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Abstract

Background: Identifying subjects with a high risk of ischemic stroke is fundamental for prevention of the disease.
Both genetic and environmental risk factors contribute to ischemic stroke, but the underlying epigenetic mechanisms
which mediate genetic and environmental risk effects are not fully understood. The aim of this study was to explore
whether DNA methylation loci located in the ATP-binding cassette G1 (ABCG1) and apolipoprotein E (APOE) genes,
both involved in the metabolism of lipids in the body, are related to ischemic stroke, using the Fangshan/Family-based
Ischemic Stroke Study in China. We also tested if these CpG sites were associated with early signs of cardiovascular
atherosclerosis (carotid intima–media thickness (cIMT), ankle–brachial index (ABI), and brachial–ankle pulse wave
velocity (baPWV)).

Results: DNA methylation at the cg02494239 locus in ABCG1 was correlated with ischemic stroke after adjusting for
gender, previous history of diabetes and hypertension, smoking, drinking, body mass index, and blood lipid levels
(above vs below mean, OR = 2.416, 95% CI 1.024–5.700, P = 0.044; 75–100% percentile vs 0–25% percentile, OR = 4.461,
95% CI 1.226–16.225, P = 0.023). No statistically significant associations were observed for the cg06500161 site in ABCG1
and the cg14123992 site in APOE with ischemic stroke. The study detected that hypermethylation of the ABCG1 gene
was significantly associated with cIMT, hypermethylation of the APOE gene was significantly related to ABI, and
methylation of the APOE gene was statistically negatively correlated with baPWV. The above relationships
demonstrated gender differences.

Conclusions: These findings suggest that epigenetic modification of ABCG1 and APOE may play a role in the pathway
from disturbed blood lipid levels to the development of cardiovascular diseases. Future prospective validation of these
findings is warranted.
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Background
DNA methylation is an epigenetic mechanism that regu-
lates gene expression in the genome [1]. In mammals, it
involves the transfer of methyl groups onto cytosine to
form 5-methylcytosine. Methylation changes are related
to the development and progression of a group of hu-
man diseases [2], and abnormal promotor methylation
profiles have been described for several genes associated
with stroke pathogenesis and recovery [3–5].
Most stroke are ischemic, and the major cause of is-

chemic stroke is atherosclerosis, which is a condition as-
sociated with fatty metabolic alterations or the build-up
of plaques in the arteries [6, 7]. ATP-binding cassette
G1 (ABCG1), one of the members of the large protein
family of ABC transporters involved in the active trans-
port of lipophilic molecules, and apolipoprotein E
(APOE), the protein involved in the metabolism of lipids
in the body, both affect blood lipid levels and might con-
tribute to the development of atherosclerosis and cardio-
vascular disease [8, 9]. Though mutations in some genes
in the lipid metabolism pathway have been well studied
in ischemic stroke and atherosclerosis, increasing evi-
dence suggests that DNA methylation in these genes
plays an equally important role in ischemic stroke devel-
opment and atherosclerosis. In a recent review article,
Fernandez-Sanles et al. stated that differential methyla-
tion in four candidate genes, including ABCG1, were as-
sociated with coronary heart disease (CHD); however,
APOE methylation was not associated with CHD. Fur-
thermore, they noted that an epigenome-wide associ-
ation study identified a set of genes, also including
ABCG1, related to the pathogenesis of CHD, such as
obesity, lipids, and inflammation [5].
Atherosclerosis is one of the primary causes of ische-

mic stroke and is characterized as the thickening of the
arterial intima and formation of atherosclerotic lesions
or atheroma, which results from the accumulation of
lipids, inflammatory cells, and even vascular endothelial
cells or vascular smooth muscle cells in the vessel wall.
DNA methylation has been suggested to be involved in
the biological processes of atherosclerosis [10].
Although both genetic and environmental risk factors

contribute to ischemic stroke, the underlying epigenetic
mechanisms which mediate the genetic and environmen-
tal risk effects are not fully understood. The current epi-
genetic studies on cardiovascular disease (CVD) have
mainly been carried out in European, American, or Afri-
can populations, mainly with CHD and diabetes as the
outcomes. There is still insufficient evidence for the as-
sociation between related gene methylation and ischemic
stroke in a Chinese population.
In this study, we investigated the association of DNA

methylation with ischemic stroke and related athero-
sclerotic traits in an established Chinese family–based

population. We focused on three individual cytosine–
phosphate–guanine (CpG) loci, one located in the
ABCG1 promoter region, one in the gene body region of
the ABCG1, and the other in the APOE promoter
region.

Results
Demographics of participants enrolled in the study
The distribution of characteristics for the probands and
their age-matched siblings are presented in Table 1.
Compared with their ischemic stroke-free siblings, the
probands had a higher prevalence of diabetes (P = 0.020)
and higher level of carotid intima–media thickness
(cIMT) (P = 0.002), but lower level of ankle–brachial
index (ABI) (P = 0.004). The ischemic stroke probands
had similar mean and median methylation levels as their
siblings at all the CpG sites, except for the median
methylation level at cg02494239 (median (interquartile
range): 93.660 (92.780–94.240) vs 93.260 (92.210–
93.780), P = 0.022) (Table 1 and Fig. 1). The differences
for each CpG site when comparing Q4, Q3, and Q2 to
Q1 are also provided in Additional file 1: Table S1, and
it showed that the cg02494239 site has larger differences
in the three comparisons than the other two CpG sites.
After adjustment for age, gender, diabetes, and hyper-

tension history, smoking, drinking, body mass index
(BMI), and ischemic stroke status, no significant associa-
tions were found between the methylation levels at each
methylation site and the lipid profiles (Additional file 1:
Table S2).

The association between ABCG1 and APOE methylation
and ischemic stroke
In the overall study population, hypermethylation at
cg02494239 of the ABCG1 gene was correlated with is-
chemic stroke (OR = 2.416, 95% CI 1.024–5.700, P =
0.044), and Q4 group of the DNA methylation level at
this CpG site was associated with a 3.461 times higher
risk of ischemic stroke than Q1 group (OR = 4.461, 95%
CI 1.226–16.225, P = 0.023). No statistically significant
associations were observed between cg06500161 in
ABCG1 and cg14123992 in APOE and ischemic stroke,
regardless of the types of variable. When we repeated
the above analysis in men and women separately, we ob-
served significant associations in females between the
binary cg02494239 methylation level and ischemic stroke
(OR = 7.941, 95% CI 1.040–60.637, P = 0.046), the bin-
ary cg06500161 methylation level with ischemic stroke
(OR = 0.032, 95% CI 0.002–0.605, P = 0.022), methyla-
tion of Q3 group vs Q1 group at the cg06500161 site
(OR = 0.0002, 95% CI 8.01 × 10−8–0.545, P = 0.035) and
10% increase of methylation level (OR = 0.011, 95% CI
0.0002–0.816, P = 0.040). In men, a higher risk of ische-
mic stroke was found in Q4 group of cg02494239
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methylation in ABCG1 compared with Q1 group (OR =
6.654, 95% CI 1.094–40.476, P = 0.040) (Table 2 and
Additional file 1: Table S3).

The association between ABCG1 and APOE gene
methylation and cIMT, ABI, and baPWV
We observed that a higher DNA methylation level at
cg02494239 in the ABCG1 gene was associated with cIMT
(above vs below median, β = 0.046, 95% CI 0.016–0.077, P
= 0.003; Q3 group vs Q1 group, β = 0.052, 95% CI 0.008–
0.097, P = 0.022; Q4 group vs Q1 group, β = 0.075, 95% CI
0.028–0.122, P = 0.002), and the associations remained sig-
nificant in men after stratifying by gender. No significant

associations were observed between the mean DNA methy-
lation levels at the cg02494239 site and ABI and brachial–
ankle pulse wave velocity (baPWV) in the whole and female
populations. However, the relationships were statistically
significant for this site with ABI in males (above vs below
median, β = −0.076, 95% CI − 0.122 to − 0.029, P = 0.001;
Q4 group vs Q1 group: β = − 0.076, 95% CI − 0.151 to −
0.002, P = 0.046) and with baPWV (Q4 group vs Q1 group:
β = − 188.203, 95% CI − 372.297 to − 4.108, P = 0.045).
For the cg06500161 site, we only found significant asso-

ciations for the binary variable and continuous variable of
methylation level with baPWV in males (above vs below
median, β = 161.322, 95% CI 48.604–274.041, P = 0.005;

Table 1 Characteristics of the study population according to ischemic stroke status

Variables Proband
(Ischemic stroke cases, n = 55)

Sibling
(ischemic stroke-free controls, n = 55)

P value

Age (years), mean (SD) 60.055 (7.578) 59.655 (8.044) 0.262

Male (%) 37 (67.273) 30 (54.545) 0.127

Primary school or higher (%) 27 (51.923) 25 (48.077) 0.683

Marriage (%) 47 (90.385) 48 (92.308) 0.564

Smoking (%) 31 (59.615) 30 (57.692) 0.808

Drinking (%) 27 (52.941) 25 (49.020) 0.637

Diabetes (%) 20 (36.363) 11 (20.000) 0.020

Hypertension (%) 48 (87.273) 41 (74.545) 0.071

TC (mmol/L) * 3.080 (2.160–3.910) 3.175 (2.270–3.720) 0.850

TG (mmol/L) * 1.190 (0.770–1.950) 1.095 (0.770–1.930) 0.294

HDL (mmol/L) * 0.880 (0.670–1.040) 0.840 (0.680–1.120) 0.973

LDL (mmol/L) * 2.050 (1.340–2.930) 1.920 (1.510–2.680) 0.806

BMI (kg/m2), mean (SD) 26.531 (3.527) 26.309 (3.655) 0.694

baPWV (cm/s), mean (SD) 1779.679 (344.664) 1710.604 (328.646) 0.230

cIMT (mm), mean (SD) 0.743 (0.122) 0.695 (0.084) 0.002

ABI, mean (SD) 1.052 (0.140) 1.112 (0.087) 0.004

Methylation level (%)

cg02494239 (ABCG1)

Mean (SD) 89.835 (10.900) 88.236 (12.916) 0.111

Median (interquartile range) 93.660 (92.780–94.240) 93.260 (92.210–93.780) 0.022

Range (minimum–maximum) 46.860–95.930 40.180–95.220

cg06500161 (ABCG1)

Mean (SD) 87.891 (4.261) 87.245 (4.364) 0.292

Median (IQR) 88.475 (85.470–91.270) 88.325 (85.330–89.590) 0.436

Range (minimum–maximum) 76.460–96.040 70.080–95.635

cg14123992 (APOE)

Mean (SD) 83.177 (4.491) 82.824 (2.787) 0.635

Median (IQR) 84.200 (82.12–85.19) 83.530 (81.760–85.000) 0.105

Range (minimum–maximum) 54.450–86.660 73.140–86.400

TC total cholesterol, TG triglyceride, HDL high-density lipoprotein, LDL low-density lipoprotein, BMI body mass index, ABI ankle–brachial index, baPWV brachial–
ankle pulse wave velocity, cIMT carotid intima–media thickness, ABI ankle–brachial index, ABCG1 ATP–binding cassette G1 gene, APOE apolipoprotein E gene, SD
standard deviation, IQR interquartile range
*These quantitative variables are given as the median (interquartile range) because of their skewed distribution
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10% increasing of methylation level, β = 182.039, 95% CI
39.992–324.087, P = 0.012).
The Q2 group of methylation of cg14123992 in APOE

in the overall population was positively associated with a
higher risk of ABI compared with Q1 group (β = 0.059,
95% CI 0.005–0.113, P = 0.033). A 10% increase in

methylation level at this site was associated with a 0.050
higher ABI (95% CI 0.003–0.099, P = 0.039) and a
158.232 lower level of baPWV (95% CI − 299.791 to −
16.673, P = 0.028). Among women, the group of Q2, Q3,
and Q4 for the APOE DNA methylation level was associ-
ated with cIMT compared with Q1 group. A higher

Fig. 1 Paired comparison of ABCG1 and APOE methylation levels by ischemic stroke status and sex. ABCG1, ATP-binding cassette G1 gene; APOE,
apolipoprotein E gene
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APOE methylation level above the median (β = 0.042,
95% CI 0.007–0.076, P = 0.020) and Q4 group of the
APOE methylation level (β = 0.092, 95% CI 0.032–0.152,
P = 0.003) were associated with ABI, and a 10% increase
in the methylation level was associated with a 0.093
higher ABI (β = 0.093, 95% CI 0.025–0.160, P = 0.007).
A 10% increase in the APOE methylation level was also
negatively associated with baPWV (β = −568.583, 95%
CI − 894.388 to − 242.779, P = 0.001). No significant as-
sociations were observed between APOE gene methyla-
tion and cIMT, ABI, or baPWV in men (Fig. 2 and
Additional file 1: Figure S1).

Discussion
In this study, we evaluated the associations between DNA
methylation at ABCG1 (cg06500161 and cg02494239) and
APOE (cg14123992) and ischemic stroke and early exami-
nations of atherosclerosis (including cIMT, ABI, and
baPWV) in subjects from a family-based study. Our re-
sults showed that a hypermethylation status in the pro-
moter region of the ABCG1 gene was associated with
ischemic stroke, and this association was more significant
in women; no associations were found between methyla-
tion levels of the APOE gene and ischemic stroke. The
study detected that hypermethylation of the ABCG1 gene

was significantly associated with cIMT, hypermethylation
of the APOE gene was significantly related to ABI, and the
methylation of the APOE gene was statistically negatively
correlated with baPWV; the above relationships demon-
strated gender differences. cIMT and atheromatous pla-
ques are early signs for the detection of cardiovascular
atherosclerosis. ABI is important for the evaluation of per-
ipheral atherosclerosis. baPWV is used for detecting arter-
ial wall hardness and is closely related to cardiovascular
disease. These findings suggest that DNA methylation at
genes known to influence lipid levels in the body may in-
fluence the development of ischemic stroke, possibly
through the lipid and fatty acid metabolism pathway.
There are few studies investigating direct associations

between DNA methylation of ABCG1 and APOE and is-
chemic stroke and atherosclerosis. Most studies focus on
the association between methylation of the two genes and
CHD or myocardial infarction (MI) and its major risk fac-
tors such as diabetes, obesity, and metabolic syndrome.
Fernandez-Sanles et al. showed that hypermethylation in
the promoter of ABCG1 was consistently associated with
CHD in candidate gene methylation studies, whereas
APOE methylation was not [5]. Pfeiffer et al. studied the
general population in Germany and found that
cg06500161 in ABCG1 was associated with HDL–C and
triglyceride levels, and additionally associated with MI in-
dependent of lipid levels [11], indicating a potential role in
the development of MI, which is consistent with our re-
sults. We found no association between APOE methyla-
tion and ischemic stroke; however, the finding from
previous studies is inconsistent. Ji et al. found that APOE
hypermethylation was significantly related to coronary
heart disease in a male Chinese population [12]. Zhang
et al. identified a significant association between APOE
promoter methylation and atherosclerotic cerebral infarc-
tion in Han Chinese people after adjusting for potential
risk factors such as age, gender, carotid atherosclerotic
plaque, hypertension, HDL, homocysteine, and folate [13].
Ghaznavi et al. indicated that APOE promoter methylation
status was associated with the severity of stenotic vessels
in coronary artery disease in an Iranian population [14].
Karlsson et al. found no significant association between
the APOE cg14123992 site and CVD in a Swedish twin
population including 205 individuals diagnosed with CVD
[15]. Different designs, population heterogeneity, sample
size, and confounder adjustment may account for the in-
consistency of the results from different studies.
There are gender differences in CVD mortality, and

the causes for this difference are still controversial. Some
studies have suggested that it may result from differ-
ences in the sex hormones or in lifestyle. Our results
suggest that there is a gender difference in the associ-
ation between ABCG1 and APOE gene methylation and
ischemic stroke and atherosclerosis, suggesting that

Table 2 Associations between DNA methylation in ABCG1 and
APOE and risk of ischemic stroke

OR 95% CI P value

cg02494239

Above vs below median 2.416 1.024–5.700 0.044

Q2 vs Q1 1.636 0.439–6.091 0.463

Q3 vs Q1 2.151 0.654–7.076 0.207

Q4 vs Q1 4.461 1.226–16.225 0.023

10% increasing of methylation level 1.254 0.875–1.795 0.217

cg06500161

Above vs below median 0.846 0.357–2.000 0.703

Q2 vs Q1 0.641 0.183–2.243 0.486

Q3 vs Q1 0.509 0.155–1.667 0.264

Q4 vs Q1 1.000 0.291–3.441 1.000

10% increasing of methylation level 1.054 0.386–2.881 0.918

cg14123992

Above vs below median 1.347 0.552–3.286 0.512

Q2 vs Q1 0.911 0.249–3.336 0.889

Q3 vs Q1 0.864 0.236–3.169 0.826

Q4 vs Q1 1.967 0.521–7.429 0.319

10% increasing of methylation level 0.921 0.297–2.852 0.886

Categorical variable for each CpG sites was defined using the 25% quartile, the
median, and the 75% quartile of the methylation value, where Q1 group was
0–25% of the values, Q2 was 25–50%, Q3 was 50–75%, and Q4 was 75–100%.
ABCG1 ATP–binding cassette G1 gene, APOE apolipoprotein E gene, OR odds
ratio, 95% CI 95% confidence interval
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Fig. 2 (See legend on next page.)
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methylation may be one of the molecular mechanisms
that lead to gender differences in CVD, which is consistent
with Ji et al.’s study [12]. This gender-related difference in
methylation level may provide further mechanistic sup-
port for the previous findings of a greater risk of cardio-
vascular disease in males.
The ABCG1 gene encodes the ABCG1 protein that is

essential for the regulation of lipid metabolism and in-
fluences blood lipid levels [11, 16, 17], and the APOE
gene is considered a candidate gene for cardiovascular
disease because the APOE protein influences total serum
cholesterol levels in different ways [18–21]. They both
have important impact on the process of atherosclerosis
[16, 22]. However, little is yet known about an epigenetic
impact of ABCG1 and APOE on the development of is-
chemic stroke. A human cell culture study showed that
higher triglyceride levels in the culture media led to a re-
duction of macrophage ABCG1 expression, suggesting
that hypermethylation in the promoter leads to down-
regulated expression, which could influence atherogen-
esis through a lower capacity for reverse cholesterol
transport, thus leading to the development of athero-
sclerotic plaques [23]. Negative associations between
ABCG1 methylation and ABCG1 mRNA levels, and
ABCG1 mRNA levels and HDL–C and triglyceride
levels, were identified in Pfeiffer et al.’s study [11], dem-
onstrating the potential role of DNA methylation of
ABCG1 in CVD. Moreover, ABCG1 hosts many kinds of
cardio-metabolic phenotypes, including glucose and in-
sulin measurements [24], type 2 diabetes [25, 26], and
obesity [27], which are strongly related to cardiovascular
diseases. Yu et al. found that one APOE CpG Island,
which is different from the one in this study, modulates
expression of the APOE genes and may be involved in
the mechanism of action of APOE in disease risk [28].
Ma et al also identified that the methylation of CpG sites
in the promoter of APOE, including cg14123992 and the
5′ part of the gene, were negatively associated with total
cholesterol (TC), and may act as intermediate factors of
the effects of age on blood lipids [29]. In order to give a
deeper explanation of the role of DNA methylation on
ischemic stroke and atherosclerosis based on the func-
tion of DNA methylation affecting gene expression, the
mRNA expression levels should be examined to investi-
gate the correlation between mRNA levels and methyla-
tion for each gene, but unfortunately, we were unable to

detect mRNA levels for APOE and ABCG1 in our sub-
jects since the blood samples have been stored for too
long time. Therefore, we referred to the method of Ma
et al. [29], using published database downloaded from
UCSC genome browser (methylation database: http://
hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
wgEncodeHaibMethyl450/; expression database: http://
hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
wgEncodeDukeAffyExon/) to analyze the correlation be-
tween DNA methylation and gene expression, and have
updated Ma et al.’s findings. We found a significant cor-
relation between cg14123992 and APOE expression (cor-
relation coefficient = − 0.481, P = 0.043), which was
similar to the point estimate of Ma et al [29], but dif-
fered in significance, and we found the non-significant
correlation between cg06500161 and ABCG1 expression
(correlation coefficient = 0.357, P = 0.146). Gene expres-
sion is influenced by many factors, not just DNA methy-
lation. Therefore, current data is very limited and
complete collection of environmental, genetic, and epi-
genetic information will be required to ensure the accur-
ate and reliable evidence.
In our study, we did not find significant associations

between the methylation levels at each methylation site
and the lipid profiles, which contradicts with the bio-
logical function of methylation that hypermethylation of
these genes leads to transcriptional silencing and lower-
ing levels of lipids. Some recent studies reported the
positive associations of APOE and ABCG1 methylations
with lipid profiles [11, 30], but there are still some nega-
tive findings [29, 31]. Besides heterogeneity of the study
populations and differences in methylation measurement
methods, cross-sectional design, and small sample size
in our study may partly explain the inconsistency and
the non-significant associations between the methylation
levels at each methylation site and the lipid profiles.
Although methylation is tissue-specific, blood sample is

still a good choice for conducting epigenetic epidemio-
logical studies for cardiovascular diseases. The symptoms
of ischemic stroke are mainly characterized by impaired
brain function, but the primary process of the disease itself
is not generally associated with brain tissue. On the con-
trary, it is a disease related to vasculature, where complex
interactions of lipids and endothelium occurred at the vas-
cular and blood levels, with substantial involvement of im-
mune cells and inflammatory factors, and ultimately

(See figure on previous page.)
Fig. 2 Association of DNA methylation at ABCG1 and APOE and risk of atherosclerosis (cIMT, ABI, and baPWV). For a detailed analysis, methylation
variable was presented as three types of variables for each CpG site, which were binary variable (above vs below median), categorical variable
and continuous variable (10% increasing of methylation level). Categorical variable for each CpG sites was defined using the 25% quartile, the
median, and the 75% quartile of the methylation value, where Q1 group was 0–25% of the values, Q2 was 25–50%, Q3 was 50–75%, and Q4 was
75–100%. β, regression coefficient; 95% CI, 95% confidence interval; ABCG1, ATP–binding cassette G1 gene; APOE, apolipoprotein E gene; cIMT,
carotid intima–media thickness; ABI, ankle–brachial index; baPWV, brachial–ankle pulse wave velocity
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leading to the formation of plaque and interrupt of blood
supply to the brain [4, 32, 33]. Baccarelli et al. indicated
that subjects with stroke had lower LINE-1 methylation
level in blood [34], and Braun et al. found in live human
individuals that the correlation coefficient of the aver-
age methylation level for each CpG across subjects
was 0.86 for blood and brain, and the blood had
20.8% of CpGs that correlated to the brain, which is
the highest proportion as compared to that in buccal
and saliva tissues. Although this study was conducted
on subjects with psychiatric diseases, it still suggested
the role of blood that could be used for identifying
the methylation changes associated with stroke [35].
Blood is easy to get and be tested with less invasion;
therefore, it is an important tissue of ischemic stroke,
and DNA methylation in blood cells is relevant for is-
chemic stroke and atherosclerosis.
The significance of this study on Fangshan district

of Beijing is reflected in two aspects. First, Fangshan
district is a district of Beijing, and the population
there is a typical representative of rural Han Chinese.
Fangshan district is located in the “stroke belt” of
China with normally high prevalence of cardiovascular
disease [36]. Second, the FISSIC study which this
study was based on is established as the largest
family-based study of ischemic stroke in China.
Family-based samples are very valuable samples for
genetic and epigenetic epidemiological studies, as it
allows us to account for factors that population-based
studies cannot. Based on the previous findings on the
environmental and genetic risk factors of ischemic
stroke in the FISSIC study, this study would provide
further epigenetic evidence for ischemic stroke eti-
ology and cardiovascular prevention in this area.
This study has some limitations. The sample size is ra-

ther small, resulting in low statistical power and unstable
results. However, our samples are randomly selected
from the whole sample pool, which could compensate
for the impact of insufficient sample size to a certain ex-
tent. In addition, we cannot establish causal relationships
between gene methylation and diseases because of the
cross-sectional study design. Further prospective studies
are needed. Finally, we were currently unable to measure
the methylation level for more CpG sites, other epigen-
etic modifications, and mRNA expression levels due to
the limited budget, so we cannot provide a deeper ex-
planation for the association between epigenetic changes
and ischemic stroke. But they will be the main directions
for our future research.

Conclusions
In conclusion, we found DNA methylation in ABCG1
and APOE to be related to ischemic stroke and

atherosclerosis in a Chinese population. Epigenetic
modification of ABCG1 and APOE may play a key role
in the pathway from disturbed blood lipid levels to the
development of cardiovascular diseases.

Methods
Study design and study samples
This study was based on the FISSIC study (the Fang-
shan/Family-based Ischemic Stroke Study in China),
with details described previously [36]. Briefly, the FISSIC
study is a family-based genetic pedigree study to assess
the role of multiple genetic, epigenetic, and environmen-
tal risk factors involved in the etiology of ischemic
stroke. We recruited ischemic stroke patients as pro-
bands and their surviving biological parents and/or sib-
lings. The inclusion criteria for probands were: (1)
confirmed ischemic stroke patients with full medical re-
cords, computerized tomography (CT), or magnetic res-
onance imaging (MRI); (2) older than 40 years at
enrollment; (3) had at least one surviving parent or sib-
ling who could participate in the study. Because of the
late onset of ischemic stroke, most of the subjects col-
lected were proband–sibling families. Until 2017, 2518
participants from 918 families were recruited, of which
1007 were ischemic stroke cases and 1151 were controls
with no ischemic stroke.
In the current study, we employed another stricter in-

clusion criterion to exclude the effect of age on the out-
come, so that the age difference between the proband
and their siblings was no more than 2 years. Finally, 118
proband–sibling families met the above criteria, and we
randomly selected 55 families from this eligible pro-
band–sibling family pool for DNA methylation analyses,
because of limited budget.

Data collection
Data for participants included questionnaire assess-
ments, laboratory tests, and clinical examinations.
We used a structured questionnaire to collect general

demographic (such as age and gender) and lifestyle (such
as smoking and alcohol-drinking habits) characteristics,
and a medical history (diagnosis of hypertension and
type 2 diabetes) of the subjects, through face-to-face in-
terviews by trained investigators. Participants were cate-
gorized as smokers or non-smokers, where smokers
included current smokers and former smokers. Current
smokers were defined as a person who smoked at least
one cigarette a day and has smoked accumulatively for 6
months or more. Former smokers were defined as
people who smoked regularly in the past and have quit
smoking for at least 1 month. Non-smokers were partici-
pants who had never smoked. Drinking was defined as
someone who drank at least 50 ml per week of any
alcohol-containing liquor for at least half a year.
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Laboratory tests were done at the molecular epidemi-
ology laboratory in the Department of Epidemiology and
Biostatistics, School of Public Health, Peking University.
The participants were asked not to eat after 20:00 the night
before the survey. Serum blood samples were collected in
EDTA tubes. All the samples were tested by auto-analyzer
(Mindray BS-420; Shenzhen, China) using standard proce-
dures. The tests included total cholesterol (TC), total trigly-
ceride (TG), high-density lipoprotein (HDL), and low-
density lipoprotein (LDL).
Clinical examinations included height, weight, cIMT,

baPWV, and ABI. Height and body weight were mea-
sured by trained and certified observers using standard
procedures. BMI was calculated as weight divided by
height squared (kg/m2). Carotid ultrasound was per-
formed by one of two trained ultrasonographers using a
high-resolution B-mode real-time ultrasound system
(Acuson Inc., Mountain View, CA, USA) with a probe
frequency of 7.5–10.0MHz according to study protocol.
cIMT was measured using vascular research tools (VRT)
6 DEM-O software. There were three measurement sites
on each side of the neck: the proximal end of the com-
mon carotid artery (CCA), the distal end of CCA, and
the carotid bifurcation. Each segment was 1 cm long.
The maximum value measured for each segment of
blood vessels was used as the measured value, and the
average of the measured values on the above six seg-
ments was taken as the cIMT value of the subject. The
cIMT was determined by four trained professionals with
intra-class correlation coefficients of 0.8 or higher.
baPWV is a measurement of systematic arterial stiffness
and ABI is valuable for screening for peripheral artery
disease. Together with cIMT, they are all indicators of
atherosclerotic vascular disease. The baPWV and ABI
values were tested with a BP–203 RPE III automatic ar-
teriosclerosis detection device (Omron Health Medical
Co., Ltd., China). The participants were placed in a quiet
position for 3 min before testing, and then the cuff was
tied to both upper arm elbow joints and ankles, and the
pulse wave in the brachial artery and the posterior tibial
artery pulse were measured using an automated oscillo-
metric method. baPWV was then calculated by dividing
the distance between two pulse wave measurement
points by the time difference between two pulse waves.
The larger the value, the higher the degree of arterio-
sclerosis. The detector automatically calculated and re-
corded the baPWV value, taking the average of the left
and right baPWV as the baPWV value. ABI was calcu-
lated by dividing the highest value obtained at each
ankle by the highest of the arm values. The ABI of both
the left and right legs was recorded, and for the defin-
ition of peripheral artery disease, the lower value of the
two was considered. The methodology for baPWV and
ABI measurement was the same for all participants.

Nucleic acid extraction and measurement of the DNA
methylation level
Genomic DNA was isolated from peripheral blood leu-
kocytes with a DNA extraction kit (DP319–01; Tiangen
Biotech, Beijing, China) following the manufacturer’s in-
structions. Bisulfite conversion was performed using the
EpiTect Bisulfite Kit (QIAGEN, Germany) according to
the manufacturer’s instructions. PCR of bisulfite-
converted DNA samples was performed using the Pyro-
Mark PCR Kit (QIAGEN, Germany). For all assays, the
amplification began with an initial activation period of 3
min at 95 °C, followed by a 3-stage cycling process of de-
naturation (94 °C for 30 s), annealing (56 °C for 30 s),
and extension (72 °C for 1 min) for 40 cycles. The PCR
process completed with a final extension period of 72 °C
for 7 min. Methylation assays of the two promotor re-
gions of ABCG1 and APOE were designed with Pyro-
Mark Assay Design 2.0 (QIAGEN, Germany). The
PyroMark custom assay (QIAGEN, Germany) genomic
location, primer sequences, and the sequence for ana-
lysis are presented in Additional file 1: Table S4. DNA
methylation was assessed using a PyroMark Q96 ID sys-
tem (QIAGEN, Germany). The nucleotide dispensation
order was generated by entering the sequence for ana-
lysis into the PyroMark Q96 software (QIAGEN,
Germany). A non-CpG cytosine was included in the nu-
cleotide dispensation order to detect incomplete bisulfite
conversion. The methylation at each CpG site was deter-
mined using the Pyro Q-CpG software set in CpG mode.
We used candidate gene strategy to select genes and

their CpG sites based on their functions and previous
evidence on the association of DNA methylation, and at
the same time referred to the results of BeadChip that
we have conducted in a smaller population (not yet pub-
lished). The cg06500161 was the most widely studied
methylation site in ABCG1, and therefore was included
in this study [24, 37, 38]. Another CpG site in ABCG1
(cg02494239) was selected because it is located in the
gene promotor area and has relatively higher differential
methylation levels and P values between ischemic stroke
cases and matched siblings than other sites located in
this area, according to the BeadChip results. The
cg14123992 site in APOE has been previously reported
to be associated with late-onset disease, and therefore it
was included in this study [15, 29]. The locations of the
three CpG sites in the genes are shown in Fig. 3.

Statistical analysis
Normality of the data was tested using the Shapiro–Wilk
test. Continuous variables were expressed as the mean
and standard deviation (SD) if normally distributed;
otherwise, they were expressed as the median and inter-
quartile range (IQR), while categorical variables were re-
ported as frequencies and percentages (%).
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First, we compared the distributions of demographic
characteristics, life behaviors, medical history, BMI, and
plasma lipid levels between probands and their age-
matched siblings. The differences were assessed with a
paired chi-square test for the qualitative variables, and a
paired t test and non-parametric test for the normal and
skewed distributed quantitative variables, respectively.
We estimated the mean and the SD, the median and the
IQR, the range with minimum to maximum of DNA
methylation at ABCG1 and APOE for probands and their
siblings.
Second, we established logistic mixed-effect models for

each CpG site to test whether the methylation level was
associated with ischemic stroke. The general formula of
the mixed-effect regression model is:

Y ¼ Xβþ Zμþ ϵ

where Y is a vector of the outcome variable, and X is a
matrix of the predictor variables for the fixed effects,
and Z is the matrix of covariates for the random effects,
and ϵ is a vector of the residuals. β is the vector of the
regression coefficient for the fixed effects, and μ is for
the random effects. Ischemic stroke (binary variable, yes
or no) was entered as a dependent variable in the logistic
mixed-model, and methylation level was an independent
variable as a fixed effect, and family number was entered
as a random effect. Gender, previous history of diabetes
and hypertension, smoking, drinking, BMI, and blood
lipid levels (TC, TG, HDL, and LDL) were added as co-
variates to the model as fixed effects to obtain adjusted
associations. For more detailed analysis, we presented
methylation variable as three types of variables for each
CpG site, which were binary variable, categorical vari-
able, and continuous variable. Taking one methylation

site as an example to explain how to define the different
types of independent variable, we created the binary
methylation variable with the median as the split point,
which is higher than the median as hypermethylation
and lower than the median as hypomethylation. We used
the 25% quartile, the median, and the 75% quartile of
the methylation value to define categorical variable,
where Q1 group was 0–25% of the values, Q2 was 25–
50%, Q3 was 50–75%, and Q4 was 75–100%. We defined
the continuous methylation variable as the methylation
value obtained in the experiment (expressed as a per-
centage) multiplied by 100. When the binary variable is
used as the independent variable in the mixed-effect
model, the hypomethylation group is used as the refer-
ence group, and when the categorical variable is used as
the independent variable, Q1 group is used as the refer-
ence groups, and all other groups were compared with
Q1. β can be obtained directly from the model, and odds
ratio (OR) is the exponentiation of β. For the continuous
methylation variable, the regression coefficient multi-
plied by 10 represents the degree of increase in outcome
risk for every 10% increase in methylation.
Third, linear mixed-effect regression models were

performed to analyze the associations between the
ABCG1 and APOE gene methylation levels and cIMT,
ABI, and baPWV, which predict atherosclerosis. In
this step, cIMT, ABI, and baPWV were the dependent
variables, respectively. Definition of independent vari-
ables and covariates were the same as for the second
step.
The study population was reanalyzed separately for

men and women. Results were considered statistically
significant when the P values were less than 0.05
(two sided). All statistical analyses were performed
with the STATA 13.0 software (StataCorp LP, 4905

Fig. 3 Diagram of the structure of the ABCG1 (NCBI reference sequence: NM_207629.1) and APOE (NCBI Reference Sequence: NM_000041.4)
genes. The line represents the gene (left to right: 5′–3′), and solid rectangles represent exons. Because of the long length of the ABCG1 gene and
the scale of the image displayed, most of the exons look like a vertical line instead of rectangles. ABCG1, ATP–binding cassette G1 gene; APOE,
apolipoprotein E gene
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Lakeway Drive, College Station, TX77845, USA), and
gene structure mapping was performed using Illustra-
tor for Biological Sequences (IBS) software, version
1.0.3 [39].
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Supplementary information accompanies this paper at https://doi.org/10.
1186/s13148-019-0784-0.
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patch release 13. CpG sites are indicated in the sequence to analyze. For,
forward primer; Rev, reverse primer, Seq, sequencing primer. Figure S1.
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and risk of atherosclerosis (cIMT, ABI and baPWV). Figure S1 Legend: For a
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variables for each CpG site, which were binary variable (above vs below
median), categorical variable and continuous variable (10% increasing of
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