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Abstract
Cancer cell lines have been used widely in cancer biology, and as biological or functional cell systems in many biomedical

research fields. These cells are usually defective for many normal activities or functions due to significant genetic and

epigenetic changes. Normal primary cell yields and viability from any original tissue specimens are usually relatively low

or highly variable. These normal cells cease after a few passages or population doublings due to very limited proliferative

capacity. Animal models (ferret, mouse, etc.) are often used to study virus-host interaction. However, viruses usually need

to be adapted to the animals by several passages due to tropism restrictions including viral receptors and intracellular

restrictions. Here we summarize applications of conditionally reprogrammed cells (CRCs), long-term cultures of normal

airway epithelial cells from human nose to lung generated by conditional cell reprogramming (CR) technology, as an

ex vivo model in studies of emerging viruses. CR allows to robustly propagate cells from non-invasive or minimally

invasive specimens, for example, nasal or endobronchial brushing. This process is rapid (2 days) and conditional. The

CRCs maintain their differentiation potential and lineage functions, and have been used for studies of adenovirus, rhi-

novirus, respiratory syncytial virus, influenza viruses, parvovirus, and SARS-CoV. The CRCs can be easily used for air-

liquid interface (ALI) polarized 3D cultures, and these coupled CRC/ALI cultures mimic physiological conditions and are

suitable for studies of viral entry including receptor binding and internalization, innate immune responses, viral replica-

tions, and drug discovery as an ex vivo model for emerging viruses.

Keywords Normal cells � Cell senescence � Conditional reprogramming � Physiological conditions � Functional models �
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Conventional Cell Line Models for Virus
Studies

Emerging and re-emerging viral infections are becoming

severe global public health problems in the current century.

In February 2003, an outbreak of severe acute respiratory

syndrome (SARS), caused by SARS coronavirus (SARS-

CoV), was reported in Guangdong, China (Ksiazek et al.

2003). The SARS-CoV infected 8096 cases and 774 deaths

worldwide. In March 2009 a novel influenza virus

(H1N1pdm) emerged in the United States and Mexico.

H1N1pdm obtained the capacity to transmit in humans and

quickly spread to more than 214 countries (Hendrickson

and Matthay 2013). Thereafter the H1N1 infection became

a seasonal virus circulating over the world (Dawood et al.

2009). Middle East respiratory syndrome (MERS) coron-

avirus was isolated from patients who developed acute
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pneumonia and renal failure in 2012 from Saudi Arabia

(Zaki et al. 2012). One big secondary outbreak with 186

confirmed cases was in South Korea in 2015. Up to January

2020, more than 2500 confirmed cases were reported with a

case fatality of 34.4% (WHO 2019). In December 2019, a

novel coronavirus, SARS-CoV-2 caused an outbreak of

acute pneumonia in Wuhan City of China (Zhou P et al.

2020).The current animal models for study of SARS-CoVs

include African green monkeys, macaques, ferret, and mice

(Kong et al. 2009; Smits et al. 2011). These in vivo models

are useful for studying many important questions, for

example, local or systemic pathogenic changes, immune

response, and drug metabolism and in vivo efficacy.

However, these animal models have limitations due to

species difference. The viral tropism correlates to expres-

sion of viral receptor(s) on the surface of host cells and

intracellular restriction as well. Cancer cell lines have been

used widely for biological or functional cell systems in

many other fields (Agarwal and Rimm 2012; Barretina

et al. 2012; Palechor-Ceron et al. 2019). These cells are

defective for many functions of normal human cells

because of significant genetic and epigenetic changes

compared to the normal tissues. However, primary cell

yields and viability from any original tissue specimens are

often relatively low or highly variable. These normal cells

cease at a few passages because of very limited prolifera-

tive capacity in vitro. It has been extremely difficult for

decades to generate and maintain normal cell lines. Several

exogenous immortalization approaches have been used to

establish primary cell lines from variety of tissue types. For

example, viral oncogenes such as SV40 large T antigen or

the human papillomavirus (HPV) E6/E7 proteins can

bypass the cell senescence block through interfering with

p53 and Rb regulatory pathways (Liu et al. 2005; Liu et al.

2007; Liu et al. 2008; Cid Arregui et al. 2012; Klingelhutz

and Roman 2012; Ghittoni et al. 2015). Expression of

exogenous cellular genes (hTERT, c-Myc, cdk4, etc.) or

inactivation of cellular tumor repressors (p53, pRB, etc.)

can be widely used to immortalize primary human normal

cells, which leads to disrupted cell differentiation or loss of

tissue type-specific functions (Liu et al. 2012).

We observed that two classes of functions are required

for cell immortalization by HPV E6 and E7: telomerase

activation and actin cytoskeleton alterations (Fu et al.

2003; Charette and McCance 2007; Liu et al. 2007; Liu

et al. 2008; Yue et al. 2011; Klingelhutz and Roman 2012).

We also noted that feeder cells and altered molecular

pathways activate telomerase (Fu et al. 2003; Liu et al.

2008; Liu et al. 2009; Klingelhutz and Roman 2012; Liu

et al. 2012), and a Rho-Kinase inhibitor, Y-27632, disrupts

the actin cytoskeleton and inactivate Rho (Chapman et al.

2010; Liu et al. 2012). Unexpectedly, combination of

feeder layers and Y-27632 allows to rapidly establish both

normal and tumor cell cultures from non-keratinocyte tis-

sues (Liu et al. 2012; Suprynowicz et al. 2012; Palechor-

Ceron et al. 2013; Liu et al. 2017). We also demonstrated

that the effect of the combined co-culture condition is rapid

(2 days), and the whole cell populations are shifted or

reprogrammed rather than a clone selection as conventional

cancer cell lines (Liu et al. 2012; Suprynowicz et al. 2012).

These cell cultures stop proliferating if one of the condi-

tions (Y-27632 or feeder layer) is not met. We termed this

culture method and resulting cells as ‘‘conditional repro-

gramming (CR)’’ and ‘‘conditionally reprogrammed cells

(CRC)’’, respectively (Liu et al. 2012; Suprynowicz et al.

2012; Palechor-Ceron et al. 2013; Liu et al. 2017;

Palechor-Ceron et al. 2019). Indeed, organoids (Weeber

et al. 2017; Puca et al. 2018; Sachs et al. 2018; Mullenders

et al. 2019; Xinaris 2019) and CR technologies have been

widely used in cancer biology and regeneration fields. They

both have been recognized as the key new technologies by

NCI (National Cancer Institute) precision oncology

(https://ocg.cancer.gov/programs/hcmi/research) (Fried-

man et al. 2015; Senft et al. 2017), which are used for

HCMI (human cancer model initiatives) program launched

during 2019 annual AACR) (https://www.atcc.org/en/Pro

ducts/Cells_and_Microorganisms/HCMI.aspx?utm_id&e

quals;t18020438l1). Table 1 lists properties of these cell

models. In this review, we will highlight roles of CRC and

coupled air-liquid interface (ALI) system in studies of

emerging viruses.

CR Methodology

Primary airway epithelial cells can be obtained from airway

tract using non-invasive or minimally invasive techniques,

nasal brushing, nasorophynx swaps, induced sputum sample

collection, bronchiolar lavage, endobronchial brushing or

biopsy. After CR technology was established in 2012, the

CR protocol has been proven to easily establish patient-

derived normal and cancer cell cultures without genetic

manipulation (Liu et al. 2012; Palechor-Ceron et al. 2013;

Liu et al. 2017). Originally, the CR used irradiated mouse

fibroblast cells (swiss mouse 3T3, J2 clone) and the Rho-

associated kinase inhibitor (Y-27632) to propagate epithelial

cells (Liu et al. 2012; Palechor-Ceron et al. 2013; Liu et al.

2017). A few improvements have been used to simplify

protocols using J2 conditioned medium (Liu et al. 2012;

Palechor-Ceron et al. 2013; Liu et al. 2017), hypoxia con-

dition (1%–2% O2) (Peters-Hall et al. 2018), and combi-

nation with dual TGF-beta/SMAD inhibition (Mou et al.

2016; Zhang C et al. 2018). CR technology is simple and

cheap since there is no need for expensive reagents as

matrigel for organoids, robust since 1 9 106 cells can be

generated from a needle biopsy within 7 days, and rapid
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since the whole populations of cells can be reprogrammed

within 2 days instead of clonal selection. Figure 1 shows a

diagram of normal cell cultures in CR conditions and 3D

(ALI and non-iPS organoids) conditions for ex vivo models

of airway epithelial cells.

CRCs Maintain Differentiation Potential
and Lineage Functions of Normal Airway
Epithelial Cells

CR allows the rapid generation of multi-lineage cell cul-

tures (conditionally reprogrammed cells, CRC) from many

different normal epithelial tissues, as well as tumors

derived from these sites (Liu et al. 2012; Suprynowicz

et al. 2012; Palechor-Ceron et al. 2013; Liu et al. 2017;

Palechor-Ceron et al. 2019). Normal cell lines retain their

normal karyotype and growth properties, and tumor cells

retain their tumorigenic potential (Liu et al. 2012;

Suprynowicz et al. 2012; Palechor-Ceron et al. 2013;

Borodovsky et al. 2017; Liu et al. 2017; Yuan et al. 2017;

Alkhilaiwi et al. 2018; Correa et al. 2018; Palechor-Ceron

et al. 2019). Interestingly, generation of CRC from normal

tissue is reversible, and manipulating CR conditions allows

the cells to differentiate normally (Suprynowicz et al.

2012; Liu et al. 2017). For example, when CRC from skin

epithelium or tracheal epithelium are placed in an ALI

culture system, the skin cells form a well-differentiated

stratified squamous epithelium, whereas the tracheal cells

form a ciliated airway epithelium.

CRCs at ALI

ALI (Air–Liquid interface) culture (Fig. 2) of CR airway

cells is uniquely suited as a model for in vitro infection

studies. This is due to the ability of ALI cultures to faith-

fully recapitulate key characteristics of the in vivo airway.

For example, ALI cultures exhibit relevant proportions of

airway cell types, appropriate cellular polarization and

junctional properties, dynamic physiologic processes such

as mucus secretion and coordinated ciliary beating, and

Table 1 Comparison of ex vivo

cell models.
Conventional cell lines Organoids CRC

Sample size Surgical Small to big Tiny to big

Timing 1–5 months 1–5 weeks 1–10 days

Success rate of initiation (%) (0–10) ?? (5–80) ??? (50–100)

Rapid expansion ??? ?? ???

Karyotypic stability ? ?? ??

3D growth – ?? –

Genetic manipulation ??? ?? ??

Low throughput drug screens ??? ?? ???

High throughput drug screens ??? ?? ???

Heterogeneity - ?? ??

Cell biology ? ??? ???

Cost ? ?? ?

‘‘–’’ ‘‘?’’ ‘‘??’’ and ‘‘???’’ indicate ‘‘unsuitable or not applicable’’, ‘‘possible’’, ‘‘suitable’’, and ‘‘best’’

for the aspects or applications except for ‘‘cost’’. ‘‘?’’ and ‘‘??’’ represent ‘‘low’’ and ‘‘high’’ for in ‘‘cost’’

line, respectively.

Fig. 1 Workflow for ex vivo

models of human normal airway

epithelial cells.
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physiological expression and subcellular localization of

characteristic proteins bearing species-specific sequences.

CRCs/ALI: An Ex Vivo Models for Virus
Infections

To date, CR by itself or in combination with ALI cultures

have been used in studies of host defense and viral infections,

drug screening and toxicity testing, wound healing/repair,

gene therapies as ex vivo preclinical models for lung cancer,

chronic obstructive pulmonary disease, cystic fibrosis, and

asthma (Yuan et al. 2012; Bove et al. 2014; Crystal et al.

2014; Saenz et al. 2014; Chu et al. 2015b; Feng et al. 2015;

Kotha et al. 2015; Walters et al. 2015; Alamri et al. 2016;

Beglyarova et al. 2016; Butler et al. 2016; Ellis et al. 2016;

Papapetrou 2016; Reynolds et al. 2016; Borodovsky et al.

2017; Gentzsch et al. 2017; Jensen et al. 2017; Li et al. 2017;

Mahajan et al. 2017; Martinovich et al. 2017; Wolf et al.

2017; Yu et al. 2017; Yuan et al. 2017; Alkhilaiwi et al.

2018; Boström et al. 2018; Brewington et al. 2018; Correa

et al. 2018; Jin et al. 2018; LaRanger et al. 2018; Mimoto

et al. 2018; Moorefield et al. 2018; Peters-Hall et al. 2018;

Shay et al. 2018; Wang et al. 2018; Zhang Z et al. 2018;

Alkhilaiwi et al. 2019; Jiang et al. 2019; Krawczyk et al.

2020; Liu 2019; Martini et al. 2019; Mondal et al. 2019;

Nicolas et al. 2019; Palechor-Ceron et al. 2019; Su et al.

2019; Chai et al. 2020). Compared to organoids (close 3D

cultures) shown in Fig. 1 (right lower panel), ALI system is

much easier for virology studies because of an open apical

area for infections or viral inoculations (Fig. 3). Here we will

focus our discussion on applications of this physiological

system in respiratory virus infections. Figure 3 shows many

aspects of studies of emerging viruses.

Roberts et al. collected samples from paired nasal and

bronchial brushings and cultured and expanded nasal and

bronchial epithelial cells using CR condition (irradiated

3T3 fibroblasts in presence of Y-27632) (Roberts et al.

2018). Passaged cells were then put onto collagen coated

transwells in 12 well plates for ALI culture. They found

that viral infection in both cell types increased the

expression of IP-10 (interferon gamma-induced protein

10), although the increase was only significant in the ALI

culture, with combining rhinovirus infection and IL-13

treatment (Roberts et al. 2018). Kotha et al. showed that

the level of the apical adenovirus receptor (CAREx8) and

physiologically relevant levels of IL-8 and neutrophils

(components of the innate immune system) enhanced entry

of adenovirus in polarized human airway epithelia (Kotha

et al. 2015). Jonsdottir et al. established CRC and ALI

cultures from both upper and lower airway to study the host

innate immune response to human coronavirus 229E

(HCoV-229E) and human respiratory syncytial virus

(RSV) after gene manipulations (Jonsdottir et al. 2019). It

is well known that autonomous parvovirus replication

depends on the S phase of the host cells. Interestingly,

Deng et al. (2016) reported for the first time parvovirus

DNA replicated in non-dividing cells autonomously. They

first established CR cells and ALI cultures (non-dividing

airway epithelial cells) and inoculated ALI with human

parvovirus HBoV1. Their results demonstrated that HBoV1

infection of ALI cultures induces a DNA damage response

(DDR), thereby facilitating viral genome amplification.

They also discovered that Y- family DNA repair poly-

merases, Pol g and Pol j, are involved in HBoV1 genome

amplification in ALI system. This is the first report to show

that parvovirus DNA replicates in non-dividing cells

autonomously. Zhu et al. studied HSV-2 infection in CR

and ALI cultured normal vaginal epithelial cells (Zhu et al.

2017). Fink et al. also established CR cells from routine

vaginal repair surgeries or hysterectomies and studied

antiviral drug (Arbidol) Inhibition of Zika virus (Fink et al.

2018). Finally, Imai-Matsushima et al. generated long-term

Fig. 2 Air-liquid interface (ALI) differentiation cultures of normal

airway conditionally reprogrammed cells (CRCs). A Histological

sections of ALI cultures of CRCs. Sections were stained with H&E or

a combination of alcian blue and periodic acid-Schiff reaction (AB-

PAS). Note the presence of ciliated cells (arrowheads) and mucus-

producing cells (arrows). B Confocal microscopy of tracheal-

bronchial CRCs that were differentiated in ALI culture, fixed and

fluorescently labeled with phalloidin (F-actin), Hoechst dye 33342

(DNA), or antibodies demonstrating the presence of cilia (alpha-

tubulin) and mucins 5AC and 5B (MUC5AC/MUC5B). An X–

Z cross-section, extended focus X–Y view, and corresponding three-

dimensional (3D) view are shown. (adapted from PNAS (https://

www.pnas.org/page/authors/licenses), (Suprynowicz et al. 2012).
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culture of distal airway epithelial cells and differentiated

alveolar epithelial cells that are suited for influenza virus

study (Imai-Matsushima et al. 2018).

CRCs/ALI: Potential Applications in SARS-
CoV-2 and Coronavirus Disease 2019
(COVID-19)

On Jan. 30 and March 11, 2020, the International Health

Regulations Emergency Committee World Health Organi-

zation (WHO) declared the COVID-19 or SARS-CoV-2

infection outbreak as a ‘‘public health emergency of

international concern’’, and characterized COVID-19 as a

pandemic, respectively (WHO 2020). COVID-19 cases

have ranged from very mild (including asymptomatic),

mild, moderate, severe, and critical severe including illness

resulting in death (Lu et al. 2020; Singhal 2020; Wang

et al. 2020; Wu and McGoogan 2020; Yang S et al. 2020;

Yang X et al. 2020; Ye et al. 2020; Zhang et al. 2020;

Zhou C et al. 2020; Zhou F et al. 2020; Zou et al. 2020).

COVID-19 common symptoms include fever, cough and

shortness of breath. Muscle pain, sputum production and

sore throat are less common (Lu et al. 2020; Singhal 2020;

Wang et al. 2020; Wu and McGoogan 2020; Yang S et al.

2020; Yang X et al. 2020; Ye et al. 2020; Zhang et al.

2020; Zhou C et al. 2020; Zhou F et al. 2020; Zou et al.

2020). While the majority of cases result in mild symp-

toms, some progress to severe pneumonia and multi-organ

failure including lung, heart, and kidney (Lu et al. 2020;

Singhal 2020; Wang et al. 2020; Wu and McGoogan 2020;

Yang S et al. 2020; Yang X et al. 2020; Ye et al. 2020;

Zhang et al. 2020; Zhou C et al. 2020; Zhou F et al. 2020;

Zou et al. 2020). The rate of deaths per number of diag-

nosed cases is estimated to be 3.4% but varies by age and

other health conditions (Lu et al. 2020; Singhal 2020;

Wang et al. 2020; Wu and McGoogan 2020; Yang S et al.

2020; Yang X et al. 2020; Ye et al. 2020; Zhang et al.

2020; Zhou C et al. 2020; Zhou F et al. 2020; Zou et al.

2020). The mechanisms how SARS-CoV-2 infects human

airway epithelial cells and also causes severe multi-organ

failure are largely unknown. Generally speaking, early

stage of COVID-19 or cases with very mild (including

asymptomatic), mild symptoms are usually due to rapid

replication of viruses at local areas, innate response of the

host cells and local immune-response (IgA). Severe cases

with multi-organ injury are usually due to possible viral

replications in the target organs and immunopathogenic

injuries (including cytokine storm or antibody dependent

enhancement). Recently, two reports demonstrated that

large amounts of SARS-CoV-2 were detected in the upper

airway and saliva (To et al. 2020; Zou et al. 2020).

SARS-CoV-2 and SARS-CoV share the same functional

host-cell receptor ACE2 (Hoffmann et al. 2020; Walls

et al. 2020; Wan et al. 2020; Wrapp et al. 2020; Zhou P

et al. 2020) and sequence analysis reveals that SARS-CoV-2

possesses crucial amino acid residues for ACE2 binding

(Hoffmann et al. 2020). ACE2 predominantly expresses in

vascular endothelial cells, kidney and heart tissues, small

intestine, and testes (Hamming et al. 2004). The distribution

of ACE2 in human tissues does not seem to correlate with

diseases with COVID-19, while this may help explain why

severe cases with COVID-19 have multi-organ failure

including heart and kidney. It is important to understand

body site-specific or tissue-specific viral replication, innate

immune response, and infectivity. Two recent reports

demonstrated that large amounts of SARS-CoV-2 were

found in the upper airway and saliva as we described above

(To et al. 2020; Zou et al. 2020), where ACE2 is not

expressed or expresses at very low levels. Wolfel et al.

performed a dynamic viral analysis of nine COVID-19

patients, they showed active virus replication in upper air-

way tissues. Virus shedding at pharynx was very high at the

first week of symptoms, the peak was at 7.11 9 108 RNA

copies per throat swab at day 4. SARS-CoV-2 viruses were

readily cultured from throat- and lung-derived samples, but

not from stool samples with high viral RNA. Viral load was

declined after 7 days of symptoms (Wolfel et al. 2020). A

ferret model of SASR-CoV-2 infection and transmission was

established recently (Kim et al. 2020), which can recapitu-

late some aspects of human COVID-19 disease. SARS-

CoV-2-infected ferrets shed virus in nasal washes, saliva,

urine, and feces up to 8 days after infection. Viral antigens

were also detected in several tissues, as nasal cavity, trachea,

lung, and intestine. This ferret model represents an animal

model of SARS-CoV-2 infection and transmission, may

Fig. 3 Potential applications of

CR/ALI cultures in emerging

viruses.
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facilitate to develop COVID-19 therapeutics and vaccine as

well. However, distribution of ACE2 and viral replication in

different organs or tissues, or possible other receptors or co-

receptors in this model need to be further determined.

Another study also demonstrated that SARS-CoV-2 may

replicate well in ferrets and cats, but poorly in dogs, pigs,

chickens, and ducks (Shi et al. 2020). These inconsistences

suggest possible alternative receptors or co-receptors on the

surface of the target cells in different tissues. A study by

Blanco-Melo et al. suggests that human alveolar adenocar-

cinoma cells (A549) are able to support viral replication of

SARS-CoV-2, RSV and influenza A virus, despite unde-

tectable levels of ACE2 and TMPRSS2, the putative

receptor and protease for SARS-CoV-2 entry (Blanco-Melo

et al. 2020). To solve these problems, we will need com-

prehensive studies of tissue staining of viral antigens and

cellular proteins from COVID-19 patients. Then, human

related physiological models are urgently needed to inves-

tigate these questions and for functional validation. In

agreement with these arguments, an early study on SARS-

CoV indicates that host cell differentiation or polarized

epithelium and expression of ACE2 are both important for

the susceptibility of human airway epithelia to SARS-CoV

viral infection (Jia et al. 2005; Tseng et al. 2005). Indeed,

ALI cultures of human airway epithelial cells (HAEs) have

also been used for functional drug screening of SARS-CoV

and SARS-CoV-2 (Sheahan et al. 2017; Sheahan et al.

2020). Since CRCs are stable resources for normal func-

tional airway cells, CRCs/ALI cultures will facilitate these

studies and development of novel therapeutics as a func-

tional and biological system.

Advantage and Limitations

As we discussed above, CR is a rapid, robust and sufficient

way to obtain large amount of normal airway cells from

non-invasive and minimal human samples, and CRCs from

respiratory tract maintain their lineage functions. ALI

provides a unique environment to mimic ‘‘in vivo’’ physi-

ological conditions. Thus, CRC/ALI will be appropriate for

studies of viral entry to the nature host cells, innate

immune response of the host cells, and tests of anti-viral

and immune (innate) modulators (Fig. 3). This will be a

unique biological or functional cell system for population

or health disparity studies since there is no biological cell

model available in the field. Since CRCs can be easily

genetically manipulated with overexpression of exogenous

genes, shRNAs, or CRISPR technologies (Chu et al. 2015a;

Fenini et al. 2018), CRC/ALI should be a unique system

for both phenotypical and mechanism studies for human

viral diseases. Although CRCs alone can be used for rapid

and high throughput screening, combination CRC and ALI

will take much longer time and need further development

for high throughput studies. Compare to the current per-

missive cancer cell lines or animal derived permissive cell

lines, CRC/ALI for virus studies requires experienced

performance, higher work load and cost. Thus, CRC/ALI

will serve as a human-relevant, physiological system for

emerging viruses in addition the current cell lines and

animal models.

Conclusions

Because of limitations of current cell line and animal

models, there is an urgent need of human physiological cell

models for studies of emerging viruses. Here we summa-

rized establishment of long term cultures for human normal

airway epithelial cells from nose to lung using CR and

coupled ALI technologies and their applications as an

ex vivo model for emerging viruses. As a great addition to

the current cell lines and animal models, CRC/ALI system

will facilitate studies of viral entry including receptors and

internalization, innate immune responses, viral replica-

tions, and drug discovery.
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