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Abstract Defects in genes involved in the DNA damage response cause homologous recombination

repair deficiency (HRD). HRD is found in a subgroup of cancer patients for several tumor types,

and it has a clinical relevance to cancer prevention and therapies. Accumulating evidence has iden-

tified HRD as a biomarker for assessing the therapeutic response of tumor cells to poly(ADP-ribose)

polymerase inhibitors and platinum-based chemotherapies. Nevertheless, the biology of HRD is

complex, and its applications and the benefits of different HRD biomarker assays are controversial.

This is primarily due to inconsistencies in HRD assessments and definitions (gene-level tests, geno-

mic scars, mutational signatures, or a combination of these methods) and difficulties in assessing the

contribution of each genomic event. Therefore, we aim to review the biological rationale and clin-

ical evidence of HRD as a biomarker. This review provides a blueprint for the standardization and

harmonization of HRD assessments.
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Introduction

Homologous recombination (HR) is an important repair
mechanism for DNA double-strand breaks (DSBs). HR repair

deficiency (HRD) is a cellular HR dysfunction that can be
caused by germline/somatic mutations or epigenetic inactiva-
tion of HR-related genes. HRD has been found in many malig-

nant tumors, especially in ovarian, breast, pancreatic ductal,
and prostate cancers. HRD can be identified by genomic pro-
filing as it induces specific and quantifiable genomic alter-
ations. In addition, multiple studies have shown that HRD

increases the sensitivity of tumors to poly(ADP-ribose) poly-
merase inhibitors (PARPIs). Therefore, HRD has become a
biomarker for predicting the effects of PARPIs in patients with

advanced ovarian cancer [1–4]. Moreover, it can potentially be
used as a biomarker to guide the clinical use of PARPIs and
platinum-based chemotherapies in breast cancer [5,6], prostate

cancer [7,8], and other cancer types [9–11]. This study reviews
the definition of HRD; methodologies for HRD assessment;
clinical applications, limitations, optimization, and standard-

ization of HRD tests; and value of HRD tests as predictive
and prognostic biomarkers in cancers. We aim to perform a
comprehensive review to optimize and harmonize HRD assess-
ment as an efficient biomarker for cancer detection and

treatment.

HRD definition

DNA damage can occur in many forms, including single-
strand breaks and DSBs. The resulting high instability of the

damaged DNA by DSBs can lead to gene mutations, cell apop-
tosis, and senescence. Therefore, DSB repair is crucial for
maintaining DNA stability [12]. Various inter-connected path-
ways participate in DSB repair. HR repair can mend inter-

strand crosslinks and DSBs using a complex, specific, and
accurate mechanism [13], generating error-free DNA [3,5].
Specifically, HR repair begins by recruiting the protein kinase

ataxia-telangiectasia mutated kinase (ATM), through the mei-
otic recombination 11 (MRE11)–radiation sensitive 50
(RAD50)–Nijmegen breakage syndrome 1 (NBS1) complex

at DSB sites. ATM then phosphorylates downstream proteins
such as breast cancer gene 1 (BRCA1) and cyclin-dependent
kinases (CDKs), promoting BRCA1 activation and initiating
DSB repair. Hence, BRCA2, partner and localizer of BRCA2

(PALB2), replication protein A (RPA), and RAD51 induce
HR repair. In the repair process of the damaged area of the
DNA strand, the homologous region of the sister chromatid

is used as a template [12]. Most HRD-induced DSB repairs
use microhomology-mediated end-joining, non-homologous
end-joining, or single-strand annealing [14]. However, these

mechanisms have low fidelity and are prone to errors during
DNA repair. Misrepaired or unrepaired DSBs can promote
the accumulation of genomic alterations, including copy num-

ber variants, insertions, deletions, or structural rearrangements
of chromosomes. Such alterations can cause genomic instabil-
ity and lead to cancer and deterioration of tumors. These fea-
tures of genomic instability are known as genomic scars [15]

(Figure 1). HR-related gene mutations are prevalent in various
cancers. For instance, deleterious somatic/germline alterations
in BRCA1/2 (essential components of the HR pathway) are the
most common indicators of HRD. Importantly, HRD is also
prevalent in tumors that harbor non-BRCA mutations in the
HR pathway, thus generating a BRCA-like phenotype [16].

Multiple studies have shown that HRD increases the sensitiv-
ity of tumors to various tumor-targeting drugs such as PAR-
PIs, platinum-based chemotherapies, mitomycin C, and

alkylating agents [17–21]. There is evidence of HRD in many
malignant tumors, especially in ovarian [22,23], breast
[17,24,25], pancreatic ductal [26–28], and prostate cancers

[29]. The HRD status of various cancer types [30,31] is summa-
rized in Table 1.

Methodologies for HRD assessment

Over the past decade, various studies have focused on the gen-
ome fingerprints caused by HRD in tumors. Studies have also

focused on identifying the factors that predict the response of
tumors to HRD-based therapies [32].

The HRD score is a score that quantifies the genomic insta-

bility status of tumors caused by an abnormal HR pathway.
HRD induces specific and quantifiable genomic alterations,
including mutations, chromosomal structural abnormalities,
and copy number variants, which are the theoretical basis

for current HRD clinical tests [33,34]. However, there are no
unified standards for HRD testing. The two main categories
of methods currently used for assessing the genomic instability

status of a patient are genomic scar analysis based on single-
nucleotide polymorphisms (SNPs) and single- or multi-
dimensional genomic profiles obtained from whole-genome

sequencing (WGS) data, which are described below.
The first category uses genomic scar analysis based on

SNPs. In this category, HRD scores are mainly computed

from the results of high-density SNP arrays of the whole gen-
ome or genomic SNP backbone probes based on next-
generation sequencing (NGS). These HRD scores include the
degree of genomic instability and mutations in HR-

associated genes [25]. Briefly, HR-related mutations, such as
BRCA1/2 deleterious mutations and promoter methylation,
are detected in tumor cells. The genomic instability caused

by these molecular mechanisms is analyzed using high-
density SNP loci, which detect copy number variation indica-
tors such as loss of heterozygosity (LOH; found in genomic

regions containing only one of the two parental copies),
large-scale state transition (LST; genomic breaks between
adjacent genomic regions > 10 Mb), and telomeric allelic

imbalance (TAI; allelic imbalance extending to the subtelom-
ere but not crossing the centromere). This information is then
integrated to calculate HRD scores [35–39]. The threshold of
the HRD scores is then defined according to the efficacy of

PARPI- and/or platinum-based chemotherapies [40].
Currently, the only two commercial tests approved by the

United States Food and Drug Administration (FDA) for

assessing the status of HRD based on SNPs are the myChoice
CDx (Myriad Genetics) and FoundationFocus CDxBRCA LOH

(Foundation Medicine) assays. These two assays use different

assessment methods. myChoice CDx identifies HRD status
using NGS. It analyzes the coding regions and population-
specific SNPs of BRCA1/2. The assessment of the HRD scores
of myChoice CDx is based on the degree of somatic copy num-

ber variants (SCNVs) in tumors. Therefore, the accuracy of
HRD scores is strongly associated with the accuracy of SCNVs



Figure 1 HR and HRD occurring at DNA DSBs

HR is initiated after double-strand DNA breaks in a process that involves multiple proteins such as ATM, ATR, CHK1/2, RAD51, and

BRCA1/2. HRD causes LOH, LST, TAI, and mutants (red boxes), which are manifestations of genomic instability that lead to cancer and

deterioration. Created using BioRender.com. DSB, double-strand break; ATM, ataxia-telangiectasia mutated kinase; ATR, ataxia-

telangiectasia-mutated-and-Rad3-related kinase; CHK1/2, checkpoint kinase 1/2; RAD51, radiation sensitive 51; BRCA1/2, breast cancer

gene 1/2; HR, homologous recombination; HRD, homologous recombination repair deficiency; LOH, loss of heterozygosity; LST, large-

scale state transition; TAI, telomeric allelic imbalance.
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in tumors. myChoice CDx quantifies HRD levels using the
genomic instability score (GIS), which is based on a combina-
tion of the copy number variation indicators LOH, TAI, and

LST derived from DNA isolated from formalin-fixed
paraffin-embedded (FFPE) tumor tissue specimens [41]. In
addition, tumor cell purity and whole tumor ploidy [42] are

essential factors for improving the detection accuracy of seg-
ment copy numbers. The typical threshold score of myChoice
HRD is 42 [41]. Specifically, tumors are considered HRD-

positive if they had a high myChoice HRD score (GIS � 42)
and/or pathogenic BRCA1/2 mutations, whereas HRD-
negative tumors are those with a low myChoice HRD score
(GIS < 42) and wild-type BRCA1/2. The threshold choice is

based on the HRD scores of the fifth percentile of biallelic-
inactivated BRCA ovarian and breast cancer samples, and it
was shown to be effective in predicting the sensitivity to

platinum-based chemotherapies in breast cancer [41,43] (Fig-
ure 2A). The other assay, FoundationFocus CDxBRCA LOH,
evaluates HRD genomic scars by assessing the percentage of

segments with LOH in the whole-genome covering selected
SNPs on 22 chromosomes. The threshold used by the Founda-
tionFocus CDxBRCA LOH assay is 16%, which was set after sev-
eral adjustments based on the results of clinical trials, such as
REAL3 for platinum and ARIEL2 and ARIEL3 for recapture.
According to the FoundationFocus CDxBRCA LOH assay, an
HRD-positive patient has a tumor BRCA1/2 mutation and/

or a genomic LOH score � 16%, whereas an HRD-negative
patient has a wild-type BRCA1/2 and a genomic LOH
score < 16% [44,45] (Figure 2B).

The other main category of methods currently used for
assessing the genomic instability status of a patient is based
on single- or multi-dimensional genomic profiles obtained

from WGS data. This category includes the detection of speci-
fic mutational signatures such as Signature 3 and HRD detec-
tion models such as HRDetect. Signature 3 is identified as a
mutational signature of many deletions at breakpoint sites

overlapping with microhomology. In various types of cancer,
Signature 3 is related to mutations in BRCA1/2 and methyla-
tion of the BRCA1 promoter [46,47], and it has been also asso-

ciated with tumor sensitivity to platinum [48]. Nevertheless,
the usage of Signature 3 as a marker of HRD has some limita-
tions, such as low diagnostic specificity and lack of exact

thresholds. Moreover, it is not an adequate biomarker for pre-
dicting PARPI efficacy in tumor cells [49]. Given these limita-
tions of HRD detection based on a single biomarker, WGS-
based assays that optimize HRD assessment by incorporating

http://BioRender.com


Table 1 HRD in tumors

HRD status Tumor HRD percentage in patients Refs.

Somatic/germline mutations in BRCA1/2;

other HR-related mutations

Ovarian cancer 13%–15% with germline BRCA1/2 mutations

20% with somatic BRCA1/2 mutations

30% with HR-related mutations

50% in HGSOC patients with HRD

[22,23]

Breast cancer 5%–10% with germline BRCA1/2 mutations

> 20% with HRD

10%–20% in TNBC patients with germline

BRCA1/2 mutations

3%–5% in TNBC patients with somatic

BRCA1/2 mutations

[17,24,25]

Pancreatic cancer 5%–9% with HRD [26–28]

Prostate cancer 9.9% with HRD [31]

Somatic/germline mutations in BRCA1/2;

other HR-related mutations;

BRCA1 methylation

Tenosynovial giant cell tumor 12.5% with HRD [30]

Bladder urothelial carcinoma 7.1% with HRD [30]

Stomach and esophageal carcinoma 5.3% with HRD [30]

Lung squamous cell carcinoma 4.5% with HRD [30]

Sarcoma 4.2% with HRD [30]

Skin cutaneous melanoma 3.7% with HRD [30]

Cervical squamous cell carcinoma and

endocervical adenocarcinoma

3.6% with HRD [30]

Adrenocortical carcinoma 3.3% with HRD [30]

Uterine corpus endometrial carcinoma 3.1% with HRD [30]

Lung adenocarcinoma 2.7% with HRD [30]

Colorectal cancer 2.3% with HRD [30]

Head and neck squamous cell carcinoma 1.8% with HRD [30]

Liver hepatocellular carcinoma 1.8% with HRD [30]

Note: BRCA, breast cancer gene; HR, homologous recombination; HRD, HR repair deficiency; HGSOC, high-grade serous ovarian cancer;

TNBC, triple-negative breast cancer.
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more types of genes and chromosomal structural alterations
have been developed. These include HRDetect [50], a classifier

containing six mutational signatures based on WGS, which
was designed to predict BRCA1/2 deficiency. The six muta-
tional signatures are microhomology-mediated indels, the

HRD index, base substitution signature 3 (enriched in
C > G substitutions), rearrangement signature 3
(short < 10-kb tandem duplications), rearrangement signature

5 (non-clustered deletions < 100 kb), and base substitution
signature 8 (enriched in C> A substitutions). These signatures
were assigned specific weights using a machine learning algo-
rithm and then integrated into a single HRDetect score

[12,50,51]. Additionally, HRDetect can identify mutational
phenotypes similar to BRCA1/2 deficiency in non-BRCA
mutation tumors, a phenomenon known as BRCAness [41].

HRDetect can assess the efficacy of PARPI in patients with
BRCA1/2 defects [50]. The cut-off value of HRDetect should
be computed based on the sensitivity of cells to platinum-

and PARPI-based therapies, and it could be used to predict
the responses to such therapies of patients. However, insuffi-
cient clinical results support HRDetect as a biomarker to pre-
dict PARPI efficacy. The methods of HRD assessment

described above are summarized in Table 2.
Clinical applications of HRD testing

HRD leads to defective DNA DSB damage repair. This makes
cells with HRD highly sensitive to DNA-break-inducing plat-

inum drugs and PARPIs, which can lead to synthetic lethality.
Specifically, platinum drugs enter the nucleus and form Pt–
DNA compounds, which cause structural changes in DNA

and impair DNA replication and transcription, resulting in
apoptosis. In addition, PARPIs can halt the DNA repair pro-
cess that is governed by PARP1, which is involved in DNA

damage repair by excising bases in single-strand DNA breaks.
The halt in the repair of damaged DNA can, thus, lead to sev-
ere genomic instability, causing lethality in tumors with patho-

genic BRCA1/2mutations or other HRD-associated mutations
[33,52,53]. HRD has extensive applications as a biomarker of
tumor responsivity to therapeutic agents that target DNA
damage and has achieved good results in clinical trials for

ovarian cancer [1]. It may also guide the clinical use of
PARPI- and platinum-based drugs for breast, pancreatic,
prostate, and other cancers [10,25,43,54,55]. Clinical-grade

HRD analysis, through assays such as FoundationFocus
CDxBRCA LOH and myChoice CDx, has been approved as a
companion diagnostic test for HRD-positive patients. For

example, HRD is considered a frequently used biomarker for
ovarian cancer that has guided the development of specific
treatments, such as PARPIs, showing better outcomes for
patients with high levels of HRD [53].

Multiple clinical trials have evaluated HRD as a prognostic
biomarker for ovarian cancer. For instance, the SOLO2 trial
showed that olaparib could significantly improve the median

progression-free survival (PFS) of patients with epithelial ovar-
ian cancer (EOC) with germline BRCA mutations [1]. The
Study 19 trial corroborated the conclusion of the SOLO2 trial

and showed that PFS was much longer in the olaparib group
with BRCA mutations than that in the group with wild-type



Figure 2 HRD assays based on genomic scars

A. myChoice CDx can quantify HRD levels using GIS, which combines LOH, TAI, and LST, using DNA isolated from FFPE tumor

tissue specimens. B. FoundationFocus CDxBRCA LOH evaluates HRD genomic scars by assessing the percentage of segments with LOH in

the whole genome covering selected SNPs on 22 chromosomes. Created using BioRender.com. GIS, genomic instability score; FFPE,

formalin-fixed paraffin-embedded; SNP, single-nucleotide polymorphism; g/sBRCAmut, germline/somatic BRCA mutation; BRCAwt,

BRCA wild-type; %LOH, percentage of LOH.
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BRCA [56]. Furthermore, the PAOLA-1 trial demonstrated
that the conclusion of Study 19 also applies to HRD-positive

patients with EOC [2]. The ARIEL3 trial showed that after
rucaparib treatment, HRD-positive patients with EOC had a
significantly longer median PFS than did HRD-negative

patients [45]. NOVA [3] and PRIMA [57] clinical trials have
shown that niraparib can significantly improve the median
PFS of HRD-positive patients with EOC compared with

HRD-negative patients. Furthermore, the VELIA trial demon-
strated that adding a veliparib therapy significantly prolonged
the median PFS of patients with HRD-positive EOC [4].
Finally, the SCOTROC4 trial showed that platinum-based

therapy improved the median PFS of patients with HRD-
positive ovarian cancer. [58]. These clinical trials have demon-
strated that HRD is an effective biomarker for the response of

ovarian cancer to treatment. They also showed that PARPIs
could significantly improve the PFS of HRD-positive patients
with ovarian cancer.

Several studies have also been conducted on HRD in breast
cancer. The OlympiAD trial showed that the median PFS was
significantly longer in the olaparib group than that in the con-
trol group (treated with capecitabine, eribulin, or vinorelbine)

of patients with HER2-negative metastatic breast cancer and
germline BRCA mutations, and the response rate was much
higher in the olaparib group than that in the control group
[5]. A clinical trial analysis including Cisplatin-1, Cisplatin-2,

and PrECOG 0105 showed that with platinum-containing ther-
apies, HRD-positive patients with triple-negative breast cancer
(TNBC) had significantly better residual cancer burden scores

(RCB) and pathological complete response (pCR) [41]. Gepar-
Sixto also showed that HRD-positive TNBC patients had bet-
ter pCR during carboplatin-added neoadjuvant therapies and

that carboplatin significantly prolonged the disease-free sur-
vival (DFS) of HRD-positive patients [59]. Telli et al. showed
that HRD-positive patients with TNBC responded significantly
better to standard neoadjuvant chemotherapies, including

DNA-damaging agents such as anthracycline, than did HRD-
negative patients [60]. In the BrighTNess trial, TPV-AC (pacli-
taxel, carboplatin, veliparib, doxorubicin, and cyclophos-

phamide) yielded better results in the HRD-positive group
(HRD � 33 or 42; pCR: 60.8% or 61.7%) than in the HRD-
negative group (HRD < 33 or 42; pCR: 33.3% or 36.1%)

[6]. These clinical trials have shown that HRD is a promising
biomarker for the response to treatment of breast cancer.

A few studies have shown that 5%–9% of patients with
pancreatic cancer are HRD-positive [26–28]. However, most

HRD-related drugs are not yet used as routine therapies
against pancreatic cancer. Several studies have investigated

http://BioRender.com
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the effect of HRD status on prognosis and the efficacy of plat-
inum therapies in pancreatic cancer. For example, a study
showed that patients with pancreatic cancer with HRD were

more sensitive to platinum-based chemotherapies and have
better prognoses than patients without HRD [9]. O’Reilly
et al. showed that therapies based on cisplatin and veliparib

could dramatically improve the median overall survival (OS)
and the overall response rate (ORR) of HRD-positive patients
with advanced pancreatic ductal adenocarcinoma [10]. The

POLO trial showed that the median PFS was significantly
longer in the olaparib group than in the placebo group of
patients with metastatic pancreatic cancer and germline
BRCA1/2 mutations [11]. Finally, a meta-analysis and system-

atic review showed that HRD might improve the effect of
platinum-based chemotherapies and prolong the median OS
in patients with resected and metastatic pancreatic cancer trea-

ted with platinum-based chemotherapies. However, more clin-
ical trials are needed to verify these conclusions [18].

HRD is a promising biomarker for guiding PARPI treat-

ment in patients with metastatic castration-resistant prostate
cancer (mCRPC). In the clinical trial NCT01972217, the med-
ian radiographic PFS in the olaparib group (17.8 months) was

much longer than that in the placebo group (6.5 months) in
patients with HR mutations [55]. The GALAHAD trial
demonstrated that niraparib treatment in patients with
mCRPC resulted in significantly better ORR and complete

response rate (CRR) in HRD-positive patients [61]. In the
PROfound trial, the median OS and imaging-based median
PFS were significantly longer in the olaparib group than that

in the control group (treated with enzalutamide or abiraterone)
of patients with mCRPC with at least one mutation in BRCA1,
BRCA2, or ATM [8,62]. The key HRD-associated clinical tri-

als are summarized in Table 3.
HRD is still in its early stages of development as a pan-

cancer biomarker in clinical applications. In particular, the

correlation between HRD and immune checkpoint inhibitors
in pan-cancer warrants further investigation. HRD tumors
have been considered more immunogenic owing to their
increased tumor mutation burden (TMB) and type I Interferon

(IFN) genes. Therefore, HRD tumors may be more susceptible
to checkpoint inhibitor therapies [63]. In breast cancer, low-
level expression of BRCA1, ATM, and XRCC1 mutations sig-

nificantly correlated with higher CD8+ T-cell infiltration
[64,65]. Moreover, BRCA deficiency was related to elevated
PD-L1 expression [66,67] and T-cell infiltration in ovarian can-

cers [66]. In the MEDIOLA trial, the combination of olaparib
and durvalumab (a PD-L1 inhibitor) showed a good ORR
(68%) in patients with ovarian cancer and germline BRCA
mutations [68]. Therefore, the use of immune checkpoint inhi-

bitors may increase the benefit of HRD-positive patients with
cancer from platinum- and PARPI-based treatments. Multiple
clinical trials based on combination therapies of platinum,

PARPIs, and immune checkpoint inhibitors are ongoing [69].

Challenges of HRD testing

Currently, there is no unified gold standard for assessing
HRD. HRD is commonly assessed by evaluating the genomic
features of tumors harboring deleterious HR-related muta-

tions, such as BRCA1/2 or genomic scars, which can indicate
genomic instability. However, clinical trials have identified



Table 3 Key clinical trialsinvolvingHRD

Study Cancer type Treatment strategy Biomarker Subgroup Main result Refs.

SOLO2
(NCT01874353)

EOC Olaparib vs. placebo BRACAnalysis test
(Myriad Genetics):
gBRCAmut

HRD+ (gBRCAmut) HR: 0.30
Median PFS: 19.1 vs. 5.5 (P < 0.0001)

[1]

Study19
(NCT00753545)

EOC Olaparib vs. placebo Foundation Medicine:
tBRCAmut

HRD+ (BRCAmut) HR: 0.18
Median PFS: 11.2 vs. 4.3 (P < 0.0001)

[56]

HRD� (BRCAwt) HR: 0.54
Median PFS: 7.4 vs. 5.5 (P = 0.0075)

ARIEL3
(NCT01968213)

EOC Rucaparib vs. placebo Foundation Medicine T5 NGS assay and
BRACAnalysis CDx test
(Myriad Genetics):
(1) g/sBRCAmut
(2) LOH-high (LOH score � 16%)
LOH-low (LOH score < 16%)

HRD+ (g/sBRCAmut) HR: 0.23
Median PFS: 16.6 vs. 5.4 (P < 0.0001)

[45]

HRD+ (g/sBRCAmut or LOH-high) HR: 0.32
Median PFS: 13.6 vs. 5.4 (P < 0.0001)

HRD� (LOH-low and BRCAwt) HR: 0.58
Median PFS: 6.7 vs. 5.4 (P = 0.0049)

NOVA
(NCT01847274)

EOC Niraparib vs. placebo BRACAnalysis test
(Myriad Genetics):
gBRCAmut
myChoice HRD
(Myriad Genetics):
GIS-high (GIS � 42)
GIS-low (GIS < 42)

HRD+ (gBRCAmut) HR: 0.27
Median PFS: 21 vs. 5.5 (P < 0.001)

[3]

HRD+ (GIS-high and gBRCAwt) HR: 0.38
Median PFS: 12.9 vs. 3.8 (P < 0.001)

HRD� (gBRCAwt) HR: 0.45
Median PFS: 9.3 vs. 3.9 (P < 0.001)

HRD� (GIS-low and gBRCAwt) HR: 0.58
Median PFS: 6.9 vs. 3.8 (P = 0.02)

PRIMA
(NCT02655016)

EOC Niraparib vs. placebo myChoice test
(Myriad Genetics):
(1) GIS-high (GIS � 42)
GIS-low (GIS < 42)
(2) tBRCAmut

HRD+ (tBRCAmut) HR: 0.4
Median PFS: 22.1 vs. 10.9 (P < 0.001)

[57]

HRD+ (GIS-high or tBRCAmut) HR: 0.43
Median PFS: 21.9 vs. 10.4 (P < 0.001)

HRD+ (GIS-high and tBRCAwt) HR: 0.5
Median PFS: 19.6 vs. 8.2 (P = 0.006)

HRD� (GIS-low and tBRCAwt) HR: 0.68
Median PFS: 8.1 vs. 5.4 (P = 0.02)

PAOLA-1
(NCT02477644)

EOC Olaparib + bevacizumab vs. placebo + bevacizumab myChoice HRD Plus assay
(Myriad Genetics):
(1) GIS-high (GIS � 42)
GIS-low (GIS < 42)
(2) tBRCAmut

HRD+ (tBRCAmut) HR: 0.31
Median PFS: 37.2 vs. 21.7

[2]

HRD+ (GIS-high or tBRCAmut) HR: 0.33
Median PFS: 37.2 vs. 17.7

HRD+ (GIS-high and tBRCAwt) HR: 0.43
Median PFS: 28.1 vs. 16.6

HRD� (tBRCAwt) HR: 0.71
Median PFS: 18.9 vs. 16

HRD� (GIS-low) or unknown HR: 0.92
Median PFS: 16.9 vs. 16

VELIA
(NCT0247058)

EOC Carboplatin/taxane + maintenance placebo
vs.
carboplatin/taxane + veliparib + maintenance veliparib

BRACAnalysis CDx or
myChoice HRD CDx assay
(Myriad Genetics):
(1) GIS-high (GIS � 33)
GIS-low (GIS < 33)
(2) tBRCAmut

HRD+ (tBRCAmut) HR: 0.44
Median PFS: 37.4 vs. 22 (P < 0.001)

[4]

HRD+ (GIS-high or tBRCAmut) HR: 0.57
Median PFS: 31.9 vs. 20.5 (P < 0.001)

HRD� (tBRCAwt) HR: 0.8
Median PFS: 18.2 vs. 15.1

HRD� (tBRCAwt and GIS-low) HR: 0.81
Median PFS: 15.0 vs. 11.5

SCOTROC4
(NCT00098878)

EOC Carboplatin Genome-wide SNP data;
sum of LOH, TAI, and LTS score:
(1) HRD score � 42 or HRD score � 33
(2) tBRCAmut

HRD+ (tBRCAmut or HRD score � 42/
HRD score � 33) vs. HRD� (tBRCAwt and
HRD score < 42/HRD score < 33)

HR: 0.50
Median PFS: 16.5 vs. 9.5 (P < 0.001) (HRD � 42)
HR: 0.51 (HRD � 33)

[58]

HRD+ (tBRCAmut) vs. HRD� (tBRCAwt) HR: 0.48
Median PFS: 18.9 vs. 11.6 (P = 0.0017)

OlympiAD
(NCT02000622)

HER2� metastatic BC Olaparib vs. chemotherapy
(capecitabine, vinorelbine, eribulin)

BRACAnalysis (Myriad Genetics):
gBRCAmut

HRD (gBRCAmut) Median PFS: 7.0 vs. 4.2
Response rate: 59.9% vs. 28.8%

[5]

Cisplatin-1 (NCT00148694),
Cisplatin-2 (NCT00580333),
PrECOG 0105 (NCT00813956)

TNBC Carboplatin + gemcitabine + iniparib Genome-wide SNP data;
sum of LOH, TAI, and LTS score:
(1) HRD-high � 42
HRD-low < 42
(2) tBRCAmut

HRD+ (HRD-high and/or tBRCAmut)
vs. HRD� (HRD-low and tBRCAwt)

RCB0/1: 68% vs. 30%
OR: 4.96 (P < 0.01)
pCR: 42% vs. 10%
OR: 6.52 (P < 0.01)

[41]

Cisplatin + bevacizumab RCB0/1: 51.7% vs. 9.5%
OR: 10.18 (P < 0.01)
pCR: 27.5% vs. 0%
OR: 17 (P < 0.01)

GeparSixto
(NCT01426880)

TNBC Paclitaxel + doxorubicin + bevacicumab
vs.
Paclitaxel + doxorubicin + bevacicumab + carboplatin

Myriad Genetics:
(1) HRD-high � 42
HRD-low < 42
(2) tBRCAmut

HRD+ (HRD-high or tBRCAmut) pCR: 33.9% vs. 63.5%
OR: 3.4 (P < 0.01)

[59]

HRD+ (HRD-high) pCR: 31.7% vs. 63.2%
OR: 3.69 (P < 0.01)

HRD+ (HRD-low and tBRCAwt/uncertain) pCR: 20.0% vs. 29.6%
OR: 1.7

(continued on next page)
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patients with HRD-negative or no deleterious HR mutations
that respond well to PARPI treatment [45,70,71], suggesting
that more accurate assessments methods of HRD are required.

Currently, the challenges in the clinical application of HRD
are mainly in the following four areas.

First, there is a need to verify whether non-BRCA muta-

tions or promoter methylation of the HR pathway can be used
as biomarkers for guiding tumor treatment. Only germline or
somatic BRCAmutations have been shown to successfully pre-

dict the efficacy of PARPIs treatment in clinical practice. In
contrast, there are insufficient clinical trial results to prove that
non-BRCA HR-associated mutations and BRCA1/RAD51C
promoter methylation can predict PARPI treatment efficacy

[72]. Importantly, non-BRCA HR-associated mutations are
not consistently found in HRD-positive cases. A recent study
has shown that mutations in FANCD2, FANCM, ATM,

PALB2, ATR, or FANCA, which are HR-associated genes,
did not strongly correlate with high scores of LOH or HRD,
or platinum sensitivity. However, homozygous deletions in

CHK1 and PTEN were associated with high LOH scores
related to HRD [73]. Another study reported that patients with
mutations in HR pathway genes, such as BRIP1, RAD51B,

and CDK12, but not BRCA1/2, showed similar responses to
PARPIs as those harboring mutations in BRCA1/2 [74]. It
seems that different HR-associated mutations respond differ-
ently to platinum and PARPIs. Additionally, the FDA

approved FoundationOne CDx for the clinical assessment of
patients with mCRPC, and this test includes HR gene muta-
tions. In the PROfound trial, PARPIs significantly improved

the median OS and imaging-based median PFS of patients
with mCRPC with at least one mutation in BRCA1, BRCA2,
or ATM (detected by FoundationOne CDx) [8,62]. Detection

of HR gene mutations is technically possible, but interpreting
these mutations in clinical trials remains challenging [75]. Fur-
thermore, studies focusing on the epigenetic modifications of

HR-associated genes have reported contradictory results.
Some studies have reported that methylation of BRCA1 and
RAD51C in high-grade serous carcinoma (HGSOC) led to
high HRD scores [56,76] and correlated with good prognosis

[77–79]. Epigenetic modifications of BRCA1 were shown to
display effects similar to BRCA1/2 mutations and were
involved in the genomic signatures of BRCA deficiency [44].

However, other studies demonstrated that BRCA1/RAD51C
methylation was not an adequate biomarker for response to
PARPIs [77,80,81], especially given that BRCA1 or RAD51C

hypermethylation could induce the re-expression of other pro-
teins and partially restore HR function by demethylation [82].

Second, genomic scars reflect the state of genomic instabil-
ity only at a given time and do not accurately assess the func-

tional reconstitution of homologous recombination owing to
reversion mutations and epigenetic modifications. Somatic
reversion mutations of BRCA1/2, RAD51C, RAD51D, or

PALB2 and epigenetic modifications such as reverse promoter
hypermethylation of BRCA or RAD51C result in the func-
tional recovery of homologous recombination defects in

tumors with HR-correlated mutations or HRD [83–86]. In
addition, these mutations lead to a weak correlation between
HRD and prognosis and prediction of drug therapy efficacies.

In the Triple Negative breast cancer Trial (TNT) study, the
myChoice assay failed to predict platinum sensitivity in meta-
static TNBC patients treated with docetaxel or carboplatin
[87]. In addition, BRCA function restoration led to platinum



Figure 3 The flow chart of the Chinese HRD Harmonization Project

The Chinese HRD Harmonization Project, which will be jointly implemented by the National Cancer Center / Cancer Hospital, Chinese

Academy of Medical Sciences, the Pathology Committee of the Chinese Anti-Cancer Association, and the China National Institutes for

Food and Drug Control, aims to standardize the definition, testing methods, and reports of HRD and promote the development and

application of HRD as a biomarker in cancer clinical trials. The project was divided into three phases, as shown in the figure. PARPI,

poly(ADP-ribose) polymerase inhibitor.
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resistance in BRCA-mutated tumors [84,85]. Furthermore,
HRD-negative patients do not necessarily have worse response

to platinum/PARPI therapies. For example, in phase III of the
NOVA clinical trial, niraparib improved PFS in HRD-
negative patients with ovarian cancer [3]. Finally, HRD cannot

detect PARPI resistance when triggered by the dysregulation
of genes involved in DNA replication fork protection or other
non-HR signaling pathways [86].

Third, the HRD score thresholds for different tumor types
may differ. For example, the HRD scores of patients with
prostate cancer were significantly lower than those of patients
with ovarian cancer, and the HRD scores of patients with

prostate cancer and BRCA2 mutations were significantly
higher than those of patients with ATM and CHEK2 muta-
tions. Even in the same patient, the HRD scores differed

between tissues from different sites [54]. For example, a study
on patients with breast cancer and brain metastases showed an
evident HRD score increase in brain metastases tissues com-

pared to their corresponding primary tumors tissues [32].
Notably, the purity of the tumor cells in the specimens can
influence HRD assessment. Specifically, it was shown that a
lower tumor purity made the correct assessment of HRD

harder; and samples with a tumor purity > 20% could lead
to a stable HRD score using the Genomic Scar Analysis
(GSA) algorithm [88].

Finally, different methods of HRD assessment are non-
equivalent, and there is a lack of standardized methods for
the validation of the predictive efficacy and consistency of

the various HRD assessment methods. An abstract from the
2020 American Society of Clinical Oncology meeting has com-
pared several existing HRD prediction methods. Briefly, sam-

ples were defined as positive when the myChoice HRD scores
exceeded the threshold (42 or 33), the percentage of LOH
(%LOH) was > 16%, or mutations in HR-associated genes
existed (ATM, BARD1, BRCA1, BRCA2, BRIP1, CHEK2,

MRE11A, NBN, PALB2, RAD51C, and RAD51D). The
HRD-positive results of %LOH and the 11-gene panel were
compared using the myChoice HRD scores. Results showed

that 19%–61% of HRD-positive patients detected by
myChoice HRD were missed in the %LOH or 11-gene panel
tests [89]. This proved that the positive results of samples

obtained using different HRD detection methods are inconsis-
tent, and even the results obtained using the same HRD detec-
tion method but different thresholds are controversial. For
example, the general threshold of myChoice HRD score is

42, but some studies have demonstrated that a score of 33
was better than 42 in predicting the efficacy of PARPI thera-
pies in EOC. Specifically, they showed that the threshold of

33 significantly correlated with improved OS after treatment
compared with the threshold of 42 [90]. Also, in TNBC, the
threshold score of 33 was shown to increase the sensitivity of

patients to veliparib [4,91]. However, the TBCRC 030 trial
found no significant correlation between the HRD score (set
at 33) and RCB/pCR after cisplatin treatment [92]. Therefore,
there is an urgent need to optimize and standardize HRD

assessment methods and score thresholds.
Whether the previously discussed four influences can be

incorporated into assessment methods or excluded from clini-

cal trials should be further evaluated.

Optimization and standardization of HRD

assessment

Recently, several studies have investigated the optimal defini-

tion and evaluation of HRD using phenotypes and genotypes.
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They discovered that the HRD status of tumors changed with
time and treatment. Clinical trials results showed that the cur-
rent methods for HRD detection were not consistently associ-

ated with treatment response [93]. For example, the dynamic
HRD status leads to discordant responses of patients to
platinum-based chemotherapies and PARPIs; consequently,

HRD assessment remains an inadequate guide for planning
patient therapies. Therefore, there is an urgent need to opti-
mize existing HRD test methodologies, harmonize HRD

assessment protocols, and develop optimal thresholds and time
points for detecting and identifying HRD to maximize thera-
peutic effectiveness and minimize side effects in patients.

Currently, the status of HRD is being assessed indirectly

through the detection of genomic scars, HR-associated muta-
tions, or mutational signatures. However, there is still no
unique method for identifying biomarkers that should be fur-

ther included in HRD assessment. Moreover, several addi-
tional issues related to the optimization and harmonization
of HRD assessment need to be addressed. First, we needed

to identify the optimal sequencing methods for HRD assess-
ment. High-density SNP arrays of the whole genome and
genomic SNP backbone probes using NGS, genome-wide

WGS, and whole-exome sequencing (WES) can be used to
detect and calculate genomic scars and compute genomic insta-
bility scores. In addition, WGS data can be used to analyze
genomic features such as microhomologous deletions, Cata-

logue of Somatic Mutations in Cancer (COSMIC) signatures,
and structural variants [29].

WGS data can more accurately determine mutational sig-

natures such as large-scale and structural rearrangements
[94]. However, the clinical application of WGS assays is lim-
ited by their high upload DNA volume, high sequencing data

volume, and high costs. Hence, the software tool ShallowHRD
was developed to partially address these shortcomings. Shal-
lowHRD is based on large-scale genomic alterations detected

using low-coverage WGS with 1� reading depth, providing
HRD detection with 90.5% specificity and 87.5% sensitivity.
In addition, the HRD scores of shallowHRD showed good
correlations with those obtained using WGS [95,96]. Further-

more, low-coverage WGS can detect copy number alterations
in cell-free DNA (blood), which correlates well with copy num-
ber alterations in tumor samples [97]. Therefore, shallowHRD

is a cost-effective and promising method for predicting the effi-
cacy of platinum-based drugs and PARPI treatments.

The WES data can also be used to detect HRD-induced

mutational signatures. However, the HRD-induced mutations
per sample detected by WES are 100 times less than those
detected by WGS. In addition, the number of detected dele-
tions by WES are near or below the threshold for HRD detec-

tion. In particular, microhomology-mediated deletions, which
are strongly associated with HRD-induced mutational signa-
tures, cannot be accurately assessed using WES data [29].

WES cannot detect non-coding regions and structural vari-
ants; hence, many driver events of cancer occurring in non-
coding regions may not be detected [86]. However, the HRDe-

tect values between WES and WGS display an overall good
correlation (r = 0.71) [98]. Therefore, given the sample vol-
ume, data volume, and somatic mutations that need to be

detected, a high-depth WES plus high-density SNPs method
can be used to comprehensively detect germline/somatic HR
mutations and assess the genomic instability status of tumors.
As the cost of WES testing decreases and the testing technol-
ogy continues to mature, WES testing has the potential to
become an accurate assessment method for HRD. This may
also guide the planning of platinum-based chemotherapies

and PARPI therapies.
In addition to the detection methods mentioned above, Sig-

nature Multivariate Analysis (SigMA) used a likelihood-based

measure and machine learning techniques to assess the muta-
tional signature Sig3 induced by defects in HR based on tar-
geted gene panels. Patients with ovarian cancer and HRD

defined by SigMA showed a significantly longer OS after plat-
inum therapy. Sig3-positive patients without BRCA1/2 muta-
tions had a similar OS to patients with BRCA mutations;
moreover, the hazard ratio of Sig3-positive versus Sig3-

negative patients was found to be 0.53 [95% confidence inter-
val (CI) = 0.37–0.74; P < 0.001]. SigMA applications are
promising and may enhance the benefit of patients from

platinum-based and PARPI treatments, because targeted gene
panels are the most prevalent genetic testing platforms used in
clinical practice [99].

The second matter requiring further optimization is the
samples that are most suitable for detecting HRD. Blood is
generally used to detect germline mutations, whereas other tis-

sues are used to detect somatic mutations [100]. FFPE sec-
tions, which are easy to store and transport, have been
generally used to detect SNP–HRD, WES–HRD, and WGS–
HRD. Tumor tissues are difficult to sample at multiple time

points to continuously monitor HRD changes, whereas blood
easily allows this practice. However, there are currently rela-
tively few clinical trials using blood samples for HRD detec-

tion, except those focused on germline mutations.
Finally, we need special validation systems for HRD assess-

ment in Chinese patients. The HRD threshold should be veri-

fied based on the efficacy of platinum-based and PARPI-added
therapies in patients. Two HRD assays, myChoice CDx and
FoundationFocus CDxBRCA LOH, are primarily based on

genetic data obtained from Caucasian populations. An obser-
vational study based on real-world evidence showed that PAR-
PIs could significantly improve PFS among HRD-positive
Chinese patients with ovarian cancer, and it proved that

HRD can independently predict the efficacy of PARPI treat-
ments in Chinese patients with ovarian cancer [101]. However,
additional evidence from clinical trials is required to determine

whether assessment of HRD is suitable in Chinese patients.
Currently, China has not yet approved clinical HRD tests
based on genomic scars or HR-associated mutational signa-

tures. Therefore, there is a need to develop HRD tests that
can be used in the Chinese clinical practice. Hence, HRD tests
should be designed in accordance with the genetic profiles of
the Chinese population. Furthermore, the HRD score thresh-

olds of the Chinese population should be optimized based on
the association between the genomic damage status of the Chi-
nese population and mutations in HR-associated genes such as

BRCA. In addition, thresholds should also be determined
based on efficacy of response to treatment.

Based on the above principles, the Chinese HRD Harmo-

nization Project, which will be jointly implemented by the
National Cancer Center / Cancer Hospital, Chinese Academy
of Medical Sciences, the Pathology Committee of the Chinese

Anti-Cancer Association, and the China National Institutes
for Food and Drug Control, aims to standardize the definition,
testing methods, and reports of HRD and promote the devel-
opment and application of HRD as a biomarker in clinical tri-
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als. This project is divided into three phases (Figure 3).
Phase 1: HRD definition and consensus. This phase aims to
define HRD and the methods and influencing factors of

HRD detection and to propose a consensus on HRD applica-
tions. The plan is to develop a comprehensive analytical
approach that aims to define the use of HRD and HR calls;

propose a common language around the use of HRD; and con-
vene clinical, biomedical, and corporate experts to debate the
HRD consensus. Phase 2: HRD analysis and calibration. This

phase aims to understand the variables in the HRD detection
analysis, confirm the feasibility of HRD standardization, and
make recommendations for HRD analysis and calibration.
Specifically, standards are used to evaluate the accuracy and

influencing factors of HRD detection candidates. Additionally,
standard datasets will be used to evaluate the performance of
these candidates and understand the influence of certain vari-

ables, such as the number of SNPs and genomic distribution
in the results. HRD detection methods with relatively reliable
performance among all candidates (e.g., SNP panel, WES, and

WGS) will then be evaluated using clinical samples. Phase 3:
Clinical evaluation of the HRD tests. This last phase aims to
identify methods for evaluating HRD based on clinical trials.

In this phase, we will assess the predictive value of HRD status
using different weights and correction methods based on plat-
inum and PARPI treatment efficacy. Our final aim is to iden-
tify the best method for assessing HRD.

Conclusion

The standardization of HRD detection and its clinical applica-
tions still have a long way to go. However, the relevance and
wide range of HRD applications, as well as the availability

of new technologies and methods to improve HRD standard-
ization and optimization, make this an exciting journey. For
example, single-cell genomics can resolve intratumoral hetero-
geneity to further optimize the factors included in HRD detec-

tion [102]. The future of this field will be defined by the rapid
development of genetic testing technologies, continuous
improvement of HRD assessment methods, and multidisci-

plinary involvement of clinicians, pathologists, molecular tes-
ters, clinical pharmacists, and tumor biology experts in
tumor precision medicine. Additionally, comprehensive HRD

detection methods that take into consideration HR gene muta-
tions, mutational signatures, and reversion mutations will fur-
ther be developed to monitor changes during cancer

development and accurately predict the efficacy of treatments.
We envision that precise assessment of HRD will further
improve tumor diagnosis and treatment to benefit an increas-
ing number of tumor patients.
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