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Abstract: The oral administration of the anti-inflammatory indomethacin (INDO) causes severe
gastrointestinal side effects, which are intensified in chronic inflammatory conditions when a contin-
uous treatment is mandatory. The development of hybrid delivery systems associates the benefits
of different (nano) carriers in a single system, designed to improve the efficacy and/or minimize
the toxicity of drugs. This work describes the preparation of hybrid nanobeads composed of nanos-
tructured lipid carriers (NLC) loading INDO (2%; w/v) and chitosan, coated by xanthan. NLC
formulations were monitored in a long-term stability study (25 ◦C). After one year, they showed
suitable physicochemical properties (size < 250 nm, polydispersity < 0.2, zeta potential of −30 mV and
spherical morphology) and an INDO encapsulation efficiency of 99%. The hybrid (lipid-biopolymers)
nanobeads exhibited excellent compatibility between the biomaterials, as revealed by structural
and thermodynamic properties, monodisperse size distribution, desirable in vitro water uptake and
prolonged in vitro INDO release (26 h). The in vivo safety of hybrid nanobeads was confirmed by
the chicken embryo (CE) toxicity test, considering the embryos viability, weights of CE and annexes
and changes in the biochemical markers. The results point out a safe gastro-resistant pharmaceutical
form for further efficacy assays.

Keywords: NLC; hybrid nanobead; biopolymers; anti-inflammatory; chicken embryo model

1. Introduction

Indomethacin (INDO) is a non-steroidal anti-inflammatory (NSAID) agent widely
used for pain, fever and inflammation control through oral administration [1]. However,
severe side effects in the gastrointestinal system (e.g., nausea, indigestion, vomit, diar-
rhea and abdominal ache) are associated to the oral administration, due to the first-pass
metabolism. These effects are exacerbated in chronic diseases, in which an extended treat-
ment is required [2]. Considering the huge number of INDO prescriptions (>1 million/per
year, only in the USA), new approaches to minimize INDO systemic toxicity and improve
its efficacy are required [3].

Colloidal drug delivery systems (DDS) with optimized therapeutic actions should
decrease side effects by the sustained release of the loaded drugs [4]. Nanostructured
lipid carriers (NLC), the second generation of lipid nanoparticles, are formed by a mixture
of two or more lipids (solid and liquid at room temperature) and a surfactant [5]. NLC
formulations loading different anti-inflammatory compounds for multi-application and
administration routes have been successfully reported [6–8]. However, as a colloid, NLC
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cannot provide suitable gastro-resistance and mucoadhesion [9], as required by the oral
route.

Lipid–polymer nanohybrid formulations combine the benefits of each carrier/excipient
in a single DDS. Nanohybrid pharmaceuticals should have at least one nanostructured
material in the composition [10]. Such systems are molecularly planned to achieve spe-
cialized interactions with the target, that are specific for each purpose [11]. Biopolymers
are natural, versatile, biocompatible, cheap and biodegradable matrices widely used as
DDS [12]. Chitosan (CHT) is a cationic polysaccharide with remarkable mucoadhesive
properties, obtained from the chitin deacetylation of crustacea shells. The available amine
groups of CHT can electrostatically interact with the anionic mucin from mucous tissues,
increasing the CHT residence time [13]. However, CHT is sensitive to acid media, such as
the gastric microenvironment [14]. On the other hand, xanthan gum (XAN) is an anionic
exopolysaccharide secreted by Xanthomonas campestris [15]. Currently, XAN is processed
by different forms, acting as rheological improver, thickener and coating agent in the food,
cosmetic and pharmaceutical industries [16].

In this work, two different strategies (hybridization and coating) were combined
in order to decrease the toxicity and prolong the INDO release profile, simulating oral
administration. A novel lipid–biopolymer nanobead was developed with NLC (composed
of myristyl myristate, coconut oil and poloxamer) encapsulating INDO as the lipid excipient
blended with CHT solution, and coated by XAN. The structural compatibility between
NLC/INDO and the biopolymers provided well-designed coated-based nanobeads. The
resultant nanobeads slowed suitable in vitro INDO release in the first 2 h of the experiment
(mimicking the gastric medium at pH 1.2) and prolonged the subsequent release for 26 h in
a medium (pH 6.8) simulating the intestinal site. XAN-coated nanobeads provided gastro-
resistance to the system, preventing CHT and NLC/INDO solubilization in a simulated
gastric medium, allowing for CHT mucoadhesive activity at the intestinal mucosa. The
safety of NLC and nanobeads was confirmed by in vitro (in HaCat cells in culture) and
in vivo (chicken embryo model). The resultant hybrid nanobead is as an excellent candidate
for the oral delivery of INDO, as well as other anti-inflammatories.

2. Materials and Methods
2.1. Materials

Pluronic® 68 (P68), indomethacin (INDO), xanthan gum (XAN), chitosan (CHT) and
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) were supplied by
Sigma (St. Louis, MI, USA). Myristyl myristate (MM) was provided by Dhaymers Química
Fina (Taboão da Serra, SP, Brazil) and coconut oil (CO) was purchased from Engenharia
das Essências, LTDA (São Paulo, SP, Brazil). Deionized water (18 MΩ) was obtained from
an Elga USF Maxima Ultra-Pure water purifier (Elga, Lane End, UK).

2.2. Preparation of NLC Formulations Loading Indomethacin

NLC (as control formulation) and NLC-INDO (2%, w/v) were prepared by the ultra-
sonication emulsification method [17]. The composition and concentration of the excipients
used in NLC are displayed in Table 1: myristyl myristate (MM) as the solid lipid, coconut oil
(CO) as the liquid lipid and poloxamer as the surfactant. The total lipid (TL) concentration—
the sum of solid and liquid lipid concentrations—was kept in 10% (w/v). Briefly, the lipid
phase (containing MM and CO), with or without INDO (2%), was heated 10 ◦C above
the solid lipid melting point (~48 ◦C) under magnetic stirring [18]. The aqueous phase
composed of P68 (2–5%) was heated at the same temperature and dropped into the lipid
phase under high-speed homogenization (10,000 rpm) for 3 min in an Ultra-Turrax blender
(IKA Werke, Staufen, Germany). The resultant microemulsion was tip sonicated (Vibra-Cell,
Sonics & Materials Inc., Newtown, CT, USA) at 500 W and 20 kHz, in 30 s (on/off) cycles
for 20 min and further cooled to 25 ◦C in an ice bath.
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Table 1. Composition of NLC formulations.

Formulation INDO (%) MM:CO (%) P68 (%)

F1 0 80:20 2
F1/INDO 2 80:20 2

F2 0 70:30 5
F2/INDO 2 70:30 5

F3 0 60:40 5
F3/INDO 2 60:40 5

F4 0 70:30 2
F4/INDO 2 70:30 2

F5 0 80:20 5
F5/INDO 2 80:20 5

NOTE: MM = myristyl myristate (solid lipid), CO = coconut oil (liquid lipid), MM:CO = ratio of solid and
liquid lipids, P68 = poloxamer F68 (surfactant). NLC were prepared with 10% total lipid (MM + CO; w/w), the
percentages are related to the weight/volume.

2.3. Structural Characterization

The structural characterization of NLC and NLC/INDO (2%) was performed by
dynamic light scattering (DLS), in terms of particles size (nm) and polydispersity index
(PDI). Zeta potential (mV) values were obtained by electrophoretic light scattering in the
same Zetasizer Nano ZS90 (Malvern Instruments, Worcestershire, UK) equipment. The pH
values of NLC were determined with a (Tecnal, Uberlândia, Brazil) pH meter. The results
were expressed as means ± standard deviations (n = 3).

2.4. Long-Term Physicochemical Stability

A long-term stability study of NLC and NLC/INDO (2%), stored in Falcon tubes and
maintained at room temperature for one year (25 ◦C), monitored the particle size (nm), PDI,
Zeta potential (mV) and pH values, in triplicates. ANOVA/ Tukey tests were employed to
elucidate intragroup statistically differences over time (α = 0.05).

2.5. Transmission Electron Microscopy

The morphological analyses of NLC and NLC/INDO (2%) samples were performed
by transmission electron microscopy (TEM). The samples were diluted 50×, dispersed onto
copper grids coated with a carbon film and dried at 25 ◦C. Uranyl acetate (2%) was added
to provide contrast. After 24 h, micrographs of the samples were obtained using a JEOL
1200 EXII (Jeol, Peabody, MA, USA) microscope, at 60 kV.

2.6. Determination of Indomethacin Encapsulation Efficiency

INDO calibration curve by UV-vis at 210 nm was performed on five different con-
centrations in the range of 3.25–20 µg/mL (r2 > 0.99). Each point represents the average
of 9 measurements performed on 3 different days (Figure S1 (Supplementary Materials)).
INDO encapsulation efficiency (%EE) was quantified by the ultrafiltration–centrifugation
method [9], using regenerated cellulose filters with a molecular exclusion pore size of
10 kDa (Millipore, Burlington/MA, EUA). The samples (triplicates) were diluted and cen-
trifuged at 4000× g for 20 min. The total amount (INDOtotal) and the non-encapsulated
indomethacin (INDOfree) present in the filtered fraction were quantified by UV-vis (Waters,
Agilent Technologies, Milford, MA, USA) at 210 nm [19] for the determination of the %EE
value, according to Equation (1):

%EE =
INDOtotal − INDO f ree

INDOtotal
× 100 (1)

2.7. In Vitro Cell Viability Test

The in vitro cytotoxicity of INDO in solution (control) and NLC/INDO were deter-
mined by the MTT assay in HaCat keratinocytes purchased from Federal University of Rio
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de Janeiro cells bank, Federal University of Rio de Janeiro, Brazil. Briefly, the cells were
seeded in 96-well culture plates at a density 104 cells/mL and incubated for 24 h at 37 ◦C
under 5% CO2. The RPMI culture medium was then discarded and replaced with 100 µL of
fresh medium containing increasing concentrations of INDO or NLC/INDO. After 24 h,
the medium was removed, and the plate was washed with phosphate-buffered saline, at
pH 7.4. After that, 100 µL of medium (without serum) containing 0.5 mg/mL of MTT
supplemented each well, which was then incubated for 3 h at 37 ◦C. The MTT solution
was then removed, and 100 µL of ethanol was added to solubilize the formed formazan
crystals. The formazan absorbance was measured in a microplate reader, at 570 nm [20].
The obtained absorbance was normalized to % of control. The results were provided as
means ± standard deviation (SD), n = 9. The statistical analyses were performed by a t test
(α = 0.05).

2.8. Preparation of Biopolymers and Nanobeads Loading Indomethacin

Chitosan (CHT) was dispersed in 50 mL of 0.1% acetic acid, and xanthan (XAN) was
dissolved in 50 mL of deionized water under magnetic stirring until complete homogeniza-
tion, with a final concentration of 2% and 0.5% (w/v), respectively. Then, 2% hydroalcoholic
INDO solution was added to the CHT solution and stirred for 2 h at room temperature
(CHT/INDO). For the preparation of hybrid nanobeads, NLC loading 2% INDO was used
to replace half of the acid solution for CHT solubilization, and the samples were stirred for
2 h at room temperature (CHT/NLC-INDO). The total proportion of NLC/INDO:CHT in
the formulations was 1:1 (v/v).

The resultant dispersions of CHT/INDO and CHT/NLC-INDO were then placed in
a burette and dropped into a solution of 5% sodium tripolyphosphate and gently stirred
for 15 min. The resulting CHT/INDO bead and CHT/NLC-INDO nanobead (given the
nanostructured lipid excipient) were filtered, washed 3 times with abundant deionized
water, frozen in liquid nitrogen and lyophilized in a (Cryodos, Telstar, Spain) freeze-dryer
for subsequent analyses.

For the preparation of the final (XAN-coated) forms, aliquots of prepared CHT/INDO
(bead) and CHT/NLC-INDO (nanobead) were immersed in 0.5% (w/v) XAN aqueous
solution, filtered, frozen at −20 ◦C and lyophilized in a freeze-drier as mentioned above,
resulting in the coated-based beads (XAN@CHT/INDO) and nanobeads (XAN@CHT/NLC-
INDO). The INDO solution was incorporated directly in CHT solution to reach a final
INDO concentration of 2% (w/v) in both hybrid nanobeads. Digital photos of the resul-
tant beads (CHT/INDO and XAN@CHT/INDO) and nanobeads (CHT/NLC-INDO and
XAN@CHT/NLC-INDO) were obtained and analyzed with the ImageJ software for the
particle size distribution estimation. Table 2 displays the composition of the resultant beads
and nanobeads loading INDO (2%).

Table 2. Composition of the prepared beads and nanobeads encapsulating 2% indomethacin.

Sample Composition Form

CHT/INDO Chitosan, indomethacin Bead
XAN@CHT/INDO Xanthan, chitosan and indomethacin Coated Bead
CHT/NLC-INDO Chitosan, nanostructured lipid carrier loading indomethacin Nanobead

XAN@CHT/NLC-INDO Xanthan and chitosan, nanostructured lipid carrier loading
indomethacin Coated Nanobead

2.9. FE-SEM Analyses of Beads and Nanobeads

The surface analysis of beads and nanobeads was carried out in a field emission scanning
electron microscopy (FE-SEM) (FEI-NOVA NanoSEM 230, Sydney, Australia). XAN@CHT/NLC-
INDO nanobeads were firstly frozen in liquid nitrogen and cross-sectioned with a scalpel. The
samples were fixed on a carbon tape and subjected to a gold conducive coating on the
surface.
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2.10. Differential Scanning Calorimetry

Differential scanning calorimetry (DSC) analyses were carried out in a TA Q20 calorime-
ter (TA Instruments, New Castle, DE, USA) equipped with a cooling system of INDO, NLC
excipients and nanobeads (XAN@CHT/NLC-INDO). The samples (5 mg) were introduced
in aluminum pans and the thermograms registered from 25 to 180 ◦C, at 10 ◦C/min heating
rate, under N2 flow.

2.11. In Vitro Water Uptake of Beads and Nanobeads

The swelling properties of beads (CHT/INDO and XAN@CHT/INDO) and nanobeads
(CHT/NLC-INDO and XAN@CHT/NLC-INDO) were determined. The samples (0.05 g)
were placed in Petri dishes and immersed in 10 mM phosphate solution at pH 1.2 or
phosphate buffer at pH 6.8, being regularly shaken, at 25 ◦C. At predetermined times, the
swelled beads and nanobeads were carefully withdrawn, the excess water was removed
and the samples were weighed on an analytical balance [21] in triplicate for 6 h. The water
uptake (g H2O/g sample) was calculated from Equation (2):

Water uptake (g / g) =
W2 − W1

W1
(2)

where W2 and W1 are the swelled and initial mass (0.05 g) of beads, respectively.

2.12. In Vitro Indomethacin Release Test

The beads and nanobeads (0.1 g) were immersed in 50 mL of the release medium in a
thermostatic bath at 37 ◦C and under agitation (350 rpm). Considering the oral administra-
tion purpose, the samples were first maintained for 2 h in a 0.06 M HCl release medium
(pH 1.2) to simulate conditions of the gastric tract. Then, they were kept at pH 6.8 (by
adding 0.03 g NaOH and 0.40 g NaH2PO4·H2O), to mimic the intestinal microenvironment,
until the end of the test (26 h). At predetermined time intervals, 1 mL of each solution was
withdrawn, and INDO was quantified by UV-vis spectrophotometer (λ = 210 nm) [19]. The
measured samples were returned to the release medium to keep the volume constant. All
the experiments were carried out in quintuplicate. Data were given as the mean ± standard
deviation of INDO cumulative release percentages.

KinetDS 3.0 software (Aleksander Mendyk, Kraków, Poland) was employed to analyze
the release profile curves [22] of the beads and nanobeads, using several kinetic models: the
zero order (Equation (3)) [23], Baker–Lonsdale (Equation (4)) [24] and Weibull (Equation (5))
models [25].

Q = k·t + Q0 (3)

3/2 [1 − (1 − Q)2/3] − Q = k·t (4)

where Q = INDO amount released at the time t, k = rate constant and Q0 = initial INDO
release.

m = 1 − exp[−(t)b/a] (5)

where m = INDO concentration released at the time t, b gives the release exponent and a is
the time scale of release.

2.13. In Vivo Toxicity Assays through Chicken Embryo Model

The in vivo toxicity of the INDO solution as the positive control (PC), the 0.9% NaCl
solution as the negative control (NC) and the XAN@CHT/INDO (20 mg INDO/egg) bead
and XAN@CHT/NLC-INDO (20 mg INDO/egg) nanobead was evaluated in a chicken
embryo (CE) model through different parameters—embryos viability, CE weight and
annexes changes—and blood biochemical markers. Eggs with 10 days of incubation (EID)
were used. Then, the chorioallantoic membrane (CAM) was lowered, and the samples were
administered in CAM (Figure S2) and followed for 7 days. After 24 h, the eventual CE
deaths caused by the mechanical stress of CAM removal were excluded from the analysis.



Pharmaceutics 2022, 14, 583 6 of 18

2.14. Preparation of Eggs

The eggs of laying hens (Gallus gallus, Hy-Line W-36 lineage) were a gift of Hy-Line
do Brazil (Uberlândia, Brazil). The eggs at 10 days of incubation (10 EID) were first carried
out to a light ovoscopy, to confirm the successful embryonic development. Then, 48 eggs
were weighted and incubated in an artificial incubator (Premium Ecológica®) at 37 ◦C and
58% relative humidity, being turned at a 2-hour interval up to subsequent analyses.

2.15. CE Viability Test

For the embryo mortality check, the eggshell was fragmented at 17 EID. The CE
viability (%) was determined by the percentage of alive embryos with or without injuries,
after 24 h of testing in comparison with the initial number of alive embryos (n = 12). The
Chi-square test followed by binomial test between two proportions were used to elucidate
intergroup significant differences (α = 0.05).

2.16. Changes in the Weights of CE and Annexes

At 17 EID, the CEs were weighed, and their annexes (CAM, egg yolk and amnion)
were removed and also weighed (n = 12). The one-way ANOVA and Tukey post hoc tests
were applied to elucidate intergroup statistically significant differences (p < 0.05). The
weight of CE was adjusted based on the egg weight (EID = 10) according to the Equation (6):

aW = finalW × 50/initialW (6)

where aW is the CE weight adjusted to 50 g, finalW is the CE weight at 17 EID and initialW

is the weight of embryonic egg at 10 EID.

2.17. Biochemical Markers

At 17 EID, the umbilical vessel blood from the CE was collected for biochemical
analyses and analyzed in an automatic biochemical analyzer (ChemWell® 2910, Aware-
ness Technology, Palm, FL, USA). The analytes—uric acid (UA), alkaline phosphatase
(ALP), creatine kinase (CK), gamma glutamyl transferase (GGT), alanine aminotransferase
(ALT) and aspartate aminotransferase (AST) (Bioclin®, Minas Gerais, Brazil)—were quan-
tified from the CE serum (n = 12). Data were expressed as median ± SEM. The one-way
ANOVA/Tukey tests were performed for the analyses of intergroup differences of each
marker.

3. Results
3.1. Preparation of Nanostructured Lipid Carriers Loading Indomethacin

Ten different NLC formulations (Table 1) composed of coconut oil (CO), myristyl
myristate (MM) and poloxamer (P68), with and without INDO (2%), were successfully
prepared, showing a homogenous aspect and pale white color.

3.2. Long-Term Stability of NLC

The shelf life of the NLC formulations with or whitout 2% INDO were assessed
through size (nm), polydispersity index (PDI), Zeta potential (mV), pH and visual in-
spection monitoring for 1 year at 25 ◦C (Figure 1). Visually, all the obtained colloid-like
formulations were homogenous and white, with no phase separation during one year.
As determined by DLS, the particle sizes of NLC formulations were smaller than 300 nm
(Figure 1A). It is noteworthy that the F5 and F5-INDO formulations showed no statistically
significant differences over time (p > 0.05). All systems showed desirable particle sizes
after 1 year of storage. According to Figure 1B, all the prepared formulations exhibited PDI
values lower than 0.2, throughout the stability monitoring.



Pharmaceutics 2022, 14, 583 7 of 18

Figure 1. Long-term stability of NLC formulations, monitored in terms of size (A), PDI (B), Zeta
potential (C) and pH (D) values for up to a year, at 25 ◦C (n = 3; p < 0.05).

Zeta potential values of formulations were in the range of −20 to −40 mV for the
control (NLC) and NLC/INDO (Figure 1C) formulations, respectively. F5 and F5-INDO
formulations showed no statistically significant differences (p > 0.05) in terms of Zeta values
over 365 days. Finally, the pH values ranged from 3.0 to 3.5 for all samples (Figure 1D) and
remained constant (p > 0.05) over the time.

3.3. Indomethacin Encapsulation Efficiency by NLC

INDO encapsulation efficiency by NLC was determined by the ultrafiltration–
centrifugation method. Table 3 shows excellent (%EE very close to 100%) in all formulations
tested.

Table 3. Encapsulation efficiency from different NLC formulations loading indomethacin (2%), n = 3.

Formulations %EE

F1 -
F1-INDO 98.7 ± 0.2

F2 -
F2-INDO 99.1 ± 0.1

F3 -
F3-INDO 98.9 ± 0.8

F4 -
F4-INDO 99.0 ± 0.7

F5 -
F5-INDO 99.0 ± 0.2
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Considering the absence of significant changes in the long-term stability and the %EE
results, F5-INDO was chosen to be evaluated in further tests.

3.4. Transmission Electron Microscopy (TEM)

Figure 2 shows the spherical morphology F5/INDO and F5 (as control) formulations,
with well-defined boundaries. The particle sizes calculated from the micrographs using the
ImageJ software agreed with those quantified by DLS (<300 nm).
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3.5. Cell Viability Tests

The in vitro viability test (Figure 3) in HaCat cell line was performed to elucidate the
cytotoxicity of INDO solution (control) compared with F5-INDO through the MTT test [26].
At the conditions tested, a significant increase (p < 0.05) in cell viability was registered
when HaCat cells were treated with NLC-INDO (IC50 = 0.107 mM), in comparison to INDO
solution (IC50 = 0.099 mM).

Figure 3. In vitro viability test in HaCaT cells (n = 9). T test determined statistically significant
differences between free indomethacin (INDO) and F5-INDO formulations in different concentrations,
(* p < 0.05).
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Considering all these results, NLC composed of 10% TL (MM = 80% and CO = 20%), 5%
P68 and 2% INDO were selected as the best formulation, called from now on NLC-INDO,
the lipid excipient of hybrid lipid–biopolymer nanobeads.

3.6. Preparation of Biopolymers and Hybrid Nanobeads Loading Indomethacin

The biopolymer beads (CHT/INDO and XAN@CHT/INDO) and hybrid nanobeads
(CHT/NLC-INDO and XAN@CHT/NLC-INDO) were successfully prepared. Digital
photos of all the samples (data not shown) were taken with at least 150 beads that were
spatially dispersed. Then, the frequency of particle sizes from the images were estimated by
ImageJ software, as exemplified in Figure 4, for XAN@CHT/NLC-INDO sample. Table 4
reveals that the particle sizes of beads were lower than 0.4 cm, with a monodisperse
distribution (PDI < 0.130) for all the prepared samples.

Figure 4. Digital photo (left) of hybrid nanobeads (XAN@CHT/NLC-INDO) and particle size
distribution (right), estimated by ImageJ software, (n = 3).

Table 4. Frequency of size (cm) and distribution (PDI) of the prepared beads and nanobeads, obtained
from digital photos and calculated by ImageJ software, n = 3.

Bead Size (cm) PDI

CHT/INDO 0.398 ± 0.009 0.112 ± 0.001
CHT/NLC-INDO 0.370 ± 0.004 0.102 ± 0.006

XAN@CHT/INDO 0.352 ± 0.011 0.110 ± 0.040
XAN@CHT/NLC-INDO 0.330 ± 0.021 0.124 ± 0.009

NOTE: CHT/INDO = chitosan bead loading INDO 2% (w/v), CHT/NLC-INDO = nanobead loading indomethacin
2% (w/v), XAN@CHT/INDO = xanthan-coated bead loading indomethacin 2% (w/v), XAN@CHT/NLC-INDO =
xanthan-coated CHT/NLC-INDO nanobead.

3.7. FE-SEM Analyses

Figure 5 displays the surface analyses of the different bead and nanobeads loading
2% INDO. The CHT/INDO (Figure 5A) and CHT/NLC-INDO (Figure 5B) images showed
expected profiles of the flake-like chitosan structure [21] and rough surface of biopolymer–
lipid assembling [27], respectively. The top-of-view of CHT/NLC-INDO (Figure 5C) shows
the spherical and uniform morphology of the nanobead. Finally, the cross-section of
XAN@CHT/NLC-INDO (Figure 5D) nanobead proves the successful coating of XAN, with
a well-delimited external layer with around 192 µm of thickness. There was no evidence of
dispersed drug in the biopolymer matrices in any of the images.
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Figure 5. FE-SEM surface analyses of CHT/INDO (A) bead, CHT/NLC-INDO (B,C) and a cross-
section of XAN@CHT/NLC-INDO (D) nanobeads. The figure emphasizes the thickness of xanthan
coating, calculated by ImageJ software (D). The magnifications used were as follows: 1000× for (A,B),
27× for (C) and 90× for (D) images, operated at 10 kV. NOTE: CHT/INDO= chitosan bead loading
INDO 2% (w/v), CHT/NLC-INDO= nanobead loading indomethacin 2% (w/v), XAN@CHT/NLC-
INDO = xanthan-coated CHT/NLC-INDO nanobead.

3.8. DSC Analyses

The DSC thermodynamic profiles of the excipients and nanobeads are shown in
Figure 6. Endothermic peaks corresponding to the melting points of INDO at 164.0 ◦C [28],
NLC-INDO at 43.8 ◦C, CHT/NLC-INDO at 42.7 ◦C and XAN@CHT/NLC-INDO at 41.9 ◦C
were detected. MM, in which melting point is at 36–42 ◦C [29], is the major component
of NLC and nanobeads. In addition, two endothermic peaks, related to the biopolymers’
dehydration for CHT at 144.4 ◦C [30] and for XAN at 115.0 ◦C [15], were noticed.

3.9. In Vitro Water Uptake

The swelling degrees of bead (CHT/INDO and XAN@CHT/INDO) and nanobeads
(CHT/NLC-INDO and XAN@CHT/NLC-INDO) were assessed through the in vitro water
uptake kinetics (Figure 7). It was performed at two different pH levels, simulating the
gastric (pH 1.2) and intestinal (pH 6.8) microenvironments [23].

In acid medium, CHT/INDO and XAN@CHT/INDO beads swelled to 0.16 and
0.026 g, respectively, and disrupted after 15 min of experiment. On the other hand, the
hybrid CHT/NLC-INDO and XAN@CHT/NLC-INDO nanobeads did not disrupt, and
swelled to 0.21 and 0.042 g, respectively, after 360 min. The water uptake in the simulated
intestinal system (pH 6.8) evidenced that all beads were visually intact after 6 h (see the



Pharmaceutics 2022, 14, 583 11 of 18

digital photo of all beads and nanobeads, before and after the experiment, in Figure 7).
Moreover, the final water uptake of CHT/INDO, XAN@CHT/INDO, NLC-INDO and
XAN@CHT/NLC-INDO was 0.035, 0.033, 0.027 and 0.022 g, respectively.

Figure 6. DSC thermograms for indomethacin (INDO), pure chitosan (CHT) and xanthan (XAN), as
well as NLC-INDO formulation and CHT/NLC-INDO and XAN@CHT/NLC-INDO nanobeads.
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Figure 7. In vitro water uptake from beads and nanobeads in two different conditions: pH 1.2 (A) and
pH 6.8 (B). Digital photos from the prepared samples (C) and the samples before and after the test (D)
at pH 6.8 were provided. CHT/INDO = chitosan bead loading INDO 2% (w/v), XAN@CHT/INDO
= xanthan-coated bead loading indomethacin 2% (w/v), CHT/NLC-INDO = nanobead loading
indomethacin 2% (w/v), XAN@CHT/NLC-INDO = xanthan-coated CHT/NLC-INDO nanobead.
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3.10. In Vitro Indomethacin Release Test

The in vitro INDO release test was conducted for 26 h at 37 ◦C (Figure 8). In the first
2 h, the experiment simulated the gastric system (pH 1.2). Then, the pH of the external
medium was changed to 6.8, mimicking the intestinal system [21] until the end of the
analysis.

Figure 8. Indomethacin in vitro release from beads (CHT/INDO and XAN@CHT/INDO) and
nanobeads (CHT/NLC-INDO and XAN@CHT/NLC-INDO), quantified by UV-vis (λ = 210 nm) at
37 ◦C, n = 5.

CHT/INDO and XAN@CHT/INDO beads exhibited burst effects, resulting in total
(100%) INDO release in the second and third hour of the experiment, respectively. Differ-
ently, in the first 2 h of analysis, CHT/NLC-INDO and XAN@CHT/NLC-INDO nanobeads
released around 36% and 31%, respectively. CHT/NLC-INDO released 100% of the anti-
inflammatory after 22 h, while XAN@CHT/NLC-INDO released around 80% at the end of
the experiment (26 h).

Mathematical modeling of the kinetics was carried out by KinetD software [22]. Dif-
ferent models were tested and considering the highest coefficient of determination (R2;
Table 5), the beads (CHT/INDO and XAN@CHT/INDO) were best fitted by the zero-order
model, while CHT/NLC-INDO and XAN@CHT/NLC-INDO hybrid nanobeads were best
fitted by the Baker–Lonsdale and Weibull models, respectively.

Table 5. Mathematical modeling of release kinetics, fitted with several mathematical models. The
values displayed corresponds to the coefficient of determination (R2), calculated by KinetD software.
The highest R2 for each group are in bold.

Formulation 0 Order Weibull Baker–Lonsdale

CHT/INDO 0.95 0.78 0.83
XAN@CHT/INDO 0.97 0.82 0.75
CHT/NLC-INDO 0.66 0.74 0.99

XAN@CHT/NLC-INDO 0.46 0.91 0.59
NOTE: CHT/INDO = chitosan bead loading INDO 2% (w/v), CHT/NLC-INDO = nanobead loading indomethacin
2% (w/v), XAN@CHT/INDO = xanthan-coated bead loading indomethacin 2% (w/v), XAN@CHT/NLC-INDO =
xanthan-coated CHT/NLC-INDO nanobead.

3.11. In Vivo Toxicity Assay through Chicken Embryo Model

The alternative in vivo toxicity assay through CE model [31] was used to evaluate the
toxicity of INDO (in solution) in comparison with the coated bead (XAN@CHT/INDO) and
nanobead (XAN@CHT/NLC-INDO). Figure 9 shows the CE viability (%) after treatment
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with the different formulations. Since all CE treated with INDO (as positive control)
died during the experiment, the viability percentages of other groups were statistically
different (p < 0.05). On the other hand, there was no significant differences (p > 0.05) in the
viability of CE treated with beads and nanobeads, in comparison to the negative control,
NC (Figure 9A). The percentages of the CE viability for beads and nanobeads were 60%
and 80%, respectively. Among the CE survivors, approximately 30% treated with beads
and 40% with nanobeads induced injury to the embryos (Figure 9B).

Figure 9. In vivo toxicity test through CE model in terms of embryos viability (A) and injured CE
(B) after treatments with 0.9% NaCl solution (NC), indomethacin solution (20 mg/egg) as INDO,
xanthan-coated chitosan bead loading indomethacin (bead) (XAN@CHT/INDO; 20 mg/egg) and
xanthan-coated nanobead (nanobead) (XAN@CHT/NLC-INDO; 20 mg/egg). The Chi-square test,
followed by binomial test between two proportions, was performed to compare INDO (A) or NC
(B) with the bead or nanobead, considering their respective contingency tables (2 × 2). Statistically
significant differences (p < 0.05) are shown in (A), n = 12. (B) shows descriptive results.

The weights of CE and annexes treated with NC, beads and nanobeads containing
INDO (20 mg/egg) are given in Figure 10. In terms of CE weight, it was noticed values
of 24.53, 23.31 and 21.71 g when treated with NC, beads and nanobeads, respectively. On
the other hand, the weights of the annexes were 13.05, 12.82 and 12.68 g for NC, beads and
nanobeads, respectively. There were no statistically significant differences among the CE
(p > 0.05) and annexes (p > 0.05) weights in comparison with NC.

Figure 10. The weight (g) of chicken embryo (CE) and annexes after 48 h of treatments with 0.9% NaCl
solution (NC), xanthan-coated bead loading indomethacin (bead) (XAN@CHT/INDO; 20 mg/egg)
and xanthan-coated nanobead (nanobead) (XAN@CHT/NLC-INDO; 20 mg/egg). Data are expressed
as mean ± SEM, n = 12. One-way ANOVA/Tukey tests were carried out for intergroup statistically
differences analyses (p < 0.05). INDO treatment was not considered once there was no survivors after
48 h.

After 48 h, the CE were euthanized and the levels of biochemical markers in the serum
were provided in terms of UA (mg/dL), CK (U/L), ALP (U/L), GGT (U/L), AST (U/L)
and ALT (U/L). Table 6 displays the values of all analytes of CE treated with NC, beads



Pharmaceutics 2022, 14, 583 14 of 18

and nanobeads. Among all the enzyme activities, only the ALP values were statistically
significant different (higher) to the NC (p < 0.05). For all the other markers, no statistically
significant differences were observed.

Table 6. Biochemical markers indexes in the CE serum treated with different groups. Data are
provided as median ± SEM, n = 12. One-way ANOVA/Tukey tests were performed for the analyses
of intergroup differences among each marker. a,b = (p < 0.05).

Markers NC Bead Nanobead

UA (mg/dL)
CK (U/L)

31.70 (±15.2)
1356.0 (±1494.0)

18.97 (±12.6) 50.69 (±43.4)
513.1 (±501.1) 582.4 (±420.9)

ALP (U/L) 429.6 (±230.4) a 1168.0 (±454.8) b 946.7 (±449.2) ab

GGT (U/L) 6.98 (±4.9) 6.52 (±3.7) 5.28 (±4.3)
AST (U/L) 144.6 (±146.4) 118.6 (±31.4) 153.8 (±94.0)
ALT (U/L) 11.40 (±8.0) 5.80 (±3.3) 4.60 (±5.7)

NOTE: NC = 0.9% NaCl, bead = xanthan-coated chitosan bead loading indomethacin (XAN@CHT/INDO;
20 mg/egg) and nanobead = xanthan-coated nanobead (XAN@CHT/NLC-INDO; 20 mg/egg).

4. Discussion

The oral route is the major choice of drug administration [32]. After absorption, the
actives are subjected to hepatic first-pass metabolism, which can result in low efficacy
and side effects, mainly to the gastrointestinal system [33]. That is the case of INDO, a
NSAID largely prescribed for the management of chronic pain and inflammatory conditions.
Side effects are even more accentuated in prolonged therapies, decreasing the patient
compliance [2].

The current work was divided in two parts: the development and characterization of
nanostructured lipid carriers (NLC-INDO), followed by the preparation and evaluation of
beads (XAN@CHT/INDO) and nanobeads (XAN@CHT/NLC-INDO).

Different NLC formulations (10) exhibited excellent in vitro structural properties,
reinforcing such systems as promising DDS. INDO encapsulation by NLC caused slight
changes in the biophysical parameters, preserving the morphology, size homogeneity and
nanoparticles steric repulsion over time, as required for a long-term stability. In fact, such
formulations showed lower pH values than control (without drug), given to the INDO
acid character [24] and high amount of INDO upload by NLC/INDO (close to 100%), as
expected for hydrophobic NSAID [6,34].

F5-INDO formulation confirmed the decrease in the INDO cytotoxicity in comparison
with free INDO treatment. Unfortunately, the oral administration of colloid systems is
contraindicated, given their poor gastro-resistance. It is worth mentioning that the prepared
NLC-INDO can be further explored as DDS aiming other administration routes, such as
parenteral, intranasal and/or transcorneal, for the sustained delivery of INDO. Therefore,
F5-INDO was selected as the lipid component (called as NLC/INDO) in the nanobeads
development.

Lipid–polymer assembling is a remarkable combination of organic matrices result-
ing in hybrid DDS with extraordinary properties and complex supramolecular arrange-
ments [35–37]. In here, the first step in the development of the lipid–biopolymer nanobead
consisted in the CHT/NLC-INDO preparation. Such a system was intended to combine
the advantages of INDO nanoencapsulation by NLC with the deeply explored mucoad-
hesion property of cationic CHT [13]. The challenge of the second step was to protect
the resultant hybrid nanobead against the acidic stomach pH, once both excipients—CHT
and NLC/INDO—were not gastro-resistant (a requirement to avoid fast absorption and
first-pass metabolism). In this sense, the enteric coating of beads, microspheres, tablets
and colloids to provide gastro-resistance to the systems is not a novelty. Different coat-
ings based on pectin, alginate, carboxymethylcellulose, eudragit, gelatin, gellan and xan-
than gums, among others, avoided drug release in simulated stomach condition success-
fully [10,21,38,39]. In here, XAN, which is a rheological improver [15], coated CHT/NLC-
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INDO. XAN acted as a physical barrier, preventing CHT/NLC-INDO degradation in acid
conditions, processed as XAN@CHT/NLC-INDO (coated nanobead). The advantages of
XAN@CHT/NLC-INDO in comparison with the non-coated related nanobead (CHT/NLC-
INDO) and beads (CHT/INDO and XAN@CHT/INDO) are emphasized below.

From the structural point of view, the particle size distribution of the nanobeads
(Figure 4) did not increase in relation to pure biopolymer forms (Table 3). In addition, FE-
SEM images successfully confirmed the XAN coating procedure, with a well-delimited and
homogenous external layer (Figure 5D), acting as physical barrier to protect CHT and NLC-
INDO to the degradation. Moreover, calorimetric analyses suggested good compatibility
between the lipid–biopolymer blend and INDO, since the thermodynamic properties of
XAN@CHT/NLC-INDO are very similar to that of NLC-INDO, the major component of
nanobeads [15,40]. Still, no degradation peaks were observed in the thermograms, ensuring
the thermal stability of the system up to 180 ◦C (Figure 6), far above the physio/pathological
temperature range (32.5–41.0 ◦C).

The hybridization and coating procedures were responsible to modulate the in vitro
performance of nanobeads, regarding water uptake (Figure 6) and INDO release (Figure 8)
kinetics tests. The first two hours of both experiments were conducted in acid condition
(pH 1.2) simulating the gastric pass, and the subsequent hours were conducted in pH 6.8,
simulating the intestinal microenvironment. CHT/INDO and XAN@CHT/INDO beads
were disrupted after 15 min and released 100% of INDO in acid medium, due to their
solubilization. Both nanobeads (CHT/NLC-INDO and XAN@CHT/NLC-INDO) sustained
INDO release in pH 1.2, remaining intact until the end of water uptake test (pH 6.8), and
exhibiting an INDO prolonged release profile. The lipid counterpart in the nanobeads
increased the hydrophobicity [41] and also prolonged INDO delivery.

Despite that XAN@CHT/NLC-INDO prolonged INDO release up to 26 h, the desirable
burst release effect (~30%) was also noticed in the first two hours of test. This is due to the
amount of INDO directly incorporated in the CHT matrix (to reach the drug final concentra-
tion of 2%), allowing for its faster release. In general, a burst effect followed by a prolonged
release profile are essential for DDS aiming pain and inflammation management [42]. Specif-
ically, XAN exerted a physical protection to the nanobead (XAN@CHT/NLC-INDO) and
bead (XAN@CHT/INDO) that decreased CHT and NLC/INDO solubilization in acid in
comparison with their respective non-coated forms. Still, XAN@CHT/NLC-INDO, which
combined the hybridization and coating processes, exhibited the lowest water uptake and a
higher INDO sustained release profile among all the samples. This inverse relation between
swelling and release profiles is expected for hybrid polymer-based forms, once a higher
resistance to water adsorption is correlated with a more sustained profile of entrapped
drugs [21,23]. The prolonged INDO delivery was explained by the two physical barriers
that INDO had to overcome, the lipid structural matrix and the swelled biopolymers chains
of XAN@CHT/NLC-INDO [15,27]. In fact, the differences of XAN@CHT/INDO (as bead)
and XAN@CHT/NLC-INDO (as nanobead) swelling capacity were also observed in the
vivo assays, where the hybrid nanobead was intact after 7 days of CE administration, while
the beads were totally solubilized at this time (Figure S2).

It is also interesting to notice that the mathematical modeling indicated that the
novel supramolecular arrangement of nanobeads was also responsible for different INDO
kinetics mechanisms. Both biopolymer beads were best fitted by the zero-order model, as
expected, considering their total INDO release up to 2–3 h of the test. On the other hand,
CHT/NLC-INDO was best fitted by the Baker and Lonsdale model, which describes a
sustained diffusion of drug from a spherical matrix [43]. Besides, XAN@CHT/NLC-INDO
was best fitted by Weibull model, indicating a biphasic profile from complexes matrices,
given by the release exponent values (b < 1). The nanobead combined a burst effect with
prolonged release INDO profile. In fact, the Weibull model is widely employed to explain
the complexes lipid–polymer DDS kinetics mechanisms [15,40,41,44].

Finally, the safety of DDS is another mandatory requisite, especially in case of nano-
materials that exhibit novel kinetics and supramolecular arrangements, to detect possible
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risk factors to health [45]. In this sense, CE is an alternative toxicity model that is very
promising to evaluate DDS, once different parameters (microscopical, microscopical and
biochemical) are evaluated in a single model [31]. In here, the CE viability test showed that
INDO solution (PC) killed all embryos after 24 h, which was not observed for bead and
nanobead (Figure 9A) treatments. Moreover, the indexes of surviving embryos of NC did
not show statistically significant differences (p > 0.05) compared to the groups treated with
beads or nanobeads. In relation to the changes in the CE and annexes weight, significant
differences among the groups and NC were not detected (p > 0.05).

Furthermore, the analysis of biochemical parameters provides essential information
for the evaluation of animal global health status. All the metabolites of CE treated with
bead and nanobead did not significantly change in comparison with NC (p > 0.05), except
for the ALP values of CE treated with beads (p < 0.05). In fact, there is some evidence that
INDO can induce an increase in ALP in rats, indicating its ability to induce toxicity to the
liver [46]. It is worth mentioning that the CE treated with beads, where INDO was only
dispersed in CHT matrix, resulted in a liver injury, given by ALP increase and macroscopic
changes in liver. Interestingly, the treatment with nanobeads showed less ability to damage
the CE liver than beads. This is probably due to the different lipid–biopolymer barriers and
the nanoencapsulation that decreased INDO toxicity in CE together with the biopolymer
protective effect. Such evidence suggests that the nanobead was the least toxic treatment for
CE, not causing significant deaths, macroscopic damages or biochemical markers alterations
to CE.

These results strongly suggested that XAN@CHT/NLC-INDO was effective to prolong
the INDO release profile, exhibited gastro-resistant properties and decreased the drug
toxicity, as claimed. Such a system can be a promising candidate as an INDO oral delivery
system, and should be further tested in efficacy assays.

5. Conclusions

This work described the preparation of elegant hybrid nanobeads composed of nanos-
tructured lipid carriers loading indomethacin (NLC/INDO; 2%) and chitosan (CHT; 2%),
coated by xanthan (XAN; 0.5%). Such systems presented excellent structural and ther-
modynamic properties, in vitro swelling properties and a prolonged drug release profile
up to 26 h. The synergism between the nanolipid and biopolymer excipients allowed
to prevent the burst release effect in the first 2 h of experiments, simulating the gastric
medium, followed by a prolonged release in the pH 6.8, mimicking the intestinal medium.
The XAN coating of nanobeads (XAN@CHT/NLC-INDO) acted as a gastro-resistant excip-
ient protecting NLC/INDO and CHT from an abrupt swelling and consequent total drug
release in the first hours of experiments. The in vivo toxicity assay in chicken embryos (CE)
confirmed the nanobeads safety, which combined the advantages of the hybridization and
coating procedures, decreasing the intrinsic toxicity of INDO in CE in all the analyzed pa-
rameters. Overall, the lipid–biopolymer nanobead proposed here is an excellent candidate
for the delivery of INDO, as well as other anti-inflammatories through the oral route.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14030583/s1, Figure S1: Indomethacin calibration
curve (detection at 210 nm) performed on five different concentrations in the range of 3.25–20 µg/mL.
Correlation coefficient was >0.99. Each point represents the average of nine measurements performed
in three different days; Figure S2: Digital photos of the chicken embryos treated with beads (above)
and nanobeads (below) in different times of incubation.
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