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Abstract

In everyday life, we are continuously struggling at focusing on our current goals while at the same time avoiding
distractions. Attention is the neuro-cognitive process devoted to the selection of behaviorally relevant sensory information
while at the same time preventing distraction by irrelevant information. Distraction can be prevented proactively, by
strategically prioritizing task-relevant information at the expense of irrelevant information, or reactively, by suppressing
the ongoing processing of distractors. The distinctive neuronal signature of these suppressive mechanisms is still largely
unknown. Thanks to machine-learning decoding methods applied to prefrontal cortical activity, we monitor the dynamic
spatial attention with an unprecedented spatial and temporal resolution. We first identify independent behavioral and
neuronal signatures for long-term (learning-based spatial prioritization) and short-term (dynamic spatial attention)
mechanisms. We then identify distinct behavioral and neuronal signatures for proactive and reactive suppression
mechanisms. We find that while distracting task-relevant information is suppressed proactively, task-irrelevant
information is suppressed reactively. Critically, we show that distractor suppression, whether proactive or reactive, strongly
depends on the implementation of both long-term and short-term mechanisms of selection. Overall, we provide a unified
neuro-cognitive framework describing how the prefrontal cortex deals with distractors in order to flexibly optimize
behavior in dynamic environments.

Key words: attention, attention selection, attentional spotlight, distractor suppression, prefrontal cortex, priority map,
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Introduction
Focusing on current behavioral goals while at the same time
avoiding distraction is critical for survival. Attention is the
neuro-cognitive system devoted to the filtering of incoming
information so that behaviorally relevant events are selected at
the expense of behaviorally irrelevant events and distractors.
Subjects accomplish this task by leveraging selective and
suppressive attentional mechanisms, the effect of which is to
optimize visual resources to ongoing behavioral demands and
environmental constraints. The top-down selection of visual

information takes place through two distinct mechanisms
(Baluch and Itti 2011; Gilbert and Li 2013; Nobre and Kastner
2014; Moore and Zirnsak 2017). Task-relevant items can be
prioritized because subjects have learned the specific contin-
gencies of the ongoing task, resulting in a biased processing
of relevant task items relative to irrelevant task items, and
defining a so-called spatial priority map (Desimone and Duncan
1995; Chelazzi et al. 2014; Li et al. 2018). Task-relevant items can
also be prioritized by a voluntary allocation of the attentional
spotlight (Posner 1980; Doricchi et al. 2009; Di Bello et al. 2019).
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Growing evidence indicate that this latter prioritization is highly
dynamic in time and space (Landau and Fries 2012; Fiebelkorn
et al. 2013, 2018; Astrand et al. 2016; Fiebelkorn and Kastner
2019; Gaillard et al. 2020). This voluntary allocation of attention,
also referred to as covert or endogenous attention, depends on
the spur of the moment and contrasts with the learning-based
spatial prioritization that operates on a larger time scale (Leber
2010). It is hypothesized that both these attentional processes
share the same neuronal substrates.

On the other hand, subjects cope with distractors by
implementing both proactive and reactive mechanisms of
suppression. Proactive suppression is mainly conceived as a
consequence of the top-down control of these two described
attentional selective mechanisms. For instance, the allocation
of the (long- and short-term) attentional resources toward
the expected task-relevant information also involves the
suppression of the irrelevant stimuli, suggesting a unique
push-pull selection/suppression mechanism (see Chelazzi
et al. 2019 for an extended review). However, in daily life,
irrelevant stimuli still often succeed in capturing our attention
and our visual resources. In such eventuality situation, the
reactive suppression of their visual processing and the related
decision-making processes needs to be implemented in order
to interrupt inappropriate responses. Despite proactive and
reactive mechanisms of suppression being well established from
a behavioral point of view (Geng 2014; Marini et al. 2016), the
environmental circumstances favoring the implementation of
one or the other are still unknown. For example, it is not clear if
the steady allocation of the attentional resources that underlies
proactive suppression corresponds to the same mechanisms
as the attentional disengagement that characterizes reactive
rejections.

Mirroring this state of the art, the neuronal correlates under-
lying proactive and reactive mechanisms of visual suppression
are still largely debated (Hickey et al. 2009; Marini et al. 2016;
Vissers et al. 2016; Perri 2019). Preliminary studies indicate that
while proactive strategies are mainly implemented by a gen-
eral sustained activity in the fronto-parietal attention network
(Corbetta et al. 2008; Demeter et al. 2011), reactive mechanisms
are related to the activation of the medio-frontal and insular
cortex (Durston et al. 2003; Wager et al. 2005). However, it has
been also suggested that these two types of suppression may
share, at least partially, common neural substrates (Marini et al.
2016; Cosman et al. 2018; Perri 2019). Frontal eye field (FEF) in
Prefrontal cortex (PFC) plays a key role both in learning-based
spatial prioritization (Moore and Fallah 2001; Thompson and
Bichot 2005; Squire et al. 2013; Gaspelin et al. 2015) and in the
voluntary (Armstrong et al. 2009; Gregorious et al. 2009) and
dynamic allocation of spatial attention (Astrand et al. 2016, 2018;
Gaillard et al. 2020). Furthermore, neurons of this area are both
involved in distractor suppression and target selection (Cosman
et al. 2018), corroborating the idea of FEF as a critical neural node
for the filtering visual information.

In the present study, we performed FEF neural recordings,
while monkeys were engaged in a forced choice cued target
detection task, in the presence of both task-relevant and task-
irrelevant visual stimuli. Thanks to machine-learning methods
applied to FEF activity, we decode the dynamic attention spot-
light (AS) in order to explore the attentional filtering of the
visual information with an unprecedented spatial and temporal
resolution. In the following, we specifically describe distinct
neuronal mechanisms associated with all of stimulus selec-
tion and suppression. We further provide behavioral and neural

evidences demonstrating that 1) learning-based spatial prior-
itization is implemented independently from dynamic spatial
attentional selection; 2) proactive and reactive suppression are
implemented by two distinct neuro-cognitive mechanisms; and
3) reactive suppression is specific of irrelevant distractors and
depends on the interplay of both learning-based and dynamic
spatial prioritization mechanisms. Overall, we thus provide a
unified neuronal framework of how the prefrontal cortex imple-
ments spatial selection and distractor suppression in order to
flexibly optimize behavior in dynamic environments.

Materials and Methods
Subjects and Surgical Procedures

Two adult male rhesus monkeys (Macaca mulatta), weighing 8 kg
(monkey D) and 7 kg (monkey HN), contributed to this experi-
ment. Both monkeys underwent a unique surgery during which
two MRI compatible recording chambers were implanted over
the left and the right FEF hemispheres, respectively, as well as a
head fixation post. Gas anesthesia was carried out using Vet-
Flurane, following an induction with Zolétil 100. Post-surgery
pain was controlled with a morphine pain-killer (Buprecare),
three injections at 6-h interval (first injection at the beginning
of the surgery) and a full antibiotic coverage was provided with
Baytril 5%, one injection during the surgery and thereafter one
each day during 10 days. A 0.6-mm isomorphic anatomical MRI
scan was acquired post-surgically on a 1.5 T Siemens Sonata
MRI scanner, while a high-contrast oil-filled 1 mm × 1 mm grid
was placed in each recording chamber, in the same orientation
as the final recording grid. This allowed a precise localization
of the arcuate sulcus and surrounding gray matter underneath
the recording chambers. The FEF was defined as the anterior
bank of the arcuate sulcus and we specifically targeted those
sites in which a significant visual and/or oculomotor activity
was observed during a memory guided saccade task at 10◦–15◦
of eccentricity from the fixation point. All surgical and experi-
mental procedures were approved by the local animal care com-
mittee (C2EA42–13-02-0401-01) in compliance with the European
Community Council, Directive 2010/63/UE on Animal Care.

Endogenous Cueing Detection Task and Experimental
Setup

The task is a 100% validity endogenous cued luminance change
detection task (Fig. 1A). The animals were placed in front of a
PC monitor (1920 × 1200 pixels, refresh rate of 60 Hz) with their
heads fixed. Stimulus presentation and behavioral responses
were controlled using Presentation®. To start a trial, the mon-
keys had to hold a bar placed in front of their chair, thus inter-
rupting an infrared beam. The appearance of a central fixation
cross (size 0.7◦ × 0.7◦) at the center of the screen, instructed the
monkeys to maintain their eye position (Eye tracker—ISCAN,
Inc.) inside a 2◦ × 2◦ window, throughout the duration of the
trial, so as to avoid aborts. Four gray landmarks (size 0.5◦ × 0.5◦)
were displayed, simultaneously with the fixation cross, at the
four corners of a hypothetical square having a diagonal length
of ∼28◦ and a center coinciding with the fixation cross. The four
landmarks (up-right, up-left, down-left, and down-right) were
thus placed at the same distance from the center of the screen
having an eccentricity of ∼14◦. After a variable delay from fixa-
tion onset, ranging between 700 and 1200 ms, a 350-ms spatial
cue (small green square—size 0.2◦ × 0.2◦) was presented next to
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Figure 1. Task. (A) Behavioral task. Monkeys were required to produce a manual response to a cued target luminosity change while ignoring distractors presented at
uncued landmarks (D) or elsewhere in the workspace (d). Central cross: fixation point. Green square: spatial cue. Dotted clouds: attention as cued by task instructions.

(B) Recording sites. On each session, two 24-contact electrodes were placed in the right and left FEFs.

the fixation cross (at 0.3◦), indicating the landmark in which
the rewarding target change in luminosity would take place.
Thus, the cue presentation instructed the monkeys to orient
their attention toward the target in order to monitor it for a
change in luminosity. The change in target luminosity occurred
unpredictably between 1000 and 3300 ms from cue onset. In
order to receive their reward (drop of juice), the monkeys were
required to release the bar between 150 and 750 ms after target
onset (“Hit”). To test the monkeys’ ability at distractor filter-
ing, on half of the trials, one of two distractor typologies was
randomly presented during the cue-target delay, between 1000
and 3200 ms from cue onset. In ∼17% of the trials (D trials), a
change in luminosity, identical to the awaited target luminosity
change, took place at one of the three uncued landmarks. In
these trials, the distractor D was thus identical in all respects
to the expected target, except for being displayed in an uncued
position. In ∼33% trials (d trials), a local change in luminosity
(square) was displayed at a random position in the workspace.
The size of the local change in luminosity was adjusted so as to
account for the cortical magnification factor, growing from the
center to the periphery (Schwartz 1994). In other words, d had the
same size as D when presented at the same eccentricity as D. The
absolute luminosity change with respect to the background was
the same for both d and D. The monkeys had to ignore both the
two distractor typologies (correct rejections—RJ). Responding to
such distractors within 150–750 ms (false alarm—FA) or at any
other irrelevant time in the task interrupted the trial. Failing

to respond to the target (“Miss”) similarly aborted the ongoing
trial.

Electrophysiological Recordings and Spike Detection

Bilateral simultaneous recordings in the two FEF hemispheres
were carried out using two 24-contact Plexon U-probes. The
contacts had an interspacing distance of 250 μm. Neural data
were acquired using a Plexon Omniplex® neuronal data acquisi-
tion system. The data were amplified 500 times and digitized at
40 000 Hz. Neuronal activity was high-pass filtered at 300 Hz and
a threshold defining the multiunit activity (MUA) was applied
independently for each recording contact and before the actual
task-related recordings started. The LFPs were recorded simul-
taneously on the same electrodes as the spikes. LFP signals were
digitized and sampled at 1 kHz and hardware filtered between
0.5 and 300 Hz, and a notch filter was applied online to remove
any 50 Hz.

LFP and MUA Channels Selection

MUA and LFP signals used for all the analyses presented in this
work were selected based on their target-related modulation.
Specifically, MUA activity was smoothed using a 100-ms sliding
window. For each of the four possible target locations, the mean
(baseline) and the standard deviation (SD) preceding the corre-
sponding target onset (time window [−200–0]) were calculated. A
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channel was selected for the current analyses if the signal that
followed target onset [20–400], overcame the baseline ±2.5∗SD
for at least 100 ms and at least one target position. For LFP chan-
nels selection, we included only channels that were artifact- and
noise-free in the voltage domain. We focused on LFP channels
that contributed to target detection, that is, channels showing
a different modulation when the animals correctly responded
to the target (Hits) versus when they did not (Misses). We com-
puted the SD of their baseline average difference, within each
session, in the 200-ms epoch before target onset. To be selected,
the voltage response of the considered channel had to cross a
threshold of baseline average Hit-Miss difference ±2.5∗SD for at
least 30 ms in the time window [30–230 ms] from target onset.
Data analyses were performed using MATLAB (MathWorks).

Decoding Procedure

Training Procedure
Based on our prior work indicating that the endogenous orient-
ing of attention can be reliably decoded from the FEFs using a
regularized optimal linear estimator (RegOLE) (Farbod Kia et al.
2011; Astrand, Wardak, et al. 2014; Astrand et al. 2015, 2016),
with the same accuracy as exogenous visual information, we
trained a RegOLE to associate the neural responses (consisting
in a vector containing the MUA signals collected at each of the
48 recording contacts) just prior to target onset ([−220 + 30] from
target onset), for the first 200 correct trials, with the attended
location, that is, with the expected target presentation land-
mark, based on cue information. Our general objective here
was to have as precise as possible an estimate of the attention
position before a specific visual event, averaging activities over
large enough windows to have a reliable single trial estimate
of the neuronal response on this window, while at the same
time, a not too large time window to have a reliable estimate
of where attention was placed by the subject at a specific time
in the task (Farbod Kia et al. 2011; Gaillard and Hamed 2020).
Differently from the neural analyses, the decoding procedure
was performed including all the recorded channels within the
session.

The RegOLE defines the weight matrix W that minimizes
the mean square error of C = W ∗ (R + b), where C is the
class (here, four possible spatial locations), b is the bias, and
R is the neural response. To avoid over-fitting, we used a
Tikhonov regularization (Astrand, Enel, et al. 2014; You et al.
2016) which gives us the following minimization equation:
norm (W∗(R + b) − C) + λ∗norm(W). The scaling factor λ was
chosen to allow for a good compromise between learning and
generalization. Specifically, the decoder was constructed using
two independent regularized linear regressions, one classifying
the x-axis (two possible classes: −1 or 1) and one classifying the
y-axis (two possible classes: −1 or 1).

Testing Procedure
In order to identify the locus of attention at the moment of target
or distractor presentation in the 20 next new trials following the
initial training set, the weight matrix defined during training
was applied to the average neuronal activity recorded in the
150 ms prior to either target or D and d distractors. The described
training (over 200 previous trials)/testing (over 20 novel trials)
procedure was repeated after every 20 correct responses, by
retraining the decoder with the new database composed by the
last 200 correct trials. This continuous updating of the weight
matrix W is implemented in order to minimize the impact of

possible uncontrolled for changes in the recorded signal during
a given recording session onto the decoding procedure. Average
decoding performance was 66,8% ± 2.6, in line with previous
studies (Astrand et al. 2016), and significantly above chance,
overall, as well as on individual recording sessions. The decoding
of attention performed from the signal of the right Hemifield
(54,44%) and from the signal left hemifield (54,99%) results com-
parable (Kruskal–Wallis nonparamteric test, P = 0.94). This is an
indication that there were no biases in the hemifield represen-
tation in our data. Note that, expectedly, decoding performance
using a unique probe is lower than the decoding performance
using all 48 MUAs at once, due both to a better sampling of
the entire visual field as well as to the use of more neuronal
contacts.

(x,y) Spatial Locus of the Attentional Spotlight

As in Astrand et al. (2016), the readout of the RegOLE was not
assigned to one of the four possible quadrants by applying a
hardlim rule, as usually done for classification purposes. Rather,
it was taken as reflecting the error of the decoder estimate to
the target location, that is, in behavioral terms, as the actual
(x,y) spatial estimate of the locus of the attentional focus to
the expected target location. In Astrand et al. (2016) as well
as in the present manuscript, we show that this (x,y) estimate
of the AS accounts for variations in behavioral responses. In
order to analyze how the distance of the decoded attentional
spotlight to the target or to the distractor affected both behav-
ior and neuronal MUA responses, we computed, for each tar-
get presentation and each distractor presentation, the distance
between the decoded AS and the target (AT) or the distractor (AD
or Ad) as follows: AT = √((xAS—xT)2 + (yAS—yT)2), AD = √((xAS—
xD)2 + (yAS—yD)2), or Ad = √((xAS—xd)2 + (yAS—yd)2), where x and
y correspond to the Cartesian coordinates of the attentional
spotlight, the target (T) or the distractors (D or d).

Statistical Assessment of Behavioral FA Rates

In order to statistically assess the dependence of FA rates onto
the spatial position of d relative to both the target and attention,
we estimated the 95% confidence interval limit using a one-
tail nonparametric random permutation approach. For each d
trial, we randomly reassigned its behavioral classification (i.e.,
Hit, FA, or Miss) and then we recalculated the FA rate (FAs/(Hits
+ FAs)). This procedure was repeated 1000 times and yielded
a 1000 data points representing chance of FA rate distribution,
and this for each spatial discretized position of d. FA rate for real
nonpermuted data was considered significantly above chance if
it fell within the 5% upper tail of its own spatial defined random
permutation distribution.

Behavioral Responses Model Fitting Procedure

In order to determine the fitting model that best depicts the rela-
tionship between overt behavioral performance and the spatial
position of the decoded attentional spotlight, we tested three
regression models (linear, quadratic, and cubic) (cftool, Curve
Fitting App. MATLAB®) and selected the one that provided the
lower Akaike information criterion (AIC) (Choi and Kurozumi
2012), that is, minimizing AIC = 2 k + n Log(RSS/n), where k is the
number of degrees of freedom used in the regression analysis,
RSS is the residual sum of squares of the actual data to the fitting
function, and n is the sample size. To avoid the risk of overfitting,
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if two AIC values did not differ by more than 2 units, we chose
the simplest model to explain the data.

Effect of Decoded Attentional Spotlight Location onto
Target and Distractor-Related Neuronal Responses

In order to estimate the effect of the position of the decoded AS
onto the neuronal responses to the target or to the distractor, for
all trials in which the monkeys were cued to target i (i ranging
from 1 to 4), instantaneous firing rates were normalized with
respect to the peak average response to this target. Normaliza-
tion was performed as follows: For each trial, raw firing rates
were smoothed with a Gaussian kernel convolution procedure.
Each of these smoothed firing rates was then normalized as
follows: Acti(Norm) = (Acti − Baselinei)/(Peaki − Baselinei), where
Acti is the smoothed activity of the trial of interest in time
(gaussian kernel, sigma = 25), in which attention is cued to target
i (i ranging from 1 to 4), Acti(Norm) is this Acti activity normalized
in time, Baselinei is the average pre-target response to target
i in the [−200–0] time interval with respect to target onset,
and Peaki is the peak average response to target i. Trials were
then categorized as a function of AT, AD, or Ad distance (see
above). This normalization procedure thus allowed to quantify
the influence of AT, AD, or Ad, irrespective of the neuron’s
attention or target related spatial selectivity.

Results
We recorded bilaterally from the FEFs of two macaque
monkeys while they were required to perform a 100% validity
endogenous cued luminance change detection task (Fig. 1A,B;
monkeys’ overall performance in the task is described in
Supplementary note 1). In order to make sure that monkeys
used the visual cues to orient their attention, two types of
(to be ignored) distractors were also presented. Task-relevant
distractors (Ds, ∼17% of the trials) were displayed in uncued
target landmarks (landmarks), while task-irrelevant distractors
(ds—the size of which was adapted so as to account for the
cortical magnification factor (Carrasco and Frieder 1997), ∼33%
of the trials) were presented randomly in the visual workspace.
These two types of distractors shared the same shape and same
relative visual contrast. They only differed in where they could
be expected to be presented: either at task relevant landmark or
at task-irrelevant locations. These distractors were exclusively
presented during the attention-orientation epoch, that is, to
say between cue and target presentation, as illustrated in
Figure 1A. Supplementary Figure 1 and Supplementary note 2
describe the attention orientation and target detection neuronal
response properties in the recorded signals. Importantly, and
in contrast with previous studies, behavioral and neuronal
responses are analyzed either 1) as a function of the physical
configuration of the task, thus defining the task-based spatial
priority map, or 2) as a function of the time-resolved readout
of the position of the AS from the FEF population activity,
just prior to stimulus presentation, thus defining the dynamic
spatial filtering of visual information by the AS. This approach
is based on machine-learning decoding procedures applied
to the PFC activity (Astrand et al. 2016; Gaillard et al. 2020),
and allows to estimate the position of the AS in the visual
workspace. Its outcome has been shown to be highly predictive
of overt behavioral performance and reaction times (Astrand
et al. 2016, 2020, Gaillard et al. 2020, Sousa et al. 2021), thus

indicating that it reliably reflects the underlying function
(Supplementary note 3).

Behavioral and Neuronal Correlates of the Task-Based
Spatial Priority Map

The processing of stimuli located in the vicinity of the expected
target location is enhanced (Bettencourt and Somers 2009;
Suzuki and Gottlieb 2013). This is thought to result from
top-down contingent selection mechanisms (Noudoost et al.
2010; Ibos et al. 2013; Chica et al. 2014). However, by virtue
of trial configuration, repetition, and learning, uncued target
placeholders are also prioritized with respect to the background;
this irrespective of current trial cueing information (Chelazzi
et al. 2013; Jiang et al. 2018). Spatial prioritization is probed
by measuring FA rates produced by distractors presented
in the vicinity of the key items of the task. Importantly,
these distractors were adjusted in size depending on what
eccentricity they were presented at, thus compensating for
cortical magnification. Accordingly, FA rates and neuronal
responses to these distractors did not vary between central
and more eccentric distractors (Supplementary Fig. 2, FA
rates: Kruskal–Wallis nonparametric test, P = 0.57; neuronal
responses: Kruskal–Wallis nonparametric test, P = 0.39). In this
first section, we characterize the behavioral and prefrontal
neuronal signatures of task-based spatial prioritization, at
both the cued and uncued landmarks. We measure FA rates
to d distractors, presented randomly throughout the visual
workspace. For data analysis, on each trial, we flip the visual
space such that target location coincides with the upper right
visual quadrant, and the uncued quadrant ipsilateral to the
target falls in the lower right visual quadrant. We compute
FA rates at a 3◦ × 3◦ spatial resolution, cumulating behavioral
data over all trials and all sessions (Fig. 2A). Expectedly, FAs are
significantly enhanced around the cued target location (Fig. 2A,
top right quadrant, ∗, beyond the 95% confidence interval
defined by a one-tail random permutation test). FAs are also
significantly enhanced around the uncued landmarks (Fig. 2A,
top left and bottom left and right quadrants). Visual space in the
vicinity of the uncued landmarks (Fig. 2B—left panel; light gray
area, FA rate = 14,0%) shows higher FA rates compared with areas
with equivalent Td distance (6,92%, dark gray area, Kruskal–
Wallis nonparamteric test, P < 0.05) or shorter (7,14%, brown
area, Kruskal–Wallis nonparamteric test, P < 0.05) but located
away from these locations. In other words, both the cued and
the uncued landmarks are prioritized on any given trial. This
is in agreement with the demonstration that rewarded spatial
contingencies exert a powerful influence on the attentional
control deployment (Della Libera and Chelazzi 2009; Chelazzi
et al. 2013), such that uncued target location might assume a
high behavioral relevance including when not currently used
as a target. Due to cue benefit, on any single trial, the cued
landmark is more prioritized than the other landmarks (see
next section).

FA rates drastically decrease as the distance between distrac-
tors and expected target location increases (Fig. 2B); all sessions
cumulated and binned as a function of Td—from 0◦ to 22◦, step
0.5◦, reproducing previous observations, for example, Suzuki
and Gottlieb (2013). This relationship is best fit by a third-order
polynomial function characterized by a steep initial decrease in
FAs away from the target and a small rebound for Td beyond
14◦ (see Methods, r2 adjusted = 0.972, AIC = 1068.9). This rebound
is probably driven by the observed spatial prioritization around
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Figure 2. Behavioral and neuronal spatial priority map. (A) Spatial map of FA rates as a function of the location of distractor (d) in the workspace. In order to cumulate

behavioral responses over trials of different spatial configurations, trials are flipped such that target location coincides with the upper right visual quadrant, and the
ipsilateral uncued quadrant falls in the lower right visual quadrant. FA rates (%, color scale) are computed independently for distractors (d) presented in (3◦ × 3◦) adjacent
portions of the workspace. Black asterisks indicate FA rates significantly higher than chance, as estimated by a one-tail random permutation test (<95% confidence
interval). (B) FA rates as a function of the distance between the target and distractor d (Td, left) or distractor D (TD, right). Black line corresponds to the third-order

polynomial regression best fit. Horizontal colored lines indicate the FA rate for trials in which d happened in specific areas of the visual scene as shown in the inner
panel left (light gray, around the ipsilateral or the contralateral landmark [LMd = 0◦ ± 2◦]; dark gray: at Td = 20◦ ± 2◦ , excluding distractors d close to landmarks [±2◦];
light brown: around the fixation cross [Fd = 0◦ ± 2◦]). Right panel: FA rates elicited by distractors D, for each of the three possible locations. (C) Neural FA responses as a
function of the distance between distractor d and Target (Td), and associated performance. Left panel: Normalized neural response to d as a function of Td. Four ranges

of Td were considered for the trials’ selection from 0◦ (dark orange) to 12◦ (light orange) in Td steps of 3◦ (intermediate shades of orange). The inset panel represents
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the ipsilateral and contralateral uncued LMs (Fig. 2B, left panel,
light gray shaded bar).

Similar to the behavioral prioritization of task relevant
locations, the evoked visual neuronal response to d on FA
trials strongly depends on Td (Fig. 2C, left panel, note only
target modulated MUAs are included in the analysis, see
Supplementary note 4 for a description of trial number per
Td), reproducing prior observations (e.g., Suzuki and Gottlieb
2013). The same trend is reproduced for correct rejection trials,
although to a lesser extent due to distractor suppression (see
Supplementary Figure 3 and next sections). In addition, this
observation is also reproduced whether considering only d
distractors falling in the preferred quadrant (i.e., within the
visual receptive field) or in the antipreferred quadrant (i.e., in
the surround of the visual receptive fields, Supplementary Fig. 4,
left panels). Last, this is also reproduced for D distractors
(Supplementary Fig. 4, right panels). This neuronal tuning curve
as a function of Td follows the same shape and is highly
correlated to the FA rate as a function of Td (r = 0.99, P < 0.001,
Fig. 2C, right panel), suggesting a tight functional link between
these two measures. Likewise, the evoked visual neuronal
response to D distractor on FA trials strongly depends on TD
(Fig. 2D, left panel, note though that for equal TD, neuronal
response to ipsilateral D is higher than for contralateral D).
Similarly, the neuronal tuning curve and the FA rate as a
function of TD are correlated with each other (r = 0.98, P < 0.05,
Fig. 2D, right panel). Overall, we thus show that FEF neuronal
responses to visual stimuli of equalized contrast and visual
energy are modulated by task-related contingencies in close
correspondence with the behavioral characterization of the
spatial priority map.

The Attentional Spotlight Dynamically Implements
Target Selection Independently of the Spatial Priority
Map

Spatial attention is hypothesized to act as a spatial filtering “in”
mechanism, which enhances the selection of incoming visual
stimuli depending on their distance to its focus (Theeuwes 2010;
Chelazzi et al. 2019; Hembrook-Short et al. 2019). This attention-
based spatial filtering is often equated with spatial prioritiza-
tion by cue instruction. However, recent studies demonstrate
that spatial attention is not stable and samples space rhythmi-
cally including following a spatial cue (Landau and Fries 2012;
Fiebelkorn et al. 2013; Spyropoulos et al. 2018; Gaillard and
Hamed 2020). In the following, we demonstrate the existence
of a dynamic prioritization of space by the attentional spot-
light, independent of the task driven trial prioritization by cue
instruction described in the previous section. To this effect, we
use machine learning to access the time-resolved readout of
the (x,y) position of the AS from the FEF population activity
prior to target presentation (Astrand et al. 2016; Gaillard et al.
2020). As expected from task instructions, AS is mostly allocated
within the cued quadrant, but not necessarily at the exact
target location (Supplementary Fig. 5). We analyze normalized

FEF neuronal responses to target presentation as a function of
the distance of the AS to the target.

Figure 3A shows the average normalized neuronal responses
to the target (target selective MUA channels, normalized
activities, n = 562, see Materials and Methods), on Hits (blue)
and Misses (yellow). On Hit trials, a marked response to target
presentation is observed, peaking at 285 ms following stimulus
onset (Fig. 3A, blue curve). On Miss trials, the neuronal response
was significantly weaker (Fig. 3A, yellow curve, Kruskal–Wallis
nonparametric test, P < 0.001). This confirms the well-known
critical contribution of FEF to sensory selection for perception
(Thompson et al. 1997; Thompson 2005; van Vugt et al. 2018).
Importantly, we show a direct modulation of both the behavior
and the evoked neuronal response to target processing by
the position of the AS. Specifically, we categorize neuronal
responses (Fig. 3B, all sessions cumulated and binned as a
function of AT, from 0◦ to 24◦—step 4◦, Fig. 3C, blue curve and
scale) as well as behavioral performance (Fig. 3C, black curve
and scale) as a function of the distance between the AS and the
target (AT). The strength of the neuronal response to detected
targets decreases as AT increases (Fig. 3B,C, blue curve, Kruskal–
Wallis nonparametric test, P < 0.001). Likewise, the behavioral
performance constantly decreased as AT increased (Fig. 3C,
black curve, Kruskal–Wallis nonparametric test, P < 0.001). The
effect of AT onto neuronal peak responses to detected targets
and behavioral performance was highly correlated (Fig. 3C,
r = 0.85, P = 0.03), both showing significantly higher values
when the AS was close to the target. Overall, this is, to our
knowledge, the first direct neurophysiological evidence for an
attentional spatial filtering “in” or attention selection neuronal
function centered onto the AS (Downing and Pinker 1985). Most
importantly, this AS spatial filter is independent from the spatial
priority map described above and can only be accessed through
a direct estimate of covert AS at an appropriate temporal
resolution.

The Attentional Spotlight Dynamically Implements
Both the Selection of Task Relevant Items and the
Suppression of Task Irrelevant Items

A major question in the field is whether distractor suppression
is implemented by the same neuronal mechanisms as target
selection, whereby vicinity of the AS to the incoming sensory
stimulus defines the degree of selection/suppression that is
applied (Suzuki and Gottlieb 2013; Cosman et al. 2018). In the
following, we demonstrate that the prefrontal AS can both select
(filter “in”) or suppress (filter “out”) incoming sensory informa-
tion depending on task configuration. Specifically, we analyze
the behavioral performance and the FEF neuronal response on
FA responses to D (task-relevant distractors) or d (task-irrelevant
distractors), as a function of their distance to AS location in
space just prior to their presentation (resp. AD and Ad, Fig. 4,
all sessions cumulated and binned as a function of AD and Ad,
respectively). The closer the AS to D, the higher the probability
of FAs (Fig. 4A, right panel, gray curve, Kruskal–Wallis nonpara-
metric test, P < 0.001, see Supplementary note 4 for a description

the averaged neuronal response to FAs when 0◦ < Td < 12◦. Right panel: Demeaned peak neuronal responses (orange) and behavioral performance (black), as a function
of Td. Td categories and colors as in left panel. Error bars represent mean ± SE. (D) Neural FA responses as a function of D position, and associated performance. Left

panel: Normalized neural response to D as a function of TD, for the ipsilateral (dark red, ipsi), the contralateral (medium red, contra), and the opposite landmark (light
red, opp). Right panel: Demeaned peak neuronal responses (red) and behavioral performance (black), as a function of TD. TD categories and colors as in left panel.
Error bars represent mean ± SE.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab378#supplementary-data
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Figure 3. Neural responses to the target as a function of the distance between the target and the decoded attentional spotlight (TA). (A) Normalized MUA population
response to the target, on Hits (blue) and Misses (yellow). Shaded error bars represent ± SE. (B) Normalized neural responsiveness to the target, on Hit trials, as a

function of TA (inset in panel A). Six ranges of TA were considered for the trials’ categorization from 0◦ (dark blue) to 24◦ (light blue) in TA steps of 4◦ (intermediate
shades of blue). (C) Demeaned peak responses and behavioral performance as a function of TA. TA categories and colors as in panel B. Error bars represent ± SE.

of trial number per AD). The same observation is reproduced
for individual cue instructions (Supplementary Fig. 7). This rela-
tionship is best modeled by a linear fit (Supplementary Fig. 6a, r2

adjusted = 0.85, P < 0.001, best-fit achieved by the linear model,
AIC = 41.65), reproducing our previous observations on a dif-
ferent dataset (Astrand et al. 2016). Mirroring the relationship
between behavioral performance and AD, the neuronal response
to D also increases as AD decreases (Fig. 4A, middle panel, dark–
light red curves, Kruskal–Wallis nonparametric test, P < 0.001).
The relationship between average peak neuronal response to D
and AD on the one hand, and FA rates and AD on the other hand
show a trend toward correlation (Fig. 4A, r = 0.92, P = 0.08). These
observations are remarkably similar to those reported for target
selection whereby visual information close to the AS is filtered
“in,”while visual information far away from the AS is suppressed
and filtered “out.”

D distractors are, by definition, presented in a prioritized
position of the spatial priority map (uncued target landmarks—
Fig. 2C). An important question is thus whether the spatial
prioritization filtering “in” process described above for D
distractors also generalizes to d distractor presented at
irrelevant locations. These d distractors could unpredictably
appear anywhere onto the visual scene, they had the same
shape and the same contrast as D distractors, and their size
was adjusted to compensate for the cortical magnification
factor (see Materials and Methods). Trials were sorted as a
function of the distance between the AS and d distractors
(Fig. 4B—lower panel, all sessions cumulated and binned as a
function of Ad—from 0◦ to 12◦, step 3◦, see Supplementary note 4
for a description of trial number per Ad). To avoid possible
confounds due to the heterogeneity of the spatial priority
map, this analysis is restricted to d distractors presented in

the cued quadrant. In this range, the distribution of Ad did not
differ for different TA categories (Supplementary Fig. 8, Ad in
TA ranges of 5◦, Kruskal–Wallis, P = 0.10). In contrast with the
D prioritization process described above, we found that the
closer the AS to d, the lower the FA probability, indicating that
the AS suppresses d distractors rather than enhances them.
The attentional profile that characterizes this d suppression
is not linear. Rather, best fit is achieved by a third-order
polynomial model (Supplementary Fig. 6b, r2 adjusted = 0.18,
AIC = 47.94). Specifically, FA rates were marginally lower when
Ad < 3◦ than when 3◦ < Ad < 6◦ (Supplementary Fig. 1c, black
curve, all sessions cumulated and binned as a function of
Ad—from 0◦ to 12◦, step 3◦, post-hoc Friedman rank sum test,
P = 0.097) and significantly lower than when 6◦ < Ad < 9◦ (post-
hoc Friedman rank sum test, P < 0.01). Beyond Ad of 9◦, FA rates
dropped instead of increasing (post-hoc Friedman rank sum
test, P < 0.05), thus roughly defining an inverted Mexican hat
shaped function. This filtering profile was drastically different
from the one reported for D. Importantly, this filtering profile
did not result from an interaction with the spatial priority
map and Td. Indeed, the same statistical trends emerged both
when d distractors were close (Td < 7◦) or far (7◦ < Td < 14◦)
from the target (Supplementary Fig. 1c, gray curves—Kruskal–
Wallis, main Ad distance effect, P < 0.05). The relationship of
the neuronal response with Ad mirrored that of the behavioral
performance (Fig. 4B, middle panel, dark–light red curves,
Kruskal–Wallis nonparametric test, P < 0.001). Peak neuronal
responses to d distractors for Ad < 3◦ trials were significantly
lower than for 3◦ < Ad < 6◦ and for 6◦ < Ad < 9◦, but higher than
those within 9◦ < Ad < 12◦ (post-hoc Friedman rank sum test;
P < 0.05, P < 0.001, P < 0.001, resp.). The relationship between
average peak neuronal response to d and Ad on the one
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Figure 4. Neural responses to distractor as a function of the distance between D distractors and the decoded attentional spotlight (AD, panel A) and d distractors and
the decoded attentional spotlight (Ad, panel B), on FA trials. AD distances (intermediate shades of red) ranged from 0◦ to 16◦ (step = 4◦). Ad distances (intermediate
shades of orange) ranged from 0◦ to 12◦ (step = 3◦). All else as in Figure 3.

hand, and FA rates and Ad on the other hand were highly
correlated (Fig. 4B, right panel, r = 0.98, P < 0.02). This observation
is evidence for an inversed center-surround functional filtering
profile by the AS. Such a function can also be viewed as a
suppression mechanism implemented by a classical Mexican
hat AS. This difference in the response to D and d distractors
cannot be accounted for by the physical presence of the
landmarks (Supplementary note 5). It is noteworthy at this
stage that distractor presentation, for both types of distractors,
triggers a re-orienting or attention away from its initial
position (see Supplementary note 6), confirming our previous
observations in a different dataset (Astrand et al. 2020).

Overall, we thus describe two distinct filtering mechanisms
implemented by the dynamic AS: a prioritizing, filtering “in” pro-
cess and a suppressive, filtering “out” process. The implementa-
tion of one or the other does not depend on the prioritization
map but rather on the sensory item’s task relevance.

Neural Evidence for Distinct Proactive and Reactive
Suppression Mechanisms

The above described distractor selection and suppression mech-
anisms coincide with major differences in neuronal responses
to correctly rejected (RJ) distractors. Figure 5A reports averaged
normalized neuronal responses (target selective MUA channels,

D = 340, HN = 222) on FA (red shades) and correct rejection trials
(green shades), for D (left panel) and d distractor (right panel).
Overall FAs showed a marked neuronal response for both D
(Fig. 5A, left panel, DFAs, 0.78 ± 0.12, peak latency = 267 ms)
and d distractors (right panel, dFAs, normalized peak response,
0.80 ± 0.04, latency = 165 ms, note that on these trials, neuronal
predistractor response is higher for FAs than for correct rejec-
tions due to the fact that FAs are more frequent for d distractors
close to the cued landmark). These responses are very similar to
those observed to targets on Hit trials (Fig. 3A, 0.83 ± 0.006) and
they coincide with a marked visual evoked potential in the LFPs
(Fig. 5B, left panel, DFA and Hits, right panel, dFA). In contrast,
neuronal responses on correct rejection trials show very distinct
patterns for the two types of distractors (Fig. 5A,B). Correct rejec-
tion to D distractors barely responds to distractor presentation
(Fig. 5A, left panel, DRJs, 0.09 ± 0.06), while correct rejection to d
distractors exhibits a clear phasic response (Fig. 5A, right panel,
dRJs, 0.3 ± 0.01, peak latency = 147 ms). The average normalized
MUA net response estimated as the difference between peak
and predistractor baseline (Fig. 5C), showed enhanced responses
on FA trials as compared with correct rejections to both D
and d distractors (Kruskal–Wallis nonparametric test, P < 0.001).
However, while there was no difference between dFA (0.72 ± 0.08)
and DFA trials (0.83 ± 0.09, Kruskal–Wallis nonparametric test,
P = 0.32), this difference was significantly higher on dRJs trials
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(0.56 ± 0.02) than on DRJs trials (0.23 ± 0.06, Kruskal–Wallis
nonparametric test, P < 0.001). This coincides with a very small
LFP visual evoked potential for DRJ (Fig. 5B, left panel) and a
marked LFP visual evoked potential for dRJ (Fig. 5B, right panel).
This strongly suggests that dRJ takes place subsequently to per-
ception. Indeed, while MUA results from local neural processing,
informing on how the sensory representations in dendritic input
are transformed into cognitive signals, LFP provides a measure
of both the local processing and synaptic inputs from other brain
regions (Nielsen et al. 2006; Monosov et al. 2008; Gregoriou et al.
2009; Einevoll et al. 2013).

In other words, the successful suppression of D is thus
accompanied by a proactive suppression of the visual input
to the FEF. In contrast, the successful suppression of d is
accompanied by a strong visual input to the FEF, indicating
that suppression takes place following sensory processing
and perception. This indicates the existence of two distinct
suppression mechanisms: a proactive suppression mechanism
associated with D, and a reactive suppression mechanism
associated with d.

Several studies support the idea that reactive suppression
is implemented in the prefrontal cortex and specifically in the
FEF (Hasegawa et al. 2004; Marini et al. 2016; Cosman et al.
2018). Further supporting this point, we show here that the peak
neuronal response to d distractors on dRJ trials is rapidly fol-
lowed by a sharp decrease in the neuronal response (Fig. 5D, left
panel, arrow, Ranksum test, P < 0.001) that brings the neuronal
response down to the same level as in DRJ trials. This effect is
hardly present on these DRJ trials (Fig. 5D, right panel) and is
absent in FA trials as well as in Hit trials. This active suppression
mechanism takes place right after peak distractor response
(at an average timing of 147 ms), which is compatible with
an interruption of the motor response (median RT = 447 ms).
The latency of the suppressive dip from the d distractor peak
response is of 322 ms. This timing coincides with the estimated
time needed to overtly reject low saliency distractors as task
irrelevant (150–300 ms—Geng 2014). While this timing is com-
patible with a polysynaptic transmission, reactive suppression
is expected to be based on a perceptual decision that is known
to take place in the prefrontal cortex (Ibos et al. 2013; van Vugt
et al. 2018). In the following, we explore the functional rela-
tionship between enhanced perception by the AS and reactive
suppression.

The Attentional Spotlight Dynamically Implements
Reactive Suppression

Our work indicates that reactive suppression is associated with
two distinct components: 1) a strong visual evoked response
to the distractor and 2) a subsequent strong suppression
discriminating between correct rejections and FAs. A key
question is thus to characterize whether suppression depends
on prior perception. In the first two sections of this paper,
we describe two main factors that influence how stimuli of
the same visual salience are perceived: 1) the spatial priority
map defined by Td and 2) the dynamic attentional selection
defined by Ad. In the following, we further quantify the impact
of these two task-related factors onto the degree to which the
initial perceptual response is suppressed following a d distractor
presentation.

Figure 6 shows the average normalized MUA response to Td
(Fig. 6A, left panel) and Ad (Fig. 6B, left panel, specifically for
Td < 3◦), irrespective of predistractor response level. This allows

Figure 5. Neural correlates of proactive and reactive distractor suppression.
(A) Normalized MUA population responses to D, in DFAs (FAs, dark red) and

DRJs (correct rejections, dark green), and to d, for dFAs (orange) and dRJs (light
green). Left panel: Average normalized MUA, around distractor D onset for DFAs
(dark red) and DRJs (dark green). Right panel: Average normalized MUA, around
distractor d onset, for dFAs and dRJs. Shaded error bars, ±1 SE. (B) LFP modulation

as a function of trial types. Left panel: Average LFPs, around target onset for Hits
(blue) and Misses (yellow) and around distractor D onset for DFAs (dark red) and
DRJs (dark green). Right panel: Average LFPs around distractor d onset, for dFAs

and dRJs. Shaded error bars, ±1 SE. (C) Difference between peak response to dis-
tractor and predistractor baseline, in DFAs (dark red) and DRJs (dark green), and
to d, in dFAs (orange) and dRJs (light green). Error bars, ±1 SE. (D) Neural responses
to DRJ and dRJ. Left panel: “Peak+” indicates, for each signal, peak response in the

[0350 ms] time interval following target onset. Arrows indicate, for each signal,
the average time of the first signal dip following the identified peak. Right panel:
neural suppression measured as the difference between identified peaks and
dips (mean ± SE), for D (dark green) and d (light green) trials. Asterisks indicate

statistical significance as assessed by a Wilkoxon rank sum test (∗∗P < 0.001).
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Figure 6. Neural reactiveness in distractor d correct rejection trials as a function of the distance between distractor (d) and the Target (Td, panel A) and distractor (d)

and the decoded attentional spotlight (Ad, panel B). Both Td and Ad distances are represented in shades of green and ranged from 0◦ to 15◦ (step = 3◦). Middle panels
represent the normalized MUA difference in activity between the peak and trough of distractor related responses on correct rejection trials.

to specifically estimate the impact of d onto FEF neural process-
ing. While for Td eccentricity beyond 3◦, postevoked response
suppression decreased as Td increased, all evoked responses
being suppressed down to the same level; suppression was
significantly reduced for shorter Td distances (Td < 3◦, Fig. 6A,
middle panel, Kruskal–Wallis, P < 0.01).

Hypothesizing that for shortest Td distances, accurate
perception is critical to disambiguate between a target and a
distractor, we focused on these specific trials, and we quantified
how Ad distance impacted the overall level of suppression of the
evoked response. This analysis is presented in Figure 6B. As seen
previously for FAs (see also Supplementary Fig. 9), on correct
rejections, the visual evoked response to distractor presentation
was strongest for short Ad than for longer Ad (Fig. 6B, left
panel). Importantly, suppression strength was also highest for
short Ad than for longer Ad (Fig. 6B, middle panel, Kruskal–
Wallis, P < 0.05). In FA trials, in which attention suppression
was less effective, the strength of this neuronal suppression
is less marked, though still highest for shorter Ad distances
than for intermediate Ad distances (Supplementary Fig. 9,
Kruskal–Wallis, P < 0.05). Overall, this indicates that both spatial

prioritization by the spatial priority map and the dynamic
attentional spotlight contribute to influence perception,
stimulus selection, and stimulus suppression.

Discussion
Overall, we thus identify, in the FEF, distinct neuronal mech-
anisms, respectively, implementing proactive and reactive
suppression mechanisms (Chelazzi et al. 2019). We further
show that the implementation of both these suppressive
mechanisms depends on the learned task-based priority map
(Chelazzi et al. 2014; Awh et al. 2012; Moore and Zirnsak 2017;
Ferrante et al. 2018) as well as on the dynamic spatial filtering
implemented by the attentional spotlight as it dynamically and
rhythmically explores the visual scene. While the spatial priority
map exclusively defines a spatial filtering “in” function, the
dynamic attentional spotlight defines both a spatial filtering “in”
and a spatial filtering “out” function. The top-down attention-
based spatial filtering “in” is associated with the proactive
suppression of task relevant distractors, while the attention-
based spatial filtering “out” is associated with the reactive
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suppression of task irrelevant distractors. This is further
discussed below.

Multiple Mechanisms of Spatial Visual Selection

Sensory selection of visual input can be dynamically deployed at
will by spatial attention (spatial orienting of attention, Astrand
et al. 2016; Gaillard et al. 2020) or can result from the learning of
task contingencies (a task-based priority map, Awh et al. 2012;
Anderson and Britton 2020). Here, we provide behavioral and
neural evidence indicating that both attentional mechanisms
independently contribute to stimulus selection.

Task-Based Priority Map
The filtering of irrelevant visual information is not uniform
across the visual scene. Rather, distractibility, that is to say,
inappropriate responses to irrelevant visual stimuli, is maximal
in the vicinity of the four spatial locations at which the target
can be presented on each trial, by task design. This spatial
prioritization reflects the learning of the experienced rewarded-
stimuli contingencies characterizing the task (Chelazzi et al.
2013). Our observations indicate that the FEF implements a task-
based spatial priority map, showing enhanced neural responses
to stimuli that are closest to the prioritized spatial locations
as compared with the rest of the visual scene. This prioritiza-
tion roughly follows a Gaussian filtering function and almost
disappears beyond 6◦ away from the prioritized location. This
neuronal filtering function strongly correlates with behavioral
distractor interference measures, suggesting a strong functional
relationship between FEF prioritization map and overt behavior.

An important question is whether this learned task-based
spatial prioritization arises from a top down control mecha-
nism or from long-lasting changes in the excitability of the
topographically organized spatial maps. Such changes in local
neuronal excitability through statistical learning and cumula-
tive experience have already been demonstrated in the primary
visual cortex (McManus et al. 2011; Gilbert and Li 2013). Whether
this also takes place at higher levels of the visual hierarchy, for
example, in the parietal or in the prefrontal salience maps is
unclear. In our hands, the selection of irrelevant visual items is
weaker close to prioritized locations that are contralateral to the
cued target location as compared with prioritized locations that
are ipsilateral to the cued target location. This thus indicates an
interaction between top-down spatial cueing information and
task-based prioritization, whereby although experience with the
task based contingencies has induced long lasting changes in
the FEF spatial priority map, these changes are potentiated by
cueing instructions on each given trial. Importantly, this interac-
tion is independent of the dynamic spatial orienting of attention
during the cue to target interval.

Spatial Attention Orienting
Classically, attention orientation is confounded with cuing infor-
mation. Thanks to a spatially and temporally resolved decod-
ing of the locus of the attentional spotlight, we have already
shown that this attentional spotlight is highly dynamic and not
constrained to the cued location (Astrand et al. 2016; Gaillard
et al. 2020). Here, we show that the perception of a low saliency
stimulus depends on the position of the attentional spotlight
just prior to stimulus presentation. We provide the first direct
estimate of the spatial attention filtering function hypothesized
as early as the seminal work of James (1890). Importantly, and
in contrast with the classical view of attention spatial filtering,

we identify two distinct spatial attention filtering functions.
1) The closer the attentional spotlight to task relevant stimuli,
the higher report probability, our proxy for visual perception.
This corresponds to a filtering “in” attentional function, whereby
sensory information is selected when presented at the center
of the dynamic attentional spotlight, while the probability of
visual selection decreases along a coarsely Gaussian shaped
function as the sensory information is presented further and
further away from the center of the attentional spotlight. This
filtering function applies both to targets presented at the cued
location and to relevant (target-like) distractors presented at
uncued locations prioritized by the statistical learning described
above. 2) In contrast, the closer the attentional spotlight to task
irrelevant stimuli, the lower report probability. This thus corre-
sponds to a filtering “out” attentional function, whereby sensory
information is suppressed when presented at the center of the
dynamic attentional spotlight. This filtering “out” attentional
function is characterized by an inverted “Mexican hat” shape,
defining a suppressive center around the attentional spotlight,
a first surround in which this suppressive filter weakens and a
final surround in which suppression increases again, probably
by sheer distance from the center of the attentional spotlight,
the stimulus falling outside the perceptual spatial extent of
the attentional spotlight. Overall, spatial attention thus imple-
ments a dynamic spatial perceptual gating that depends on the
task relevance of the visual stimuli. Crucially, this perceptual
attentional gating can be identified both at the behavioral level,
and on neuronal response profiles, these two measures highly
correlating with each other from one session to the next. A very
strong prediction is that the spatial extent of these filtering “in”
and “out” filters is dynamically adjusted to trial difficulty and
task contingencies.

Multiple Mechanisms of Distractor Suppression

Recent behavioral evidence has posited the existence of two
distinct distractor suppression mechanisms, a proactive and
a reactive suppression mechanism. During proactive suppres-
sion, the early perceptual processing of behaviorally irrelevant
stimuli is suppressed. This type of suppression is coupled with
a strong attentional enhancement of the perception of task
relevant visual stimuli and can be viewed as a situation in
which the visual system is tuned to maximize the response
to expected task relevant items while ignoring all other visual
items. In everyday life, this can come at a strong behavioral cost
as task irrelevant items could still turn out to be behaviorally
relevant. In contrast, reactive suppression would correspond to
a situation in which the visual system does perceptually process
task irrelevant items, and only subsequently suppress the build-
up of goal-directed responses toward these irrelevant stimuli.
The coupling between these two distinct mechanisms is thus
theoretically crucial for a flexible adjustment to both behavioral
demands and environmental constraints. Here, we provide the
very first evidence for distinct neuronal mechanisms imple-
menting proactive and reactive sensory suppression mecha-
nisms.

Task-Relevant Distractors Are Suppressed Proactively
Several previous reports show that the successful rejection
of task relevant distractors is associated with a low neuronal
response to their onset (Schall et al. 1995; Suzuki and Gottlieb
2013; Cosman et al. 2018). In contrast, the attentional capture of
such distractors and the production of a goal directed behavior
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toward them is associated with a strong neuronal response
to their onset. We reproduce these behavioral and neuronal
observations. As discussed above, we further demonstrate that
attentional capture is fully dependent on the locus of the
attentional spotlight, which implements a filtering “in” function
of task-relevant distractors. In other words, successful proactive
distractor suppression is associated with trials in which
the attentional spotlight is far away from the task-relevant
distractor. We show that both FEF multi-unit activity and local
field potentials (LFPs) are suppressed following task-relevant
distractor presentation when behaviorally suppressed, but not
when erroneously selected. Cosman et al. (2018) demonstrate
that distractor suppression arises in the FEF prior to the occipital
cortex. This would suggest that proactive distractor suppression
is either implemented in the FEF or in an up-stream prefrontal
area such as the dorsolateral prefrontal cortex. Given the
fact that the FEF is at the source of attention control signals
(Thompson 2005; Wardrak et al. 2006; Buschman and Miller
2009; Gottlieb 2012), the tight link we demonstrate between
proactive distractor suppression and the spatial position of the
attentional spotlight strongly suggests that proactive distractor
suppression is implemented within the FEF.

Irrelevant Distractors Are Suppressed Reactively
Neuronal evidence of attentional reactive suppression is to the
best of our knowledge sparse if not inexistent. Here, we show
that task irrelevant distractor presentation correlates with a
marked phasic response in the FEF multi-unit activity as well
as with a marked visual evoked potential in the FEF LFPs;
this whether the stimulus is correctly rejected or erroneously
selected by the monkeys. Given the fact that visual evoked
responses in the FEF are often taken as a signature of conscious
perception (Thompson and Schall 1999, 2000; Libedinsky and
Livingstone 2011; Panagiotaropoulos et al. 2012; van Vugt et al.
2018), one can hypothesize that both correctly rejected and
erroneously selected task irrelevant distractors are perceived
by the monkey. This is in contrast with correctly rejected task
relevant distractors that have only a weak trace in the FEF multi-
unit activity and LFPs and are thus most likely not perceived.
However, as described above, the perceptual component of the
irrelevant information is under the influence of a filtering “out”
process centered onto the attentional spotlight. The multi-
unit activity of correctly rejected task irrelevant distractors is
then rapidly suppressed following the initial visually evoked
response. This neuronal suppression is not present in the
erroneously selected distractors and is taken as a neuronal
signature of reactive distractor suppression and is compatible
with a signal interrupting the ongoing perceptual and decision-
making neural processes (Geng 2014; Marini et al. 2016; Chelazzi
et al. 2019). Thus, reactive distractor suppression involves both
an AS-based filtering “out” perceptual neuronal component as
well as a neuronal suppressive component.

Interaction between Neuronal Reactive Suppression, Priority Map, and
Attentional Spotlight Position in Space
An important question is how much this later neuronal suppres-
sive component depends on the spatial priority map and the
attentional spotlight as described for the perceptual component.
The initial evoked response to the task irrelevant distractor is
stronger as the distractors are presented closer and closer to
the expected target location. Except for the condition in which
distractors are displayed very close to the target (within 3◦), the

neuronal reactive suppression brings all these neuronal activi-
ties to a same threshold. The net result of this is that reactive
suppression follows the task-based learned spatial priority map
and is stronger for stimuli closer to the expected target location.
Reactive suppression in the FEF can thus be implemented either
by a suppression command that is proportional to the initial
evoked response or by a command that brings down neuronal
responses to a same threshold irrespective of the initial visual
evoked response to the distractor. This is discussed next.

However, very close to the expected target location (within
3◦), task irrelevant distractor suppression is weaker than for
distractors presented between 3◦ and 6◦ of eccentricity from
the expected target location. This is possibly due to the fact
that in this specific region of the visual field, distinguishing
between the target and the task irrelevant distractors is more
difficult (Dent et al. 2012; Suzuki and Gottlieb 2013; Geng 2014).
In our task, target and distractors shared the same features
and contrast with respect to the background. Discriminating
between the two is thus expected to involve a precise evaluation
of their spatial contingencies and is expected to be enhanced
by the attentional spotlight (Treisman and Gelade 1980; Duncan
and Humphreys 1989; Wolfe and Horowitz 2004; Navalpakkam
and Itti 2007; Goldstone et al. 2012; Lau et al. 2019; Lu et al.
2019). Confirming this view, the initial visual evoked response to
the task-irrelevant distractor is enhanced when the attentional
spotlight is close to it, while, at the same time, the extent to
which the neuronal activity is suppressed is critical. The net
effect of this is a markedly stronger neuronal reactive suppres-
sion at the heart of the attentional spotlight as compared with
further away from it.

As discussed above, our results suggest that reactive sup-
pressive component is most marked at the center of the atten-
tional spotlight. This result is confirmed both at neural and at
behavioral level, supporting a functional link between FEF and
overt behavior. However, as originally proposed by Castiello and
Umiltà (1992), the attentional spotlight is highly task dependent
adapting its size to the target dimensions and on the number
of task relevant objects in the scene (Ben Hamed et al. 2002;
Womelsdorf et al. 2006; Niebergall et al. 2011), impacting space
perception at a distance from the attentional focus (Wardak
et al. 2011). For example, Ben Hamed et al. (2002) show that
receptive field size of lateral intraparietal area neurons varies as
a function of attentional load, Womelsdorf et al. (2006) show that
receptive fields of middle temporal area MT shift as a function of
spatial attention orientation, and Niebergall et al. (2011) suggest
that the receptive field size of MT adapt so as to include all task-
relevant objects. This might also be the case in the FEF. As a
result, reactive suppression might encompass small or larger
portions of the attentional spotlight depending on the task.
Further investigations are needed.

One or Multiple Attentional Spotlights

The possibility of a split of AS, and thus of multiple attentional
spotlights, has been initially proposed by Castiello and Umiltà
(1992), and more recently supported by event-related potentials,
functional magnetic resonance imaging and monkey single cell
recording studies (Müller et al. 2003; McMains and Somers 2004;
Morawetz et al. 2007; Drew et al. 2009; Niebergall et al. 2011).
A major assumption of our current decoding approach is that
subjects deploy a unique attentional spotlight rather than mul-
tiple spotlights, whereby for example, they would split their
attention between the cued landmark (to select the target when
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presented) and the uncued landmarks (suppress D distractors
when presented). Given the structure of this decoder and while
we are interpreting decoder output as the location of a unique
spotlight, it could alternatively be interpreted as the location
of the dominant attentional spotlight. In other words, when
we decode the attentional spotlight say close to the ipsilateral
landmark to the cued landmark, it could still be that a second
spotlight, of lesser strength is still present at the cued location.
This could be tested by tracking d distractor suppression for a
given attention to target distance. Under such a hypothesis, the
multiple spotlight framework would, for example, predict that
distractor suppression is strong both at the locus of attention
and at the locus of the cued landmark.

In the specific context of our task, one could further predict
that only the attentional spotlight that is not anchored at the
cued landmark is dynamic as described in Gaillard et al. (2020),
see also Gaillard and Hamed 2020 and Amengual and Hamed
2021), while the attentional spotlight placed at the cued land-
mark is stable and would represent what we call here the priority
map defined by task structure. This is actually a very appealing
possibility in the sense that not only does it allow for the
possibility of multiple attentional spotlights but also for multiple
type of priority maps defined either by top-down cognitive con-
tingencies or by bottom-up contingencies implemented through
learning. The data presented in the present manuscript actually
speak for both possibilities. Further experiments are required for
a dissociation between these two possibilities, as well as, more
generally speaking to test the hypothesis of dynamic multiple
attentional spotlights.

Overall, our results indicate that the FEF plays a central role
in stimulus selection and both reactive and proactive distractor
suppression. These processes are modulated by both long-term
learned spatial task contingencies as well as by the dynamic
attentional exploration and exploitation of the visual field. How
the different FEF neuronal functional subtypes contribute to
these processes and how these processes are implemented at
the whole brain level will need to be further explored.
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