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The blood-brain barrier (BBB) functions as a dynamic boundary that protects the central
nervous system from blood and plays an important role in maintaining the homeostasis of
the brain. Dysfunction of the BBB is a pathophysiological characteristic of multiple
neurologic diseases. Glycocalyx covers the luminal side of vascular endothelial cells
(ECs). Damage of glycocalyx leads to disruption of the BBB, while inhibiting glycocalyx
degradation maintains BBB integrity. Heparin has been recognized as an anticoagulant
and it protects endothelial glycocalyx from destruction. In this review, we summarize the
role of glycocalyx in BBB formation and the therapeutic potency of heparin to provide a
theoretical basis for the treatment of neurological diseases related to BBB breakdown.
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INTRODUCTION

The blood-brain barrier (BBB) acts as a blockade to prevent harmful substances from entering the
brain and thus protects the normal operation of cerebral cells. This protective function depends on
the unique and dynamic structure of the BBB, which is composed of capillary endothelial cells with
tight junction, basement membrane and astrocytic endfeet (1, 2). Damage to this structure leads to
the dysfunction of the BBB and subsequent disorder of brain activity, which has been demonstrated
in various neurological diseases (3, 4).

Glycocalyx refers to glycoproteins and proteoglycans that covers the luminal surface of
endothelial cells with a gel-like characteristic. This special structure contributes to the formation
of a physical and charged barrier (5–8) and mediates mechanical transduction (9, 10), vascular
permeability and the inflammatory response (11, 12). The role of this proteoglycan coat in activating
antithrombin has been well demonstrated. Dysfunction of the BBB has been associated with
aberrations in glycocalyx generation and function.

Heparin is a strongly acidic polysulfated mucopolysaccharide that was named based on its first
identification in liver tissue. It also resides in tissues such as the lung, vascular wall and intestinal
mucosa as a natural anticoagulant. Heparin protects endothelial glycocalyx from degradation and
thus shows efficacy in mitigating cerebral cell impairment and improving prognosis in diseases with
BBB dysfunction, such as subarachnoid hemorrhage (13, 14), traumatic brain injury (TBI) (15)and
epilepsy (16). In this brief review, we summarize several recent studies on BBB derangement,
focusing on the role of glycocalyx as well as the therapeutic value of heparin. We further discuss
several hypothetical mechanisms underlying the benefits of these two regulators.
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BBB

The BBB is present between the brain and vascular tissues in the
central nervous system, including penetrating arteries and
arterioles, dense capillary beds, posterior capillary venules, and
drainage venules (17). It is mainly composed of brain
microvascular endothelial cells, pericytes, astrocytes and
acellular components of the basement membrane (BM) (18,
19). The crucial util ity of BBB in maintaining the
environmental balance within the brain has been investigated
in detail. Its protective function is achieved by inhibiting the
entry of peripheral immune cells to brain tissue, delivering
nutrients, removing toxic substances, and controlling the solute
exchange between blood and brain. The BBB also works as a
semi-permeable barrier to regulate the inflow and outflow of
molecules (20, 21).

Nerve signaling within the central nervous system (CNS)
requires a highly controlled microenvironment. BBB, Blood-CSF
barrier and arachnoid barrier form barriers between the blood
and CNS. The BBB at the level of cerebral microvascular
endothelium is the main site of blood exchange in the central
nervous system. All organisms with well-developed central
nervous systems have a BBB (22). In the brain and spinal cord
of mammals, including humans, the BBB is produced by ECs that
form the walls of capillaries. The combined surface area of these
microvessels constitutes by far the largest blood-brain exchange
interface, with the total area used for exchange, in the average
adult brain being between 12 and 18 square centimeters. CNS
vessels are continuous, non-porous vessels, but also contain a
range of additional properties that enable them to tightly regulate
the movement of molecular ions and cells between the blood and
CNS (17, 23). The severe restrictions on the barrier ability makes
the BBB to strictly regulate the steady state of the central nervous
system, the function and protect the central nervous system
neurons in the normal from the effects of toxin pathogens
inflammatory injury and disease is very important. The BBB is
characterized primarily within ECs, but is induced and
maintained through key interactions with parietal cells,
immune cells, glial cells, and nerve cells that interact at the
neurovascular unit.

ECs are connected by tight junctions (TJs), a key feature of the
BBB that significantly reduces the penetration of polar solutes
through paracellular diffusion channels between plasma and
brain cell extracellular fluid via endothelial cells (24, 25). In
addition, CNS ECs contain two types of transporters. The first
type is efflux transporter, which uses ATP hydrolysis to transport
a wide range of small molecules back to the blood along
concentration gradient (26). The second is a highly specific
nutrient transporter that promotes the passage of specific
nutrients into the central nervous system through the blood-
brain barrier, as well as the clearance of specific wastes from the
central nervous system into the blood (27). The outer membrane
surface of EC is covered by the basement membrane. These
membrane surfaces merge around capillaries, but separate
behind capillaries at venules, forming a perivascular space for
cerebrospinal fluid drainage for immunosurveillance (28).
Pericytes play an important role in regulating angiogenesis,
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extracellular matrix deposition, wound healing, immune cell
infiltration, and blood flow induced by neural activity, which
locate outside the ECs and embed in the vascular basement
membrane (29). Moreover, the BBB also contains Astrocytes.
Astrocytes are a major glial cell type that tends to polarize
cellular processes surrounding neuronal processes or blood
vessels (30). The ends of the basal processes almost completely
surround blood vessels and contain a discrete set of proteins
including dystroclycan, dystrophin, and aquaporin 4. This
astrocyte endothelial interaction is critical in regulating blood
flow (31). Finally, CNS-associated macrophages are elongated
cells located between astrocyte terminals and parenchymal blood
vessels (mainly arteries and veins), and when they are inactive
they extend along the perivascular space and provide the first line
of natural immunity by phagocytic debris (32, 33).
BBB DYSFUNCTION

Breakdown of the BBB occurs in a variety of neurological
diseases, such as multiple sclerosis (MS), stroke, Alzheimer’s
disease, vascular dementia, cerebral microvascular disease, brain
trauma and epilepsy (34–43). BBB disruption leads to ion
dysplasia edema and neuroinflammation, leading to neuronal
dysfunction increased intracranial pressure and neuronal
degeneration. However, the mechanisms of BBB dysfunction
and their role in disease onset and progression or recovery are
not fully understood. The term BBB breakdown conjudes up
images of physical walls being broken down, allowing molecules
to flow continuously from the blood into the brain. However, the
BBB is not a wall, but a set of physiological properties, and
changes are just one property (transcytosis transport) that can
significantly alter the neural environment (44). Various
mechanisms of BBB dysfunction cause different characteristics
of central system diseases. Therefore, the BBB is not a switch, and
it is crucial to understand the characteristics and consequences
behind each instance of dysfunction.
MULTIPLE SCLEROSIS (MS)

Central nervous system immune infiltration is a key step in the
pathophysiology of MS. The primary sites of central nervous
system immune monitoring in healthy persons are the blood CSF
barriers of the choroid plexus and meninges, both of which are
important sites of initial lymphocyte activation in experimental
autoimmune encephalomyelitis (EAE) model (45–51). These
immune cells first enter the perivascular space around
posterior venules of capillaries (52), and enter the parenchyma
after decomposition of basement membrane (53, 54). Leukocyte
derived cytokines activate CNS ECs and induce expression of
leukocyte adhesion molecules (50, 55, 56), resulting in a large
number of immune cell infiltrates into the parenchyma. Limiting
immune cell transport across the BBB has been shown to be
effective against MS through preventing immune cells from
interacting with endothelial VCAM1, greatly reducing the
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formation of new lesions (57). The time course of leakage was
studied by dynamic magnetic resonance enhancement (58–61).
Although barrier leakage is almost always present in new lesions,
it is rarely observed in older lesions (58, 59). Interestingly, MRI
evidence suggests that BBB permeability is the initial event for
the formation of lesion subsets, but in other cases, lesion
formation precedes barrier dysfunction (60).
ISCHEMIA/STROKE

There are two stages of BBB dysfunction in stroke: increased
nonspecific molecular endocytosis is the first stage of dysfunction,
followed by structural changes in tight junctions (62). The leakage
was evident in the first few hours after the initial injury, then
decreased, and then reappeared the next day (63, 64). Most cell
death resulting in neurological impairment occurs within a few
days of stroke. Therefore, secondary BBB leakage may be an
important therapeutic target. It also been reported to reduce
infarct volume by leukocyte adhesion molecule knockout
or antibodies to leukocyte adhesion molecules (65–68). So
the importance of leukocyte infiltration in pathogenesis
remains questionable.
EPILEPSY

There is a clear link between epilepsy and BBB dysfunction.
Experimental disruption of the BBB by osmotic shock can lead to
epileptic seizures in patients (69), while diseases with impaired
BBB such as infectious inflammatory stroke and traumatic brain
injury also can lead to epileptic seizures and seizures (70). In
addition, neuroinflammation has been speculated to be related to
the etiology of epilepsy. The onset and recurrence of epilepsy can
be inhibited by pharmacological or gene knockout blocking
leukocyte vascular interactions (71). Interestingly, bbB-
GLUT1-deficient patients develop epilepsy (72, 73),
demonstrated the critical role of BBB transport in normal
brain function. Brain tissue analysis of epileptic patients
showed increased parenchymal albumin, suggesting large
molecules of blood-brain extravasation (74, 75). At the visual
level, there is also evidence that blood-brain barrier leakage can
be seen on MRI enhancement in epileptic patients (76–78). In
addition, patient samples showed a regional reduction of GLUT1
(79), and positron emission tomography showed reduced uptake
and metabolism of epileptic foci (74, 80).
ALZHEIMER’S DISEASE (AD)

Cerebrovascular endothelial dysfunction and white blood cells
crossing the BBB may be involved in the occurrence and
development of neurodegenerative diseases such as AD and
Parkinson’s disease (PD). Some imaging studies have found
evidence of BBB leakage in AD patients and suggested that
BBB dysfunction is an early biomarker of AD (4, 81–83).
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In addition to leakage, BBB Ab transport dysfunction may also
lead to pathological changes in AD (84, 85). Late glycation end-
product receptor (RAGE) inputs Ab into the central nervous
system (86). RAGE activity was hypothesized to drive CNS
amyloid deposition in AD patients (87). In contrast, soluble
LRP and ApoE are both Ab chaperones on the cell surface, which
are associated with the clearance of receptors and promote Ab
extrusion from the brain back into the blood through the blood-
brain barrier (88). In AD, these interstitial channels seem to be
altered, which is hypothesized to lead to the accumulation of
soluble Ab in the perivascular space and the formation of toxic
Ab oligomers (89). Soluble amyloid B can also stimulate the
metastasis of monocytes, enhance the pathology of Tau protein,
induce the secretion of pro-inflammatory cytokines (TNF and
IL-6) and chemokines, activate the activator MT1-MMP of
MMP-2, stimulate the production of MMP-9, and activate the
production of reactive oxygen species (ROS) (90). However, a
recent study found that BBB dysfunction is an early marker of
cognitive decline unrelated to Ab or Tau accumulation (83), but
more details are needed regarding the extent of BBB dysfunction
at various points during the AD time course.
GLYCOCALYX IN BBB INTEGRITY
AND ACTIVITY

Glycocalyx covers the surface of the lumen side of vascular
endothelial cells. Glycocalyx is mainly composed of
proteoglycan (PG) of varying sizes and the negatively charged
glycosaminoglycan (GAG) side chain (43). The core proteins of
glycocalyx bind to the cell membranes through transmembrane
domains (syndecans) or glycosylphosphatidylinositol anchors
(glypicans). GAG side chains are divided into five types:
heparin sulfate (which accounts for 50%–90% of GAG side
chains), chondroitin sulfate, hyaluronan, keratin sulfate and
dermatan sulfate. Endothelial glycocalyx constitutes
neurovascular units, an important physiological structure that
guarantees neuronal homeostasis and the integrity of the
vascular wall (91).

However, what exactly is the relationship between glycocalyx
and BBB? Nikolay Kutuzov.et al used two-photon microscopy to
document the passive transport of four different sizes of luciferin
sodium (376 Da), Alexa Fluor (643 Da), 40 kda dextran and 150
kda dextran from the blood to the brain at the individual cortical
capillary level in anesthetized mice. This experiment supports
that the BBB consists of a calyx glycosus on the lumen side of the
endodermis, the endothelium itself, and the extravascular lumen
(92) (Figure 1).

Regarding the mechanisms underlying the protective function
of glycocalyx in endothelial performance, the formation of a
physical barrier between plasma and endothelial cells is the most
critical factor as it reduces the chance for harmful circulatory
components to contact the endothelial surface (93). A complete
and stable endothelial glycocalyx inhibits the interaction between
not only molecules but also blood cells and endothelial cells (94–
96). The degradation of the endothelial glycocalyx during
December 2021 | Volume 12 | Article 754141
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inflammation or ischemic disease enhances the interactions
between blood cells and endothelial cells (95, 97), which causes
endothelial dysfunction and damage to the BBB. Moreover, the
physical barrier of the endothelial glycocalyx mitigates the
oxidative stress–induced BBB dysorganization. As described
above, the endothelial glycocalyx contains a charged side chain
with a large number of sulfate residues, especially heparin sulfate.
This feature confers endothelial glycocalyx a net negative charge,
and thus it acts like a giant molecular sieve that resists negatively
charged molecules. This kind of surface also forms an
electrostatic barrier for plasma cells and proteins (8).

Another trait of glycocalyx in regulating shear stress imposed
on vascular endothelium has been uncovered. Some studies
demonstrated the role of glycocalyx in mechanical transduction
(9, 10) as its specific structure translates mechanical forces into
biochemical signals, such as the activation of endothelial nitric
oxide synthase and the formation of nitric oxide (NO) (98). Under
normal physiological conditions, the adhesion molecules of
endothelial cells, such as PECAM, VCAMs and ICAMs, are
hidden in the structure of glycocalyx (11), which also prevents
the interaction of platelets or leukocytes with endothelial cells.
During inflammation, the endothelial glycocalyx is destroyed by
TNF-a and LPS as well as activated mast cells, which release
cytokines, proteases, histamine, and HPSE. Disruption of the
glycocalyx exposes endothelial cells to adhesion molecules,
triggering the rolling and adhesion of leukocytes and platelets
(12) and leading to the coagulation of blood. In addition,
antithrombin III blocks thrombin activation factor IX and
activation factor X. This anticoagulant activity is enhanced by
binding heparin sulfate. Moreover, heparin cofactor II is activated
after the stimulation of GAG by dermatan sulphate. Thromboxane
contains chondroitin sulfate, another GAG that interacts with
thrombin to mobilize protein C anticoagulant pathways. Tissue
factor pathway inhibitors depress the activity of VIIA and Xa by
binding to heparin sulfate (11) (Figure 2).
Frontiers in Immunology | www.frontiersin.org 4
Endothelial glycocalyx coats healthy vascular endothelium
and plays an important role in vascular homeostasis. Although
cerebral capillaries are categorized as continuous, as are those in
the heart and lung, they likely have specific features related to
their function in the blood brain barrier (99). In a previous
experiment, C57BL6 mouse brain hearts and lungs were treated
with an alkaline Fxative containing lanthanum, which preserves
the structure of glycocalyx and is examined by scanning and
transmission electron microscopy. It found that endothelial
glycocalyx is present over the entire luminal surface of cerebral
capillaries. The percent area physically covered by glycocalyx
within the lumen of cerebral capillaries was about 40%, which is
significantly more than in cardiac and pulmonary capillaries.
Upon lipopolysaccharide-induced vascular injury, the
endothelial glycocalyx was reduced within cerebral capillaries,
but substantial amounts remained. By contrast, cardiac and
pulmonary capillaries became nearly devoid of glycocalyx.
These findings suggested the denser structure of glycocalyx in
the brain is associated with endothelial protection and may be an
important component of the blood brain barrier (99). However,
in contrast with glycocalyx on other blood vessels, the specificity
of the protective mechanism of glycocalyx on BBB is not known.

As an important protector of BBB integrity (100), glycocalyx
is fragile and highly susceptible to adverse episodes such as
ischemia-reperfusion, inflammation, trauma, sepsis, and high
blood volume (11, 101). Major constituents of the glycocalyx,
FIGURE 2 | Diagram of the relationship between glycocalyx and the blood-
brain barrier in health and dysfunctional states. In health: The intact glycocalyx
can limit vascular wall permeability to macromolecules (including albumin).In
dysfunction: When damage affects both the glycocalyx, increases in the
vascular wall permeability will result, resulting in leukocyte adhesion and
thrombosis. BM, basement membrane; TJ, tight junction; EC, endothelial cell.
FIGURE 1 | Components of the tripartite BBB. Glycocalyx is located on the
endothelial surface of blood vessels and is in contact with various components
in the blood. It is the first line of defense of BBB.
December 2021 | Volume 12 | Article 754141
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including syndecans, heparan sulphates and hyaluronan, are
shed from the endothelial surface into blood and urine in a
variety of acute and chronic clinical conditions (102, 103).
Matrix metalloproteases may shed syndecans and heparanase,
released from activated mast cells, cleaves heparan sulphates
from core proteins. According to new data, not only
hyaluronidase but also the serine proteases thrombin, elastase,
proteinase 3 and plasminogen, as well as cathepsin B lead to loss
of hyaluronan from the endothelial surface layer, suggesting a
wide array of potentially destructive conditions (102) (Figure 3).
It is worth mentioning that there are four types of Syndecans
(numbered 1 through 4), but Syndecan-1 (sdc1) appears to be the
most common type of endovascular endothelial surface, usually
sdc1 has been measured in human studies. Although in SDC1
(-/-) mice it can be replaced by other proteoglycans to form
hydrodynamically related glycocalyx (104), the loss of sdc1
induces a pro-inflammatory endothelial phenotype (105). The
breakdown of physical barrier caused by the degradation of
glycocalyx leads to the contact of endothelial cells with blood
cells and other harmful components, evoking local inflammation,
edema, platelet aggregation, oxidative stress, and loss of vascular
reactivity (106, 107). In the nervous system, the degradation of
endothelial glycocalyx increases the BBB permeability, promotes
cerebral edema and impairs vasodilation. Previous studies revealed
blood-brain membrane leakage and brain edema upon glycocalyx
degradation after asphyxia, cardiac arrest and cardiopulmonary
resuscitation in rats (108). Therefore, the repair of glycocalyx has
emerged as a potential therapeutic target for multiple brain
dysfunctions with BBB breakdown.
Frontiers in Immunology | www.frontiersin.org 5
Organ or whole body ischemia followed by reperfusion, as
found in cardiopulmonary bypass, repair of aortic aneurysms
and deep hypothermic cardiac arrest, consistently give rise to
elevated levels of sdc1 and heparan sulphate in blood (109).
Cardiac arrest syndrome has also been associated with increased
plasma syndecan, heparan sulphate and hyaluronan (110). Such
phenomena presumably reflect shedding of the endothelial
glycocalyx and may account for the development of edema and
exacerbated leukocyte and platelet adhesion in reperfused tissue,
which contributed to reperfusion damage (111–114). The
mediators of ischemia and hypoxia-induced endodermis
shedding may be adenosine and inosine, both of which are
produced in large quantities by degradation of high-energy
adenine nucleotides (ATP, ADP) under hypoxia. Both are
stimulants of adenosine type 3 receptors found on human
mast cells (115, 116). At least those resident mast cells found
in the human myocardium contain granular stores of the enzyme
heparanase, release of which into the extracellular space will
cause cleavage of heparan sulphate from the endothelial
glycocalyx (117, 118). Mast cells also contain a large number
of proteases cytokines and chemokines, and potential inducers of
sinticon and hyaluronan sheddin (116, 119–121).

The relationship between glycocalyx destruction and disease
may be most obvious in sepsis. An increase in plasma sdc1
concentration in individual patients is highly negatively
correlated with survival (122–124). Similarly, serum
hyaluronan concentration in critically ill patients, most of
whom were sepsis patients, depend on the severity of the
disease (125). In another study, anti-tumor necrosis factor -a
(TNF-a) was used antibody Etanercide injection of
lipopolysaccharide reduced the shedding of glycocalyx
components in human volunteers (126). Experiments on
isolated heart preparations have revealed massive destruction
of the glycocalyx after application of TNF-a (119).

Respiratory failure associated with sepsis is accompanied by
higher heparanase activity in blood and lung tissue than in
normal human biopsies and by elevated plasma heparan
sulphate and hyaluronan levels (127, 128). In a mouse model
of sepsis, shedding of lung glycocalyx heparan sulphate was
induced by lipopolysaccharide (LPS) via TNF-a. The authors
speculate that this occurs through activation of endothelial
heparinase. Subsequent lung microvascular degradation of
glycocalyx promotes adhesion of neutrophils (PMN) (127).
PMN contains many proteolytic enzymes, including serine
protease elastase and protease 3. These enzymes may explain
the cleavage of the syndecans protein core and the shedding of
hyaluronan by proteolysis of hyaluronan binding receptor CD44
(129, 130). To determine whether elastin is released from
neutrophils attached to the vascular wall, Bernhard F. Pecker
et al. injected human neutrophils prestimulated by fMLP into the
isolated coronary artery system of guinea pig hear and stained
them with anti-human elastin antibodies. Immuno-
histochemical examination revealed elastase, both in granula
within the PMN and beginning to spread out from the PMN
along the surface of the endothelial vessel lining, then into the
glycocalyx (102).
FIGURE 3 | Degradation of glycocalyx. Heparanase directly cleaves the
heparan sulfate chains attached to core proteoglycans. Matrix
metalloproteinases (MMPs) cleave proteoglycans (e.g. syndecan-1) directly
from the endothelial cell membrane. Hyaluronidase cleaves the hyaluronan.
HS, heparan sulfate; HA, hyaluronic acid; HPSE, heparanase; HAase,
hyaluronidase; MMP, matrix metalloproteinase.
December 2021 | Volume 12 | Article 754141
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HEPARIN AMELIORATES BBB
DYSFUNCTION BY REGULATING
GLYCOCALYX

Heparin is a type of glycosaminoglycan with anticoagulant
and anti-inflammatory features that has been widely used in
clinical practice to prevent venous thromboembolism (VTE).
Glycosaminoglycan belongs to glycocalyx in essence, so the
heparin acts as an exogenous glycosaminoglycan to repair or
protect glycocalyx (131). Recently, some animal studies and
clinical trials have revealed other benefits of heparin in
addition to its anticoagulant function, including protease
modulation, anti-complement and anti-inflammatory activities
(132, 133). Moreover, heparin regulates angiogenesis (134),
leucocyte recruitment (135), platelet activation (136), adhesion
molecule expression (137), and cytokine release stimulated by
lipopolysaccharide (LPS) (93). Yini et al. observed a reduction of
glycocalyx shedding by therapeutic doses of heparin via inhibited
inflammation in a canine septic shock model (138), which might
be due to the inhibition of heparinase. In sepsis, heparin protects
glycocalyx from degradation by inhibiting HPSE and the
subsequent decomposition of heparin sulfate. A preclinical
study reported that the thinning of the glucose calyx layer in
pulmonary microvessels was caused by the degradation of
heparin sulfate upon TNF-a-dependent heparinase activation,
which was weakened by heparin treatment (127). As heparinase
promotes MMP expression, heparin, by inhibiting heparinase
activity, also reduces MMP levels (139).

The efficacy of heparin in treating BBB dysfunction has also been
previously reported. In subarachnoid hemorrhage (SAH), heparin
infusion showed benefits for prognosis (13, 14). In preclinical
models of SAH, heparin infusion reduced the inflammatory
response in brain tissue (14), which might be ascribed to the
reduction of leukocyte extravasation (140). Simard JM et al. made
rat models of SAH in the experiment. The rats were implanted with
mini-osmotic pumps that delivered either vehicle or unfractionated
heparin (10 U/kg/h IV) beginning 12 h after SAH. The result
showed that administration of heparin significantly reduced
neuroinflammation, demyelination, and transsynaptic apoptosis
(14). Similarly, James RFet alretrospectively analyzed all patients
treated with aSAH between July 2009 and April 2014. In this study,
the Montreal Cognitive Assessment (MoCA) was used to evaluate
cognitive changes in aSAH patients treated with the Maryland
LDIVH protocol compared with controls. This study suggests that
the Maryland LDIVH protocol may improve cognitive outcomes in
aSAH patients. But a randomized controlled trial is needed to
determine the safety and potential benefit of unfractionated heparin
in aSAH patients (13).

Brain injury accounts for death or disability from trauma,
with persistent tissue inflammation and neurological
impairment. This would lead to poor outcomes, including
cognitive impairment, paralysis, coma, and brain death.
Persistent post-injury inflammation is thought to be the result
of BBB breakdown, with massive fluid and cell leakage into the
stroma causing cerebral edema. Circulating leukocytes interact
with endothelial cells in microcirculation (141, 142), and then
Frontiers in Immunology | www.frontiersin.org 6
cause the release of toxic substances (143–145). Animal studies
showed that the early repeated administration of heparin after
TBI reduced the contact between active leukocytes and
endothelium in the peripheral microcirculation (145), which
also diminished the local venular albumin leakage (144).
Another study analyzed patients with severe TBI admitted to a
level 1 trauma center in 2009-2010. These patients were classified
into one of three groups. Those who received the first dose of
prophylactic subcutaneous heparin or LMWH in the first 72
hours after admission (early) or 5 days or more after admission
(late). The others receiving initial prophylactic heparin analogs
after 72h and before 120h after admission were classified into the
intermediate group. The results of this study indicate that the
slowest progression of brain injury on repeated head CT scans
was in the early group up to 10 days after admission. It suggested
that early administration of heparin in patients with severe TBI
improved patient prognosis (15). In the case of status epilepticus
(SE), animal epilepsy models showed that BBB damage allows
leukocytes, cytokines, chemokines and fluids to enter the brain
parenchyma when the glycocalyx is degraded. Astrocytes and
microglia were activated, which aggravated the inflammatory
response and tissue edema in the brain and further damaged the
BBB, forming a vicious cycle. In this experiment, the mice treated
with heparin showed less degradation of glycocalyx after SE
compared with the control group. It suggested the importance of
glycocalyx degradation in cerebral edema and SE outcome, and
indicated heparin treatment might be a new strategy for brain
protection in SE (16).
DISCUSSION

Normal neurological function depends on various balance
machinery inside brain, particularly regulation of the BBB.
Endothelial glycocalyx acts as an important component
affecting BBB function. Notably, endothelial glycocalyx is
susceptible to damage, resulting in the BBB breakdown and the
aggregation of brain injury. Restoration or maintenance of the
structure and function of endothelial glycocalyx is a promising
therapeutic strategy for various brain disorders. Therefore,
studies on the relationship between the endothelial glycocalyx
and the integrity of BBB have drawn much attention. The
glycocalyx of the vascular endothelial cells of the nervous system
is thicker than that of the heart and pulmonary. However, no
study has been conducted to explain the significance of these two
different phenomena. In sepsis and other systemic diseases,
whether the nervous system is less vulnerable to damage due to
thicker glycocalyx. It is also the direction of our next research.
Heparin has shown considerable potency for the protection of
glycocalyx, which alleviates the manifestation and improves the
prognosis of neurological diseases associated with BBB
dysfunction. But at present, there are few studies on the
treatment of BBB with heparin, especially clinical studies.
Clinical studies have shown improvement in brain function
through clinical scores and imaging. Animal experiments also
demonstrated the therapeutic effect of heparin through parameter
December 2021 | Volume 12 | Article 754141
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measurement. These studies cannot fully suggest that heparin has
a positive effect on glycocalyx integrity or BBB functionality.
Moreover, heparin itself is an anticoagulant substance, in order
to ensure the safety of patients with subarachnoid hemorrhage, a
large number of clinical trials are still needed to study the
complications of using heparin in such patients. The glycocalyx
acts as part of the blood-brain barrier, and evenmore as part of the
nervous system. In turn, the nervous system as a whole has all its
components connected to maintain its normal function. In the
future, more basic and clinical studies on the extensive mechanism
of heparin to maintain BBB integrity by protecting glycocalyx
are warranted.
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