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The importance of protein engineering in the research and development of biopharmaceuticals and bio-
materials has increased. Machine learning in computer-aided protein engineering can markedly reduce
the experimental effort in identifying optimal sequences that satisfy the desired properties from a large
number of possible protein sequences. To develop general protein descriptors for computer-aided protein
engineering tasks, we devised new protein descriptors, one sequence-based descriptor (PCgrades), and
three structure-based descriptors (PCspairs, 3D-SPIEs_5.4 Å, and 3D-SPIEs_8Å). While the PCgrades and
PCspairs include general and statistical information in physicochemical properties in single and pairwise
amino acids respectively, the 3D-SPIEs include specific and quantum–mechanical information with
parameterized quantum mechanical calculations (FMO2-DFTB3/D/PCM). To evaluate the protein descrip-
tors, we made prediction models with the new descriptors and previously developed descriptors for
diverse protein datasets including protein expression and binding affinity change in SARS-CoV-2 spike
glycoprotein. As a result, the newly devised descriptors showed a good performance in diverse datasets,
in which the PCspairs showed the best performance (R2 ¼ 0:783 for protein expression and R2 ¼ 0:711 for
binding affinity). As a result, the newly devised descriptors showed a good performance in diverse data-
sets, in which the PCspairs showed the best performance. Similar approaches with those descriptors
would be promising and useful if the prediction models are trained with sufficient quantitative experi-
mental data from high-throughput assays for industrial enzymes or protein drugs.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Protein engineering is a progressive process to design or
develop proteins with properties valuable for scientific, industrial,
or medical applications [1]. Protein amino acid sequences deter-
mine protein properties and functions, including expression level
and catalytic activity [1]. Protein engineering involves a premedi-
tated process to investigate the relationship between the amino
acid sequence and protein function and to identify amino acid
sequences with improved function. As a powerful protein engi-
neering technique, directed evolution has been successful in pro-
ducing enzymes and binding proteins by emulating the natural
evolution process in the laboratory [2]. Directed evolution leads
to an accumulation of beneficial mutations through an iterative
process that is coupled to sequence diversification methods and
selection strategies [1,2]. However, this approach is time-
consuming and resource-intensive due to multiple high-
throughput iterations [2]. In directed evolution, it is difficult to
learn lessons from failure because valuable information regarding
unimproved sequences is discarded [1].

Machine learning can utilize the information of unimproved
sequences to differentiate protein properties. Prediction models
with machine learning can speed up the evolution and optimiza-
tion of protein properties by evaluating and selecting new variants
to screen [1]. The models can guide the design of future experi-
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mental rounds to escape local optima by learning efficiently and
synthesizing the most promising variants [1,3]. Even in the cases
where the underlying biophysical mechanisms are not well
explained, machine learning models can be applied and be power-
fully predictive [1]. Machine learning models in protein engineer-
ing require descriptors, also known as features, that are suitable
for obtaining information in proteins [3].

Many protein descriptors have been developed and applied to
diverse protein engineering tasks [3,4]. The descriptors are gener-
ally based on mutation indicators, protein sequences, and protein
structures. Mutation indicator (MutInd) is a binary vector of ele-
ments 0 or 1, indicating whether specific mutations in sequence
exist or not [3]. The MutInd can directly utilize experimental val-
ues, but it is too simple to explain all protein functions and has a
limitation on extrapolation for new single mutations.

Attempts to utilize protein sequences have been made because
they may possess valuable information regarding protein expres-
sion, binding affinity, stability, and other properties. In a bottom-
up approach, many single amino acid property descriptors were
developed and most of them are listed in the AA-index database
[5]. In a top-down approach, attempts were made to study repre-
sentations from raw sequences. Some examples of this approach
include the word embedding model ‘doc2vec’ and natural language
processing-based continuous vector representation ‘BioVec’ [6,7].
Recently, a statistical unified representation (UniRep) was devel-
oped to summarize protein sequences not equal in length to
fixed-length vectors via recurrent neural network methods
[4,8,9]. UniRep may connote fundamental features of protein
sequences because clustering with UniRep can distinguish bio-
physical single amino acid properties, secondary structural helix-
sheet properties, and evolutional proteome properties [4]. How-
ever, protein sequence descriptors have a sequence-function gap
because protein sequences must be translated to the accurately
folded protein structures for protein functions.

Protein structures form the basis for the structure–activity rela-
tionship (SAR) and the analysis of SAR enables a prediction for pro-
tein activity of new mutated proteins in protein engineering.
Protein structures can be generally made use of topological and
biophysical descriptors. As a popular topological descriptor in pro-
tein structure, the distance matrix between amino acids in a pro-
tein structure can be used to extract the spatial arrangement in a
protein structure. A structure-based descriptor derived from amino
acid pairwise contact potentials (sPairs) used the distance matrix
to filter the amino acid pairs and employed the AA-index amino
acid pairwise contact potential descriptors [3]. Recently, graph
convolutional networks (GCN) are developed to generalize convo-
lutional operations on the graph-like molecular representation of
protein structures [10]. DeepFRI is a GCN-based model for predict-
ing protein functions by leveraging sequence features extracted
from a protein language model and protein structures [11].

In biophysical descriptors, it is important to simulate molecular
phenomena and accurately describe their physical, chemical, and
biological properties. Energy calculations in molecular simulation
have been used to predict the properties of biomolecules especially
in the field of computer-aided drug discovery. Although quantum
mechanics (QM) based molecular orbital calculation methods pro-
vide an accurate description of molecular phenomena, QM meth-
ods require huge computational costs and could not be easily
applied to large biological systems [12]. Fragment molecular orbi-
tals (FMO) method was developed for QM calculations of large
molecular systems in 1999 [13]. The FMO method dramatically
reduced computational cost without compromising the accuracy
compared to the traditional QM method, which has been success-
fully applied to the protein–ligand interactions and protein–pro-
tein interactions [12,14–17]. Compared to traditional QM
methods, the FMO method provides inter-fragment interaction
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energies, the map of which contains secondary structural and sta-
bility information in protein structure [18]. A 3-dimensional scat-
tered pair interaction energies (3D-SPIEs) method extracts
significant pair interactions in the map, which can be used to find
a hot spot region in the protein–protein interface of the spike gly-
coprotein from severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) [12,14].

SARS-CoV-2 has been categorized as a human pathogen that
caused the global pandemic of coronavirus disease that began in
December 2019 [19,20]. The receptor binding domain (RBD) of the
spike glycoprotein in SARS-CoV-2 binds to human angiotensin-
converting enzyme 2 (hACE2), allowing the viral membrane of
SARS-CoV-2 to fuse with the host cell membrane [21]. Analysis of
the quantitative deep mutational scanning data obtained using
yeast-surface display methods showed how RBD amino acid muta-
tions affect the binding affinity with hACE2 and protein expression
of RBD [22]. These experimental validations for single amino acid
variants of RBD are valuable data for assessing whether the viral
mutation is likely to be deleterious. The ongoing evolution of
SARS-CoV-2 variants has provided critical insights for preparing
for and preventing future outbreaks [23]. Accurately predicting the
effects of amino acid changes on the ability of RBD, such as protein
expression and binding affinity, can help assess the implications
for public health in the ongoing evolution of SARS-CoV-2.

In this work, we devised one sequence-based (PCgrades) and
three structure-based protein descriptors (PCspairs, 3D-
SPIEs_5.4 Å, and 3D-SPIEs_8Å). And then we applied the descriptors
to make prediction models for seven datasets. To evaluate the pro-
tein descriptors, we compared the performance of the prediction
models trained with the newly devised descriptors and the known
three protein descriptors (PCscores, sPairs, and UniRep fusion). The
PCscores and sPairs were the top-ranked descriptors in the compar-
ison of protein descriptors in diverse datasets by Xu et al [3]. The
UniRep fusion is a newly devised descriptor with natural language
processing methods and has the potential for diverse protein engi-
neering tasks [4]. Because the PCscores, sPairs, and UniRep fusion
can be applied to general property prediction in diverse datasets,
we made baselines with the PCscores, sPairs, and UniRep fusion
to evaluate the newly devised general descriptors in this work.
2. Methods

2.1. Data sets

The seven datasets in this work are summarized in Table 1. Ref-
erence protein sequences in all datasets were obtained from Uni-
Prot [24]. In the absorption wavelength shift dataset, Gloeobacter
violaceus bacteriorhodopsin (GR) was used (UniProt ID: Q7NP59)
and the dataset was from Engqvist et al [25]. In the enantiomeric
selectivity dataset, Aspergillus niger epoxide hydrolase (ANEH)
was used (UniProt ID: Q9UR30) and the dataset was from Gumulya
et al and Reetz et al [26–28]. In the enantiomeric excess dataset,
Rhodothermus marinus nitric oxide dioxygenase (RmaNOD) was
used (UniProt ID: D0MGT2) and the dataset was from Wu et al
and Wittmann et al [29,30]. In binding affinity and protein expres-
sion data sets, the spike glycoprotein of SARS-CoV-2 was used
(UniProt ID: P0DTC2) and the datasets were from Starr et al [22].
In all datasets, only the substitution mutations were selected.
The insertion-deletion mutations were removed.
2.2. Protein single amino acid property descriptor (PCscores and
PCgrades)

Single amino acid property descriptors infer various physico-
chemical and biochemical properties of single amino acids [5].



Table 1
Summary of data sets in this work.

Protein Name Species Abbreviation Observable variable All set Training set Test set

Bacteriorhodopsin Gloeobacter violaceus GR-wave Max absorption wavelength 71 56 15
GR-shift Max absorption wavelength shift

Epoxide hydrolase Aspergillus niger ANEH-evalue Enantiomeric selectivity (e-value) 163 130 33
ANEH-ddG Enantiomeric selectivity (ddG�)

Nitric oxide dioxygenase Rhodothermus marinus RmaNOD-ee Enantiomeric excess 552 441 111
Spike glycoprotein SARS-CoV-2 SARS2-expr Protein expression 3799 3039 760

SARS2-bind Binding affinity with hACE2 3803 3042 761
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AA-index is a large database of numerical indices of single amino
acids and pairs [5]. The zScales and VHSE are based on principal
component analysis to represent the scalar values of amino acids.
While the zScales has 5 rows and it is based on the amino acid
position information (size, hydrophobicity, charge, and so on.)
[31], the VHSE has 50 rows and is vectors of hydrophobic, steric,
and electronic properties [32]. The PCscores and PCgrades were
used as a representative of protein single amino acid property
descriptors (Fig. 1). The min–max scaling was introduced in princi-
pal component analysis. While the PCscores is the first 11 principal
components of the 533 sets of single amino acid descriptors in the
AA-index by Xu et al [3], we used the 553 sets in the AA-index to
make the PCscores in this work. The PCgrades is firstly introduced
in this work and is the first 11 principal components of the 606 sets
of single amino acid descriptors in the AA-index, VHSE, and zScales
[31,32]. The explained variance ratios of principal components in
the PCscores and PCgrades are shown in Fig. S1, in which the first
11 principal components of PCscores accounted for about 91.3% of
variances and the 11 components of PCgrades accounted for about
91.5% of variances.

2.3. Statistical unified representation descriptor (UniRep)

UniRep is based on a 1900-unit multiplicative long-/short-term
memory recurrent neural network (mLSTM/RNN) model and was
trained with approximately 24 million protein sequences (Uni-
Ref50) by Alley et al [4]. We used globally pre-trained weights with
UniRef50 and calculated all descriptors with the performant reim-
plementation of UniRep in Jax [33]. The mLSTM/RNN-1900-unit
model in UniRep provided all three representations of protein
sequence: average hidden state, final hidden state, and the last
internal cell state of the single 1900-dimensional layer. Alley
et al devised the UniRep fusion by concatenating the three repre-
sentations and they made prediction models with the UniRep
fusion [4]. We also concatenated the three representations to
obtain the UniRep fusion in this work (Fig. S2).
2.4. Protein structure preparation

All experimental protein structures were collected from the
Protein Data Bank (PDB) [34]. In the GR dataset, we used chain A
of a wild-type GR (PDB ID: 6NWD), the resolution of which is
2.00 Å [35]. In the ANEH dataset, we used chain A of a wild-type
ANEH (PDB ID: 1QO7), the resolution of which is 1.80 Å [36]. In
the RmaNOD dataset, we used chain A of a wild-type RmaNOD
(6WK3), the resolution of which is 2.45 Å [30]. In the SARS-CoV-
2 expression dataset, we used an unbound form of RBD in chain
A of SARS-CoV-2 glycoprotein (PDB ID: 6ZGE), the resolution of
which is 2.60 Å [37]. In the SARS-CoV-2 binding affinity dataset,
we used a complex form of RBD in chain A of SARS-CoV-2 glycopro-
tein with chain B of hACE2 (PDB ID: 7KMS), the resolution of which
is 3.64 Å [38]. All the missing side chains of the protein structures
were filled with Prime implemented in the Schrödinger program
[39]. Hydrogen atoms were added to the protein structures at pH
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7.0 and their positions were optimized with the PROPKA imple-
mented in the Schrödinger program [40]. The restrained energy
minimization was performed with OPLS3 in the Schrödinger pro-
gram within 0.3 Å root-mean-squared deviation [41]. Each mutant
structure was generated with residue scanning, in which the
mutated side-chain rotamers were searched for all mobile residues
with Prime implemented in the Schrödinger program [42]. The
residue scanning method is to predict the structures of residues
in mutants with homology modeling, which adjusts the side-
chain rotamers for repacking and minimizes the side-chain atoms.
In this step, the backbone minimization of the mutated residues
was not performed. Rather, the predicted mutant structures were
re-prepared with the same protocol, and all hydrogen atoms are
removed and re-added at pH 7.0. In generating all structure-
based descriptors, one data point shares one protein structure in
seven datasets.

2.5. Structure-based amino acid pairwise descriptors (sPairs and
PCspairs)

AA-index database includes amino acid pairwise contact poten-
tials for statistical analysis of protein sequences and protein struc-
tures [5]. The generation workflow for the sPairs and PCspairs is
shown in Fig. 1. The sPairs is a structure-based descriptor employ-
ing the AA-index amino acid pairwise contact potential, which
used statistical contact potential derived from 25 X-ray protein
structures (TANS760101) [3]. While only a single 3D protein struc-
ture was used to make sPairs in Xu et al [3], we used each mutant
structure to make sPairs for each mutant in this work. The PCspairs
is firstly introduced in this work, and is the first principal compo-
nent of the 135 sets of amino acid pairwise contact potentials
(Fig. 1). The min–max scaling was introduced in principal compo-
nent analysis. The explained variance ratios of the first principal
components in each amino acid are shown in Fig. S3, in which each
first principal component accounted for more than 50% of the vari-
ance in 135 sets. The 135 sets of amino acid potentials include the
substitution matrices, contact potentials in X-ray structures, the
transfer energy of amino acids from water to the protein environ-
ment, and potentials in the protein–protein interfacial regions [5].
The PCspairs can include effective information not only on contact
potentials but also water-mediated and protein–protein interac-
tions. In paired positions of two residues within 8 Å in the struc-
ture, the values were derived from the contact potential but
otherwise were set to zero. The distance between two residues
was measured with a single-linkage distance.

2.6. Quantum mechanical energy descriptors (3D-SPIEs_5.4 Å and 3D-
SPIEs_8Å)

All FMO calculations were performedwith the version of Feb 14,
2018 GAMESS [43], and with FMO2-DFTB3/D/PCM level. They
include the two-body FMO method (FMO2), a self-consistent-
charge density-functional tight-binding method derived via a
third-order expansion (DFTB3) with the 3OB parameter set



Fig. 1. Workflow of protein descriptor generation for computer-aided rational protein engineering tasks in this work.
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[44,45], the UFF-type dispersion correction (D) [46,47], and impli-
cit polarizable continuum model (PCM) [44]. The two-body FMO
calculation consists of four steps with fragmentation, fragment
self-consistent field calculation, fragment-pair self-consistent field
calculation, and total property evaluation [12]. Firstly, all input
files were prepared in compliance with the hybrid orbital projec-
tion (HOP) scheme fragmentation [48]. In the HOP scheme, each
residue was defined as one fragment, and two cysteine residues
forming the disulfide bridge were defined as one fragment. In the
GR, the retinal and its covalently bound lysine were defined as
one fragment. In RmaNOD, we removed the heme group and the
heme-coordinated residues were terminated with hydrogen atoms
because the 3OB parameter does not support the ‘Fe’ atom type.
Secondly and thirdly, all the molecular orbitals in fragment and
fragment-pair are optimized by self-consistent field theory in the
whole electrostatic field from the other fragments. The difference
between the second and third steps is just the size of the fragment,
where the fragment pair is the combination of two fragments.
Fourthly, all results from the second and third steps are pieced
together to generate the whole picture of the system. In this step,
FMO provides the pair interaction energies between two frag-
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ments. All 3D-SPIEs results were generated with a similar protocol
in previous studies (Fig. 1) [12,14]. In this work, we did not apply
the energy cut-off criteria and used all values within the specific
distance (5.4 Å and 8.0 Å). The distance between two fragments
was measured with a single-linkage distance.

2.7. Performance metrics and Train-test splits

Predictions on test sets were evaluated using R2, RMSE, MAE,
and Spearman’s rank correlation. R2 is a square of a measure of lin-
ear correlation between predicted and observed values. RMSE is a
root-mean-square-error and a measure of the difference between
the predicted and observed values. MAE is a mean absolute error
and a measure of the absolute errors between the predicted and
observed values. Spearman’s rank correlation is a nonparametric
measure of rank correlation. The Scikit-learn package was used
to calculate R2, RMSE, and MAE [49], and the SciPy package in
Python was used to calculate Spearman’s rank correlation coeffi-
cients (SCC) [50].

For all supervised tasks in this study, we prepared a split with
80% training and 20% test sets in Python using the Scikit-learn
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package with a fixed random seed [49]. In training, we used 10-fold
cross-validation with GridSearchCV in the Scikit-learn package
[49]. To improve machine learning, we removed the columns with
all same values in each descriptor feature and introduced a min–
max scaling by fitting the scaler with training data and applying
the scaler on training and test data, respectively.

2.8. Machine learning algorithms and hyperparameter tuning

Prediction models were constructed using the random forest
(RF) regression model and the extreme gradient boosting (XGB)
model. The RF regression model is an ensemble method based on
many classifying decision trees, and it uses averaging to improve
stability and accuracy by reducing variance and avoiding overfit-
ting problems [3]. Decision trees use a flowchart-like tree structure
and observe features in descriptors to provide a useful continuous
output. The XGB is an ensemble learning method based on gradient
tree boosting, which builds each tree sequentially and each tree fits
the residuals of predictions of all previous trees [3].

The hyperparameter tuning procedure is summarized in
Table S1. Some hyperparameters in RF were incorporated for tun-
ing the models; the number of decision trees (n_estimators) and
the number of features to consider when looking for the best split
(max_features) [49]. Some hyperparameters in XGB were incorpo-
rated for tuning the models; the number of the gradient boosted
trees (n_estimators), the maximum tree depth for based learners
(max_depth), the boosting learning rate (learning_rate), the mini-
mum loss reduction required to make a further partition on a leaf
node of the tree (gamma), the minimum sum of instance weight
needed in a child (min_child_weight), and the subsample ratio of
the training instance (subsample) [51]. The 10-fold cross-
validation was used for hyperparameter tuning of all machine
learning algorithms. Grid-search was performed to find optimal
values under each set of descriptors. The final model was selected
with the best performance of R2 in the validation set of cross-
validation. The optimal hyperparameter values are summarized
in Table S2.
3. Results

Predicting protein properties is important in computer-aided
rational protein engineering tasks. To improve prediction perfor-
mance, we devised new protein descriptors, one sequence-based
descriptor (PCgrades) and three structure-based descriptors (PCs-
pairs, 3D-SPIEs_5.4 Å, and 3D-SPIEs_8Å). The generation workflow
of protein descriptors is shown in Fig. 1. To evaluate the new pro-
tein descriptors, we collected seven datasets and made prediction
models from the combination of two machine learning models
(RF and XGB) and seven protein descriptors (PCscores, PCgrades,
sPairs, PCspairs, UniRep fusion, 3D-SPIEs_5.4 Å, and 3D-SPIEs_8Å).

All data sets in this study are summarized in Table 1 and illus-
trated in Fig. 2. Hyperparameter tuning and 10-fold cross-
validation of all machine learning algorithms were performed with
grid-search. The performance metrics of mean R2 in training sets
and 10-fold cross-validation test sets are summarized in Table S3
and Table 2. The performance metrics of R2, RMSE, MAE, and Spear-
man’s rank correlation in test sets are summarized in Table 3 and
Tables S4–S6. The correlation plots from the test set predictions of
the best model in each dataset are shown in Fig. 3.

3.1. Gloeobacter violaceus rhodopsin (GR)

GR is a valuable engineering target protein in light-harvesting
to capture photons of solar light in the bioenergy production and
bio-sensing industry [25]. The maximum absorption wavelength
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levels of various mutants of GR were obtained from the study by
Engqvist et al [25]. In the GR dataset, we made prediction models
separately for wavelength (GR-wave) and wavelength shift from
wild-type (GR-shift).

In GR-wave, the prediction model from XGB and 3D-SPIEs_8Å
showed the best performance in the test set prediction
(R2 ¼ 0:947). The best model was trained with optimal hyperpa-
rameter (learning_rate = 0.01, max_depth = 10, and n_estimators =
1000). In the test set of the best model, the RMSE is 7.948, the MAE
is 6.609, and the SCC is 0.950. The second-best model is the RF/
PCgrades and XGB/3D-SPIEs_5.4 Å, the performance of which in
the test set is R2 ¼ 0:934. The best prediction model by Xu et al
showed R2 ¼ 0:934 with the VHSE and multilayer perceptron
method [3].

In GF-shift, the prediction model from XGB and PCspairs
showed the best performance in test prediction (R2 ¼ 0:950). The
best model was trained with optimal hyperparameter (learning_r
ate = 0.05, max_depth = 15, and n_estimators = 500). In the test
set of the best model, the RMSE is 10.554, the MAE is 8.972, and
the SCC is 0.968. The second-best model is the RF/PCgrades, the
performance of which in the test set is R2 ¼ 0:934.

3.2. Aspergillus niger epoxide hydrolase (ANEH)

Enantiomeric selectivity of an enzyme is the ability of an
enzyme to selectively distinguish one enantiomer from its counter
isomer in an enzymatic reaction. This property plays a critical role
in fine chemical production and bioindustry. The enantiomeric
selectivity levels of various ANEH mutants were obtained from
the studies by Gumulya et al and Reetz et al [26–28]. ANEH has
hydrolytic kinetic activity with glycidyl phenyl ether, and wild-
type ANEH has selectivity in favor of the (S)-glycidyl phenyl ether
(DDGz ¼ �0:85). In the ANEH dataset, we made prediction models
separately for e-value (ANEH-evalue) and dd Gz (ANEH-ddG).

In ANEH-evalue, the prediction model from RF and PCspairs
showed the best performance in the test set prediction
(R2 ¼ 0:859). The best model was trained with optimal hyperpa-
rameter (max_features = ‘sqrt’ and n_estimators = 500). In the test
set of the best model, the RMSE is 12.862, the MAE is 8.628, and the
SCC is 0.956. The second-best model is the RF/PCgrades, the perfor-
mance of which in the test set is R2 ¼ 0:848. The best prediction
model by Xu et al showed R2 ¼ 0:754 with sPairs and elastic-net
regularized generalized linear model method [3].

In ANEH-ddG, the prediction model from RF and PCgrades
showed the best performance in the test set prediction
(R2 ¼ 0:938). The best model was trained with optimal hyperpa-
rameter (max_features = ‘log20 and n_estimators = 1000). In the
test set of the best model, the RMSE is 0.143, the MAE is 0.108,
and the SCC is 0.935. The second-best model is the RF/PCscores,
the performance of which in the test set is R2 ¼ 0:935.

3.3. Rhodothermus marinus nitric oxide dioxygenase (RmaNOD)

Enantiomeric excess is a measure of the purity of one enan-
tiomer in a sample with mixed enantiomers. The enantiomeric
excess levels of various mutants of RmaNOD were obtained from
the study by Arnold et al [29,30]. RmaNOD catalyzes carbon-
silicon bond formation between ethyl 2-diazopropanoate and phe-
nyldimethyl silane and produces two possible product enan-
tiomers of carbine Si-H insertion reaction [29]. In the RmaNOD
dataset, we used enantiomeric excess as an objective variable
(RmaNOD-ee).

In RmaNOD-ee, the prediction model from RF and PCscores
showed the best performance in the test set prediction



Fig. 2. Violin plots of each dataset in this work. (A) Maximum absorption wavelength of bacteriorhodopsin (GR-wave). (B) Maximum absorption wavelength shift of
bacteriorhodopsin from wild-type (GR-shift). (C) Enantiomeric selectivity (e-value) of epoxide hydrolase (ANEH-evalue). (D) Enantiomeric selectivity (ddG) of epoxide
hydrolase (ANEH-ddG). (E) Enantiomeric excess of nitric oxide dioxygenase (RmaNOD-ee). (F) Protein expression of spike glycoprotein of SARS-CoV-2 (SARS2-expr). (G)
Binding affinity between spike glycoprotein of SARS-CoV-2 and human angiotensin converting enzyme 2 (SARS2-bind).
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Table 2
Mean R-Squared of 10-fold Cross-validation sets Predictions.

Data set method PCscores PCgrades sPairs PCspairs UniRep fusion 3D-SPIEs_5.4 Å 3D-SPIEs_8Å

GR-wave RF 0.822 ± 0.166 0.813 ± 0.150 0.754 ± 0.188 0.799 ± 0.196 0.677 ± 0.340 0.766 ± 0.140 0.761 ± 0.164
XGB 0.821 ± 0.126 0.823 ± 0.125 0.756 ± 0.226 0.761 ± 0.208 0.739 ± 0.183 0.748 ± 0.166 0.718 ± 0.203

GR-shift RF 0.822 ± 0.166 0.813 ± 0.151 0.755 ± 0.188 0.799 ± 0.196 0.677 ± 0.340 0.767 ± 0.140 0.761 ± 0.164
XGB 0.757 ± 0.216 0.766 ± 0.220 0.743 ± 0.190 0.733 ± 0.227 0.772 ± 0.155 0.745 ± 0.171 0.729 ± 0.179

ANEH-evalue RF 0.712 ± 0.161 0.713 ± 0.153 0.706 ± 0.159 0.706 ± 0.187 0.528 ± 0.202 0.555 ± 0.176 0.570 ± 0.119
XGB 0.630 ± 0.349 0.632 ± 0.348 0.666 ± 0.139 0.693 ± 0.198 0.568 ± 0.258 0.555 ± 0.165 0.568 ± 0.138

ANEH-ddG RF 0.802 ± 0.127 0.800 ± 0.129 0.818 ± 0.099 0.809 ± 0.112 0.706 ± 0.141 0.673 ± 0.115 0.685 ± 0.116
XGB 0.763 ± 0.173 0.756 ± 0.180 0.751 ± 0.101 0.768 ± 0.141 0.701 ± 0.186 0.696 ± 0.133 0.701 ± 0.125

RmaNOD-ee RF 0.707 ± 0.080 0.717 ± 0.068 0.706 ± 0.073 0.719 ± 0.074 0.641 ± 0.097 0.666 ± 0.080 0.678 ± 0.071
XGB 0.696 ± 0.088 0.695 ± 0.087 0.676 ± 0.089 0.709 ± 0.078 0.659 ± 0.105 0.667 ± 0.086 0.691 ± 0.082

SARS2-expr RF 0.724 ± 0.032 0.728 ± 0.031 0.736 ± 0.025 0.790 ± 0.025 0.517 ± 0.019 0.635 ± 0.034 0.649 ± 0.028
XGB 0.705 ± 0.043 0.708 ± 0.039 0.718 ± 0.028 0.760 ± 0.035 0.614 ± 0.024 0.662 ± 0.032 0.673 ± 0.027

SARS2-bind RF 0.701 ± 0.040 0.695 ± 0.048 0.695 ± 0.055 0.752 ± 0.045 0.484 ± 0.019 0.650 ± 0.033 0.660 ± 0.037
XGB 0.686 ± 0.032 0.680 ± 0.027 0.696 ± 0.050 0.748 ± 0.045 0.602 ± 0.022 0.680 ± 0.032 0.689 ± 0.036

Table 3
R-Squared of Test sets Predictions of Best-found parameter models.

Data set method PCscores PCgrades sPairs PCspairs UniRep fusion 3D-SPIEs_5.4 Å 3D-SPIEs_8Å

GR-wave RF 0.931 0.934 0.926 0.906 0.795 0.877 0.862
XGB 0.892 0.896 0.894 0.928 0.834 0.934 0.947

GR-shift RF 0.931 0.934 0.926 0.906 0.795 0.877 0.862
XGB 0.901 0.892 0.922 0.950 0.849 0.915 0.921

ANEH-evalue RF 0.844 0.848 0.831 0.859 0.685 0.685 0.660
XGB 0.836 0.837 0.833 0.851 0.780 0.747 0.732

ANEH-ddG RF 0.935 0.938 0.926 0.929 0.830 0.751 0.783
XGB 0.923 0.929 0.915 0.923 0.886 0.845 0.839

RmaNOD-ee RF 0.723 0.708 0.701 0.718 0.637 0.659 0.659
XGB 0.691 0.693 0.706 0.702 0.637 0.675 0.675

SARS2-expr RF 0.708 0.724 0.739 0.783 0.490 0.588 0.608
XGB 0.690 0.712 0.689 0.743 0.606 0.607 0.630

SARS2-bind RF 0.651 0.651 0.653 0.711 0.464 0.590 0.600
XGB 0.648 0.671 0.638 0.702 0.576 0.629 0.628
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(R2 ¼ 0:723). The best model was trained with optimal hyperpa-
rameter (max_features = ‘sqrt’ and n_estimators = 1500). In the test
set of the best model, the RMSE is 0.194, the MAE is 0.133, and the
SCC is 0.838. The second-best model is the RF/PCspairs, the perfor-
mance of which in the test set is R2 ¼ 0:718. The best prediction
model by Xu et al showed R2 ¼ 0:288 with PCscores and XGB
method [3].
3.4. Protein expression in the spike glycoprotein of SARS-CoV-2

Protein expression is affected by protein stability and solubility,
which are the primary common causes of protein production fail-
ure. The mean protein expression levels of various mutants of
RBD were obtained from the study by Starr et al [22]. In the
SARS-CoV-2 protein expression dataset, we used mean protein
expression levels as an objective variable (SARS2-expr).

In SARS2-expr, the prediction model from RF and PCspairs
showed the best performance in the test set prediction
(R2 ¼ 0:783). The best model was trained with optimal hyperpa-
rameter (max_features = ‘log20 and n_estimators = 1500). In the
test set of the best model, the RMSE is 0.490, the MAE is 0.355,
and the SCC is 0.891. The second-best model is the XGB/PCspairs,
the performance of which in the test set is R2 ¼ 0:743. The general
protein expression prediction model showed the prediction perfor-
mance (R2) between 0.504 and 0.698 [52].
3.5. Binding affinity between the spike glycoprotein of SARS-CoV-2 and
hACE2

Binding affinity is a measure of the strength of the interaction
between a protein and a ligand. The mean binding affinity levels
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of various mutants of RBD with hACE2 were obtained from the
study by Starr et al [22]. In the SARS-CoV-2 binding affinity dataset,
we used mean binding affinity levels as an objective variable
(SARS2-bind).

In SARS2-bind, the prediction model from RF and PCspairs
showed the best performance in test prediction (R2 ¼ 0:711). The
best model was trained with optimal hyperparameter (max_fea-
tures = ‘sqrt’ and n_estimators = 1500). In the test set prediction
of the best model, the RMSE is 0.735, the MAE is 0.412, and the
SCC is 0.873. The second-best model is the XGB/PCspairs, the per-
formance of which in the test is R2 ¼ 0:702. The general binding
affinity prediction models have the prediction performance (Pear-
son’s linear correlation) between 0.61 and 0.76 [53–56], which can
be converted to the prediction performance (R2) between 0.3721
and 0.5776. The specific binding affinity prediction models for
SARS-CoV-2 and hACE2 have the performance (Pearson’s linear
correlation) of 0.73 and 0.82, which can be converted to the predic-
tion performance (R2) of 0.5329 and 0.6724 [57,58].

3.6. Protein descriptor comparison in seven datasets.

To compare evaluation metrics, the performance of 98 final
models (the 98 combinations from seven protein descriptors, seven
datasets, and two machine learning models) was ranked according
to the median value in increasing order for RMSE and decreasing
order for R-squared in the test prediction (Fig. 4). The ranking
results of RMSE and R-squared are almost identical. The PCspairs
won both in RMSE and R-squared ranking, followed by PCgrades,
PCscores, sPairs, 3D-SPIEs_8Å, 3D-SPIEs_5.4 Å, and UniRep fusion.
In the model ranking, the combination of XGB and PCspairs won
in all combinations, followed by RF/PCspairs, RF/PCgrades, RF/
PCscores, and XGB/PCgrades.



Fig. 3. The correlation plots from the test set prediction of the best models in seven datasets. (A) XGB model trained with the 3D-SPIEs_8Å in the GR-wave dataset. (B) XGB
model trained with the PCspairs in the GR-shift dataset. (C) RF model trained with the PCspairs in the ANEH-evalue dataset. (D) RF model trained with the PCgrades in the
ANEH-ddG dataset. (E) RF model trained with the PCscores in the RmaNOD dataset. (F) RF model trained with the PCspairs in the SARS2-expr dataset. (G) RF model trained
with the PCspairs in the SARS2-bind dataset. The green dotted line indicates the identity function and the red dotted line indicates the trend line. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. The Box plot comparison rank. (A) Boxplot comparison rank of descriptors by R-squared metric in the test set, (B) Boxplot comparison rank of descriptors by RMSE
metric in the test set, and (C) Boxplot comparison rank of models (machine learning method and descriptor combination) by R-squared in the test set.
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4. Discussion

Given the successful application of machine learning methods
in directed protein evolution, machine learning methods have been
broadly applied in protein engineering [3,29]. The broader applica-
tions in protein engineering require sufficient data quantity, qual-
ity, and protein descriptors. Generating high quantity and quality
data from high-throughput assays improves machine-learning-
guided protein engineering in principle. But, most cases of protein
engineering tasks have a data shortage in the desired properties of
target proteins. For example, phage display technologies are
superb and powerful for therapeutic and industrial projects but
require tedious optimization and time-consuming test cycles.
Therefore, many good protein descriptors are inevitably required
in supervised machine learning with small data sets from the feed-
back between machine learning prediction models and experimen-
tal assays.

Protein descriptors are usually based on mutation indicators,
protein sequences, and protein structures. As valuable information
in databases including UniProt [24] and PDB [34] has increased, the
necessity of utilizing protein sequences and unlabeled structures
has increased. For example, the UniRep was developed from unla-
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beled protein sequences and distinguished physicochemical, sec-
ondary structural, and evolutionary information [4]. The UniRep
is the mLSTM/RNN based on the statistical descriptor to extract
fundamental features in protein sequences from a large unlabeled
protein sequence database (UniRef50). Although the UniRep fusion
underperformed compared to other protein descriptors in this
work, the UniRep fusion has the potential in comparing protein
sequences not equal in length. Although mutation indicators and
protein sequence-based descriptors are powerful and effective
tools for constructing prediction models to achieve diverse desired
properties in protein engineering, protein structural descriptors
are also promising because of the close relationship between struc-
ture and activity.

In this work, we devised one sequence-based protein descriptor
(PCgrades) and three structural protein descriptors (PCspairs, 3D-
SPIEs_5.4 Å, and 3D-SPIEs_8Å). To evaluate the newly devised pro-
tein descriptors, we made prediction models with the newly
devised descriptors and the previously developed descriptors
(PCscores, sPairs, and UniRep fusion). In the seven datasets, the
PCspairs generally showed a better performance than other protein
descriptors. The PCgrades and 3D-SPIEs showed the best perfor-
mance in the ANEH-ddG and GR-wave datasets, respectively. The
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PCgrades has more information on single amino acid descriptors
than the PCscores, and PCspairs has more information on amino
acid pairwise potential than the sPairs. Although the newly devised
protein descriptors showed a good performance in the seven data-
sets, it still has a scope to improve the model performance for
future studies. The combination of sequence and structure-based
descriptors would be promising because they include valuable
information from a different angle. For example, while sequence-
based descriptors are easy to compare evolutional information,
structure-based descriptors are easy to consider biophysical
environments.

The 3D-SPIEs are based on quantummechanical free energy cal-
culations, and they can be improved with appropriate simulation
systems, higher calculation levels, and more accurate homology
models. The 3D-SPIEs only outperformed in GR-wave, because
quantum mechanical simulations require more rigorous and
detailed simulation systems. In GR-wave, we included a retinal
molecule in FMO calculation, which improved the descriptor qual-
ity. Because molecular simulations mainly depend on appropriate
simulation systems, it is important to construct specific simulation
systems for the specific biological phenomena. Moreover, the
molecular simulations also mainly depend on protein structures,
so it is important to predict mutant protein structures accurately.
As the homology modeling methods have been dramatically
improved with deep learning methods [59,60], structure-based
descriptors would be more accurate and powerful. New protein
structure-based descriptors from rational protein analysis in the
pharmaceutical industry would be promising in the future.

The newly devised protein descriptors (PCgrades, PCspairs, and
3D-SPIEs) contain different information in proteins. The PCgrades
include the physicochemical property information of single amino
acids in protein sequences and the PCspairs include the pairwise
statistical potential information between two residues in protein
structures. The two descriptors effectively compressed the infor-
mation with principal component analysis and can be trained for
the general and statistical properties of proteins. On the other
hand, the 3D-SPIEs contain specific and mechanical information
in protein structures. The 3D-SPIEs utilized quantum mechanical
methods to quantify the interaction energies between two resi-
dues. Because the three descriptors can include different informa-
tion in protein sequences and structures, they can be trained in
response to diverse information from proteins. Therefore, similar
approaches with those descriptors would be promising and useful
for industrial enzymes and protein drugs.

In addition to the protein descriptors, various combinations
with state-of-the-art machine learning algorithms and optimiza-
tion of model architectures in deep learning would also improve
the model performance [3]. Taken together, it has permitted the
development of more accurate and powerful prediction models,
which in turn would enable the computational exploration of enor-
mous sequence space and suggestions for better variants in thera-
peutic or industrial research and development. In this work, we
developed the prediction models for seven diverse datasets. The
prediction models for the GR, ANEH, and RmaNOD would be
applied to find optimal sequences satisfying the desired properties
from many possible variants. Our prediction models in the three
datasets outperformed the top-ranked models by Xu et al [3]. On
the other hand, the prediction models for the protein expression
and binding affinity of SARS-CoV-2 would be used to predict host
adaption of SARS-CoV-2 variants with higher protein expression
and binding affinity in the ongoing evolution of SARS-CoV-2. Our
prediction models in the two datasets outperformed the general-
purpose prediction models in protein expression [52] and binding
affinity [53–56] and outperformed the specific prediction models
for binding affinity in SARS-CoV-2 [57,58].
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5. Conclusion

Protein engineering is a progressive process to find proteins
with valuable properties in a tremendous possible protein
sequence space. Machine-learning-guided protein engineering
can speed up the identification of variants with optimal properties
and has been expanded the predictions for diverse properties in
many proteins. In this work, we developed one protein sequence-
based and three structure-based descriptors and applied them to
diverse protein engineering tasks. Similar approaches with those
descriptors would be promising and useful if the prediction models
are trained with sufficient quantitative experimental data from
high-throughput assays for industrial enzymes or protein drugs.
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