 

(Raw), alveolar volume (AV), and DLCO/AV ratio [53]. 

It has been demonstrated that there is a significant 

decrease in the ratio between DLCO and alveolar 

ventilation in pulmonary gas exchange in the diabetic 

group when compared with that in healthy controls [54]. 

DLCO is predominantly due to a low membrane diffusing 

capacity (DMCO) [55] while in type 2 diabetes both 

DMCO and capillary blood volume are reduced [38]. 

Interestingly, at peak exercise, type 1 diabetic subjects 

demonstrated a decreased DLCO when corrected for 

cardiac output (DLCO/Q) [56]. Additionally, a decrease 

in DMCO when corrected for cardiac output (DMCO/Q) 

was also present and the decrease in diffusing capacity 

was associated with a reduction in oxygen saturation. It is 

suggested that the limitation in gas transfer becomes 

functionally important as the transit time of red blood cells 

through the lung is shortened [56]. 

 

 

 

 

 

 
 
Figure 1. Hyperglycemia-upregulated pathways that are potentially involved in diabetic lung injury. These include 

protein glycation, PKC pathway, NF-KB pathway, polyol pathway, and oxidative stress. It should be noted that these pathways 

may be inter-related. For example, the polyol pathway can also contribute to oxidative stress. 

 



 Zheng H., et al                                                                                                               Mechanisms of diabetic lung injury 

Aging and Disease • Volume 8, Number 1, February 2017                                                                               10 

 

Etiopathogenesis of diabetic lung injury 

 

There is increasingly a large body of supporting data that 

may provide mechanisms of pathogenesis of diabetic lung 

injury. However, a detailed elucidation of each 

mechanism remains challenging. Long lasting 

hyperglycemia triggers upregulation of a variety of 

pathways, including oxidative stress, non-enzymatic 

glycation of proteins, polyol pathway and sorbitol 

production, NF-κB pathway, and activation of the protein 

kinase C pathway (Fig. 1). Here we review these 

mainstream mechanisms that have been implicated in 

diabetic lung injury. 

 

Oxidative stress 

 

Previous experimental and clinical studies indicate that 

hyperglycemia-induced overproduction of superoxide 

plays a key role in the pathogenesis and development of 

diabetic complications in all kinds of tissue injuries [57-

59].  Sustained hyperglycemia produces excessive 

reactive oxygen species (ROS) and reactive nitrogen 

species (RNS) that cannot be overwhelmed by 

antioxidants, resulting in damage to DNA, lipids, and 

proteins [60-63]. Evidence indicates that in diabetic lung, 

the activity of superoxide dismutase (SOD) was decreased, 

while the contents of nitric oxide (NO) and 

malondialdehyde (MDA) were significantly increased [23, 

26]. As NO and superoxide can react simultaneously to 

produce peroxynitrite that is very damaging [64], any 

evidence that NO concentration is elevated in the diabetic 

lung would suggest that NO/peroxynitrite pathway is a 

mechanism by which lung is injured. The pulmonary lipid 

peroxidation, glutathione peroxidase activities and 

inducible nitric oxide synthase (iNOS) were all found to 

be increased in streptozotocin diabetic rats [65]. 

Immunohistochemical staining in the pulmonary 

bronchial epithelium and capillary endothelium in the DM 

group indicates an elevated level of iNOS expression [65]. 

It has also been shown that 8-OHdG increases in patients 

with type 2 diabetes [66], demonstrating the occurrence of 

DNA damage in the diabetic lungs. Clinic data illustrates 

that tumor necrosis factor-alpha (TNF-α), interleukin-6 

(IL-6), interleukin-10 (IL-10), and MDA levels in serum 

were all significantly increased in diabetic patients who 

show diabetic lung injury [67]. Additionally, it has been 

reported that in type 2 diabetes patients with pneumonia, 

levels of toll-like receptor 2/4 in peripheral blood 

monocytes and serum surfactant protein A were altered 

[68]. All these studies demonstrate the involvement of 

oxidative damage in diabetic lung injury. 
 

 

 

Non-enzymatic protein glycosylation  

 

Nonenzymatic glycosylation is accelerated by oxidative 

stress and elevated levels of aldoses [69]. AGEs are 

a heterogeneous group of modified proteins, lipids and 

nucleic acids arising from intracellular hyperglycemia via 

a non-enzymatic Maillard reaction [63]. This 

modification can result in changes in tissue/cellular 

properties by forming crosslinks [70] that impair the 

biological functions of the target proteins [71]. Tissues 

exposed to continuous state of high blood glucose can 

exhibit non-enzymatic glycosylation of proteins, whereby 

AGEs are eventually formed [72]. It has been suggested 

that formation and accumulation of AGEs are involved in 

the pathogenesis of diabetic vascular complications [73]. 

As reactive oxygen intermediates are involved in the 

formation of AGE structures such as carboxymethyllysine 

[74], the interaction of AGE modified proteins with 

macrophages might further induce macrophage ROS 

production, thereby contributing to the development of 

pulmonary fibrosis [75]. 

Therefore, hyperglycemia-accelerated formation of 

nonenzymatic advanced glycosylation end products in 

tissues has been suggested as the central pathologic 

features of diabetic complications [76]. Interaction of 

AGEs with the receptor for advanced glycation end-

products (RAGE) has been shown to activate down-

stream signaling pathways and evoke inflammatory 

responses in vascular wall cells [77, 78]. Glycation can 

upregulate transforming growth factor-β intermediate and 

lead to increased synthesis of collagen, laminin, and 

fibronectin in the extracellular matrix [79, 80]. 

 

Polyol pathway 

 

Polyol pathway is one of the major sources of ROS 

production in diabetes [81]. Hyperglycemia decreases 

NAD+ levels by activation of the polyol pathway and by 

over-activation of poly (ADP-ribose)-polymerase (PARP) 

[82]. The pulmonary arteries from diabetic rats showed 

impaired relaxant response to acetylcholine and decreased 

vasoconstrictor response to N-omega-nitro-L-arginine 

methyl ester (L-NAME) that is a widely used NOS 

inhibitor. It has also been suggested that diabetes induces 

pulmonary artery endothelial dysfunction by enhancing 

superoxide production [83]. In experimental diabetic lung 

in rabbits, it was found that glutathione peroxidase (GSH-

Px) activity, glutathione reductase (GSSG-R) activity, and 

ascorbic acid  level decreased while the concentration of 

lipid peroxidation products  increased [84]. Therefore, it 

is conceivable that the lowered level of NAD+ in the 
diabetic lung may aggravate cellular and tissue damage. 

The levels of free 15-F2t-isoprostane were increased in 

lung tissues in diabetic rats along with a significantly 

http://topics.sciencedirect.com/topics/page/Oxidative_stress
http://topics.sciencedirect.com/topics/page/Oxidative_stress
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increased membrane translocation of the NADPH oxidase 

subunit p67phox and increased expression of the 

membrane-bound subunit p22phox in diabetic lung [85]. 

Additionally, damaged mitochondria can also generate an 

excess of superoxide that can mediate tissue injury in 

diabetes. Studies conducted in diabetic rats have revealed 

significant generation of mitochondrial superoxide at the 

site of NADH/ubiquinone oxidoreductase (complex I) [86, 

87]. 

 

 

 

 
 
Figure 2. Possible role of mitochondrial dysfunction in diabetic lung injury. Show is the mitochondrial elements that are 

involved in cell death. Initial production of mitochondrial ROS can lead to changes in membrane potential and opening of 

mitochondrial permeability transition pore (MPTP) opening. MPTP opening could further enhance mitochondrial ROS 

production, forming a vicious cycle that eventually leads to cell death and lung dysfunction.  

 

 

NF-κB pathway 

 

The nuclear factor (NF)-κB signaling pathway is involved 

in regulating gene expression in early inflammatory 

responses. NF-κB pathway is a primary target for 

activation by hyperglycemia, oxidative stress, and 

inflammatory cytokines [88].  The expression of TNF-α, 

IL-1β, IL-6 and other pro-inflammatory cytokines are 
regulated downstream of NF-κB [89]. NF- κB has been 

shown to activate the genes encoding pro-inflammatory 

cytokines, cell adhesion molecules, nitric oxide synthase, 

and cyclooxygenase-2 [90]. In the lung tissues of diabetic 

rats, it has been reported that while the levels of IκB were 

declined when compared with that in the control group, 

the levels of phosphorylated IκB and nuclear NF-κB were 

actually elevated. Meanwhile, the mRNA levels and 

protein levels of iNOS and cyclooxygenase-2 were also 

up-regulated in the lung tissue of diabetic animals [91]. 
Additionally, protein carbonyl content was higher in 

diabetic lungs, but SOD and GSH activities were lower 
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[22]. Hence, it seems that lungs are exposed to oxidative 

stress mediated by NF- κB activation in diabetes.    

 

Protein Kinase C pathways 
 

Protein kinase C (PKC) is a family of enzymes that are 

involved in regulating the function of numerous proteins. 

PKC has been associated with vascular alterations such as 

increase in permeability, contractility, extracellular 

matrix synthesis, cell growth and apoptosis, angiogenesis, 

leukocyte adhesion, and cytokine activation and 

inhibition. It has been demonstrated that diabetic rats 

exhibited a significant decrease in LPS-induced 

phosphorylation of extracellular signal-regulated kinase, 

protein kinase C α and δ, p38, and protein kinase B [92]. 

Additionally, expression of iNOS and levels of IL-6 and 

cyclooxygenase are also decreased in the lung 

homogenates derived from diabetic rats [92]. In particular, 

PKC activation by hyperglycemia can activate NADPH 

oxidase that generates more ROS and accentuates 

oxidative stress [93]. Therefore, PKC dysregulation could 

be involved in diabetic lung injury. 

 

Role of mitochondrial dysfunction in diabetic lung 

injury 
 

Mitochondria are important organelles for cell survival 

[94, 95]. Mitochondria play important roles in 

intracellular energy generation, in modulation of 

apoptosis, and in redox-dependent intracellular signaling 

[96]. Mitochondria can be both a source of ROS and a 

target of oxidative damage during oxidative stress. Hence, 

numerous studies attempting to link mitochondria to the 

complications of diabetes has focused on the role of 

mitochondrial ROS [97-100]. Prolonged hyperglycemia 

results in an over-generation of ROS by the mitochondria, 

which in turn may contribute significantly to the 

development of diabetic complications [100]. 

Interestingly, AMP kinase (AMPK) seems to be involved 

in the pathogenesis of diabetic complications. It has been 

reported in diabetes that C-peptide induces AMPKα 

activation and inhibits hyperglycemia–induced ROS 

production, mitochondrial membrane potential collapse, 

mitochondrial fission, and endothelial cell apoptosis [101]. 

It has also been demonstrated that increased 

mitochondrial ROS in diabetes is maintained by a feed-

forward AMPK activation cascade [102]. Interestingly, 

basal ROS concentration was increased in lymphocytes 

from type 2 DM and triiodothyronine (T3) significantly 

stimulated ROS concentration in type 2 DM patients. 

Thus an increased mitochondrial sensitivity for T₃ may be 
a significant factor responsible for increased ROS 

production in diabetic patients [103].  

Moreover, hyperglycemia-induced over-production 

of mitochondrial ROS may lead to collapse of 

mitochondrial transmembrane potential and opening of 

the mitochondrial permeability transition pore (MPTP) 

[100, 104, 105]. The occurrence of apoptosis via 

cytochrome c release induced by MPTP opening may lead 

to more ROS generation [106, 107], forming a vicious 

cycle that eventually results in cell death [108] (Fig. 2). 

Conversely, therapeutic inhibition of mitochondrial ROS 

by antioxidants such as mito-TEMPO can decrease 

adverse cellular changes and mitigate cellular dysfunction 

in diabetic mice [109]. Thus, antioxidants targeting 

mitochondria could be an effective therapeutic approach 

for diabetic complications in the lung [110].  

Based on research in other diabetic organs or tissues, 

we envision that defective or insufficient mitochondrial 

function plays potentially a pathogenic role in diabetic 

lung injury. Therefore, qualitative and quantitative 

analysis on functional perturbations of mitochondria 

needs to be conducted in the diabetic lung. In particular, 

the state of both mitochondrial transmembrane potential 

and the opening of MPTP in the diabetic lung injury need 

to be assessed. 

 

Summary 
 

While numerous studies have shown that the lung is one 

of the target organs of diabetes, the biochemical 

pathogenesis of diabetic lung injury remains largely 

unexplored. In this review, we have summarized 

experimental and clinical evidence demonstrating 

diabetic lung dysfunction manifested by morphological 

and pathological changes. As sustained hyperglycemia 

could result in oxidative stress which contributes to tissue 

damage, oxidative stress has been postulated to be a major 

contributing factor in diabetic lung injury. Nonetheless, 

the role of mitochondria, a major source of ROS and 

oxidative stress, in diabetic lung injury has yet to be fully 

explored. Therefore, more studies should focus on 

mitochondrial dysfunction in the diabetic lung in the 

future, which will offer invaluable insights into design of 

therapeutic approaches for diabetic lung injury. 
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