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Abstract

Background: Genomic studies demonstrate that components of virulence mechanisms in filamentous eukaryotic
pathogens (FEPs, fungi and oomycetes) of plants are often highly conserved, or found in gene families that include
secreted hydrolytic enzymes (e.g., cellulases and proteases) and secondary metabolites (e.g., toxins), central to the
pathogenicity process. However, very few large-scale genomic comparisons have utilized complete proteomes from
dozens of FEPs to reveal lifestyle-associated virulence mechanisms. Providing a powerful means for exploration, and
the discovery of trends in large-scale datasets, network analysis has been used to identify core functions of the
primordial cyanobacteria, and ancient evolutionary signatures in oxidoreductases.

Results: We used a sequence-similarity network to study components of virulence mechanisms of major
pathogenic lifestyles (necrotroph (ic), N; biotroph (ic), B; hemibiotroph (ic), H) in complete pan-proteomes of 65
FEPs and 17 saprobes. Our comparative analysis highlights approximately 190 core functions found in 70% of the
genomes of these pathogenic lifestyles. Core functions were found mainly in: transport (in H, N, B cores);
carbohydrate metabolism, secondary metabolite synthesis, and protease (H and N cores); nucleic acid metabolism
and signal transduction (B core); and amino acid metabolism (H core). Taken together, the necrotrophic core
contains functions such as cell wall-associated degrading enzymes, toxin metabolism, and transport, which are likely
to support their lifestyle of killing prior to feeding. The biotrophic stealth growth on living tissues is potentially
controlled by a core of regulatory functions, such as: small G-protein family of GTPases, RNA modification, and
cryptochrome-based light sensing. Regulatory mechanisms found in the hemibiotrophic core contain light- and
CO,-sensing functions that could mediate important roles of this group, such as transition between lifestyles.

Conclusions: The selected set of enriched core functions identified in our work can facilitate future studies aimed
at controlling FEPs. One interesting example would be to facilitate the identification of the pathogenic potential of
samples analyzed by metagenomics. Finally, our analysis offers potential evolutionary scenarios, suggesting that an
early-branching saprobe (identified in previous studies) has probably evolved a necrotrophic lifestyle as illustrated
by the highest number of shared gene families between saprobes and necrotrophs.
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Background

Filamentous eukaryotic pathogens (FEPs; ie., fungi and
oomycetes) of plants cause extensive losses in annual yields
of staple crops worldwide [1, 2]. The danger posed by these
pathogens is enhanced by accelerated pathogen evolution,
mainly due to the continuous use of fungicides in monocul-
ture practice, and human- or climate-dependent dispersal
[2, 3]. Understanding the genetic basis of fungal and oomy-
cete pathogenicity mechanisms may provide new avenues
for the development of revamped disease-control strategies.
Despite the increasing number of sequenced FEP genomes
(e.g., the 1000 fungal genomes from the Joint Genome Insti-
tute (JGI) [4]), there are very few large-scale genomic com-
parisons that make use of complete proteomes from at least
a few dozen FEP genomes, which could reveal novel and
niche-specific virulence mechanisms (e.g., study of proteases
in [5, 6], and cell wall-degrading enzymes in [7]).

Genomic studies have shown that components of viru-
lence mechanisms in FEPs are often highly conserved, or
found in gene families that are potentially generated due
to their association with the high genomic plasticity
found in many of these pathogens [8—15]. One example
is the conserved signaling module in fungi and oomy-
cetes (i.e., the phosphorylative regulation machinery),
which is pivotal for sensing environmental cues, and for
regulating infection-associated morphogenetic transi-
tions in pathogens [13, 16—19]. Comparative genomic
studies have also pinpointed the dispersal of conserved
effector families and domains across FEP species: (i)
LysM domain-containing effectors that sequester chitin
oligosaccharides from host defense [20]; (ii) toxins
(TOXB, TOX2, HC, and Nepl-like proteins) [21-23];
(iii) the RXLR sequence motif mediating host transloca-
tion in oomycete effectors [24]; (iv) CRN effectors, cell
death-inducing oomycete effectors [8]; and (v) Hce2s ef-
fectors potentially involved in adaptation to stress [25].
In addition, the capacity to generate and coordinately se-
crete proteins and secondary metabolites is prevalent in
these pathogens, and central to their pathogenicity
process [26]. These secreted components include a large
arsenal of hydrolytic enzymes (e.g., cellulases, pectinases,
proteases, lipases), oxidoreductases [27-29], and metab-
olites (e.g., polyketides, terpenes, and nonribosomal pep-
tide (NPS)) effectors, some of them diverse, and tailored
to a specific host [21, 24, 30]. Despite their high diversity
and host specificity, over half of the predicted effectors
are part of gene families- in 3 studied species of Pucci-
niomycetes (51 to 68% of the effectors), 2 Phytophthora
species (77% of the effectors), and 18 Dothideomycetes
(79% of the total count of effectors from all 18 species)
[9, 31-33]. The correlation of certain gene families to
specific lifestyles has facilitated defining metabolic activ-
ity, and the pathogenicity mechanisms required for dif-
ferent ecological niches [9, 33].
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Three major lifestyles are known in fungal and oomy-
cete phytopathogens. The necrotrophic lifestyle (hereafter,
N is used to refer to necrotrophs), which is characterized
by killing of the host cell before feeding on its dead tissue,
is involved in utilizing host-selective toxin effectors (e.g.,
ToxA, Tox1/2/4, and Nepl-like proteins) (in) directly
interacting with a host-susceptibility gene product, and ul-
timately leading to cell death [21, 24, 34, 35]. One example
in this category is the broad host range fungus Botrytis
cinerea, capable of infecting over 1400 plant species (in-
cluding 200 cultivars) [36]. The biotrophic lifestyle (B will
refer to biotrophs), which is characterized by nutrition
and growth on living tissue, requires avoidance of plant
defense mechanisms while feeding on the host com-
pounds. One example in this category is Erysiphe necator,
known to cause powdery mildew in grapes [37]. The
hemibiotrophic lifestyle (H will refer to hemibiotrophs) is
characterized by an initial biotrophic infection mode,
followed by a transition to the necrotrophic stage. One ex-
ample in this category is the fungus Colletotrichum gloeos-
porioides which causes significant damage to subtropical
and tropical fruit before and after harvest [38]. In contrast
to the pathogenic lifestyles, the saprotrophic lifestyle (Sap)
is characterized by nutrition and growth on organic mat-
ter or decaying tissue [39]. One example in this category,
is the model filamentous fungus Neurospora crassa [40].
Processing of organic/decaying tissue is typically associated
with extracellular enzymatic degradation and subsequent
absorption of nutrients. A fundamental aspect of the plant—
pathogen interaction is induction of plant defense as a re-
sult of recognition of often conserved pathogen-associated
molecular patterns (PAMPs, e.g., glucans, and chitin) by
pathogen recognition receptors (PRRs) [24, 41-45], which
is often termed PAMP-triggered immunity (PTI). Patho-
gens secrete effectors which suppress this primary defense
mechanism (i.e., the PTI) and allow them to infect plants
[24, 41-45]. In turn, plants evolved to produce R proteins
(mainly nucleotide binding—leucine-rich repeat (NB-LRR)
receptors) which invoke the plant defense upon (in) direct
recognition of pathogen effectors, termed effector-triggered
immunity (ETI) [43-45]. The effectors participate in both
the (hemi) biotrophic and necrotrophic virulence processes,
and their activity is important for avoidance of plant
defense mechanisms in biotrophs.

To the best of our knowledge, there are very few large-
scale genomic comparisons that make use of complete
proteomes from dozens of FEP genomes, to discover
novel, and niche-specific virulence mechanisms (e.g., study
of proteases in [5, 6], and cell wall-degrading enzymes in
[7]). The power of such analyses was demonstrated in the
study of 18 Dothideomycetes genomes with diverse life-
styles (3 Sap, 6 N, 2 B, and 7 H) compared to outgroup ge-
nomes. That study identified 3K core gene families
(comprised of 66 K genes) of Dothideomycetes having at
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least one representative in each Dothideomycetes genome,
containing 233 Pfam domains that were expanded in
Dothideomycetes compared to the control. These core
gene families also contained 69 Pfam domains that were
expanded in Dothideomycetes pathogens vs. outgroup
pathogens [33]. Empowered by diverse multiple genomes of
Dothideomycetes, that analysis highlighted gene families po-
tentially playing a role in necrotrophic, hemibiotrophic, and
saprotrophic lifestyles, primarily within the Dothideomycetes
class of Ascomycota. Following observation of the conserved
pathogenicity mechanisms mentioned above, and common
characteristics of the major pathogenic lifestyles, we
hypothesize that it is feasible to deploy the power of com-
parative genomics analysis in a large set of FEPs to identify
core functions of pathogenicity for those lifestyles, as partially
demonstrated in the Dothideomycetes class.

Networks offer a fashionable methodology for studying
large-scale multifaceted genomic and functional genomic
data [46]. Enabling integration of metadata [47, 48], it can
facilitate the correlation of genomic elements and path-
ways with diverse pathogenic lifestyles (e.g., (hemi) bio-
trophic, and necrotrophic). Supported by a mathematical
background for analysis and validation of the results, it
provides a powerful means for exploration, and the dis-
covery of trends in large-scale datasets, such as multiple
genomes of FEPs. In our current study, we used sequence-
similarity network analysis [46, 48] encompassing available
complete pan-proteomes of 82 fungi and oomycetes (18 B,
20 H, 22N, and 17 Sap; Additional file 2: Table S1) to
identify components of virulence mechanisms. Our com-
parative analysis highlights approximately 190 significantly
enriched core functions found in 70% of the genomes of a
pathogenic lifestyle (e.g., core necrotrophic functions are
shared by 70% of the genomes in this lifestyle). This in-
cludes functions that are specifically enriched in one life-
style, and functions that are shared between pathogenic
lifestyles. We show that these core functions can assist in
discriminating the different pathogenic lifestyles. Finally,
empowered by network analysis, our study of shared fam-
ilies in the entire set of 82 genomes illustrates potential
evolutionary routes between these lifestyles.

Results

Our pan-proteome network consisted of approximately
3.9K core gene families shared by at least 70% of a life-
style (see section “Core components”, Methods). Ap-
proximately 40% of these core families were shared
among all four lifestyles, i.e., core of all lifestyles (center
of the Venn diagram, Additional file 1: Figure S1), and
25% were unique core families of only one lifestyle. The
highest number of cores was found in H, followed by N,
and B (Additional file 1: Figure S1). Hereafter, Ncore re-
fers to the core of N (Bcore to core of B, Hcore to core
of H, and Sapcore to core of Sap). Most of the proteins
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(=89%) in the core gene families were annotated for hav-
ing either KEGG orthologs, InterPro domains or MER-
OPS proteases (Additional file 2: Table S2). Based on
these annotations, we identified approximately 190 signifi-
cantly enriched functions (see section “Calculation of en-
richment and significance of core pathogenic functions”,
Methods) in the core gene families of lifestyles H, B, and
N (Fig. 1). All downstream analyses, unless otherwise spe-
cified, were based on these functions (often referred to as
core functions). These core functions consisted of annota-
tions which were enriched in only one lifestyle (i.e., B, H,
or N), and annotations shared between several pathogenic
lifestyles (Fig. 1). Around 4% of the core families did not
contain proteins with the above-specified annotations, and
only 6% of these unannotated families contained small se-
creted proteins (SSPs).

Core gene families may assist in discriminating between
the pathogenic lifestyles

To test whether the identified core functions can be
used to differentiate between pathogenic lifestyles, we
utilized hierarchical clustering (Fig. 2). The clustering
analysis showed separation of B genomes from other
pathogenic lifestyles (with the exception of 2 N genomes;
see cluster 1 in Fig. 2). N and H genomes appeared in 5
clusters (clusters 2—6 in Fig. 2): clusters 2 and 3 also
contained Sap, while clusters 4—6, which contained most
(55%) of the N and H genomes, did not contain Sap.

Fig. 1 Distribution of significantly enriched unique functions
(annotation IDs) among the pathogenic lifestyles. B — biotroph, H —
hemibiotroph, N — necrotroph. Number in parentheses indicate
counts of significantly enriched functions containing SSPs which
include cutin and pectin degradation, cutinase, secondary
metabolism, proteinaceous toxins, glycoside hydrolase, and signal
transduction (tyrosine phosphatase activity) in the HN cores
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Fig. 2 Hierarchical clustering of the 65 selected FEP and 17 saprophyte genomes based on significantly enriched core functions. X-axis represents
core functions (Additional file 2: Table S3, Methods), and Y-axis represents studied genomes (Additional file 2: Table S1, Methods). Six major
clusters are indicated by numbers above the tree branches (left). B — biotroph, H — hemibiotroph, N — necrotroph, Sap - saprotroph. Lifestyle of
each of the FEP genomes is indicated by filled circles (Y-axis, see color code, top left)

Core B, H, N functions

J

Cluster 6 contained only H, along with all of the am-
biguously characterized genomes (indicated by U, un-
decided, Fig. 2). The shared clustering of H and N
corresponded with the highest number of shared func-
tions within this lifestyle pair (HN column, Table 1).

Core gene families of pathogenic lifestyles

In the analysis of core functions, most were found to belong to
7 abundant functional categories (bold in Table 1) which con-
tained at least 10% of the annotations of a pathogenic lifestyle,
and at least 5 significantly enriched annotations. These abun-
dant functional categories included: transport in H, N, and
Bcores; carbohydrate metabolism, secondary metabolite synthe-
sis, and protease in H and Ncores; nucleic acid metabolism,
and signal transduction in Bcores; and amino acid metabolism
in Hcores. Other less abundant functional categories that con-
tained significantly enriched annotations in B, H, and Ncores
included trafficking, light-mediated functions, signal transduc-
tion, uncharacterized oxidoreductases, CO, sensing, and chap-
erones. In addition, we identified several significantly enriched
uncharacterized domains or KEGG orthologs in the cores of
each of the pathogenic lifestyles (designated as unknown in
Table 1 and Additional file 2: Table S3). Some abundant func-
tional categories (bold in Table 1) characterized only one
pathogenic lifestyle (e.g, amino acid metabolism in Hcores),
whereas others were abundant in more than one lifestyle (e.g.,
transport). Hereafter, functions shared by more than one life-
style are referred to as lifestylellifestyle2cores; e.g, HNcores
which contain functions enriched in both H and N cores.

Core gene families shared between pathogenic lifestyles
HNcores contained significantly enriched functions abun-
dant in (Table 1, and corresponding detailed annotations

in Additional file 2: Table S3): (i) carbohydrate metabol-
ism related to cell wall-associated (i.e., including the cu-
ticle) degradation and remodeling, such as pectinase,
cutinase, and glycoside hydrolase family 28; (ii) secondary
metabolite synthesis related mainly to toxins, and xeno-
biotic compound degradation and toxin synthesis; (iii)
transport related to toxins and phospholipids; (iv) prote-
ases related to serine peptidases of families 8—10, and
metallopeptidase family M28. BHcores were significantly
enriched in cryptochrome/photolyase-based DNA -repair
functions, and in less abundant functions, such as trans-
porters of glycerol, urea, and CO,; and glucanases (carbo-
hydrate metabolism). Our analysis also identified a few
functions that were significantly enriched in the cores of
all three pathogenic lifestyles (BHNCcores), such as mem-
bers of serine peptidase family 8, and acyl-CoA oxidase
participating in protein kinase A (PKA)-mediated beta
lipid metabolism.

Core gene families enriched in a specific pathogenic
lifestyle
The network analysis also enabled the identification of abun-
dant functional categories that contained functions enriched in
the core of only one pathogenic lifestyle (Table 1, and corre-
sponding detailed annotations in Additional file 2: Table S3).
Bcores — highly enriched functions were found mainly
in: (i) nucleic acid metabolism; and (ii) signal transduc-
tion (GTPase, lysophospholipase, and tyrosine kinase ac-
tivity). Less abundant specific Bcore-enriched functions
included translation (t-RNA synthesis and ribosomal do-
main), and a KEGG ortholog with unknown function.
Hcores — highly enriched functions were found mainly in:
(i) carbohydrate metabolism (certain glycoside hydrolase
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Table 1 Frequency of annotation IDs that are significantly enriched in core components of pathogenic lifestyles within selected
functional categories (see section “Calculation of enrichment and significance of core pathogenic functions”, Methods). Number in
parentheses indicates percentage of annotations in a lifestyle, e.g., there are 10 annotations related to nucleic acids in B which
represent 29.4% of the annotations of B. Numbers in bold represent abundant fuctional categories. Detailed annotations are

illustrated in Additional file 2: Table S3

Functional category/Core ° B (%) ° H (%) N (%) HN (%) BH (%) NB (%) BHN (%)
Amino acid metabolism 2 (59 12 (15.0) 1(6.3) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
Carbohydrate metabolism 2 (59 22 (27.5) 1(6.3) 11 (36.7) 1(14.3) 0 (0.0) 0 (0.0)
Nucleic acid related 10 (29.4) 4 (5.0) 0 (0.0) 2 (6.7) 4 (57.1) 1(33.3) 0 (0.0)
Protease 3(89) 5(6.3) 3(188) 5(16.7) 0(0.0) 1(333) 4(80.0)
Secondary metabolites 3(88) 19 (23.8) 2 (125) 7 (23.3) 0 (0.0) 0 (0.0) 1 (20.0)
Signal transduction 6 (17.7) 3(3.8) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
Transporters 6 (17.7) 16 (20.0) 7 (43.8) 6 (20.0) 2 (286) 0 (0.0) 0 (0.0)
Chaperone 0 (0.0) 1(13) 0(0.0) 0 (0.0) 0(0.0) 0 (0.0) 0(0.0)
CO, sensing 0 (0.0 1(1.3) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0 0 (0.0)
Energy 1(29) 1(13) 0(0.0) 133) 0(0.0) 0(0.0) 0(0.0)
Light sensing and light-responsive nucleic acid functions 1(2.9) 1(1.3) 0 (0.0) 0 (0.0) 4 (57.1) 0 (0.0) 0 (0.0)
Oxidoreductases 0 (0.0 2 (25 1(6.3) 1(33) 0 (0.0) 0 (0.0 0 (0.0)
Symbiosis 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0) 1(333) 0(0.0)
Trafficking 3(88) 7 (838) 0(0.0) 133) 0(0.0) 1(333) 0(0.0)
Translation 3(88) 1(1.3) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
Unknown 19 4 (50 2(12.5) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
Vitamin 0 (0.0 2(25) 0(0.0) 133) 0(0.0) 0 (0.0) 0(0.0)
Total annotation ID count® 34 80 16 30 7 3 5

2 B biotroph, H hemibiotroph, N necrotroph, HN hemibiotroph and necrotroph, BH biotroph and hemibiotroph, NB necrotroph and biotroph, BHN biotroph,

hemibiotroph, and necrotroph
® Counts of annotations (e.g., KEGG ortholog ID) associated with a function
€ One annotation ID is counted only once even if it occurs in multiple functions

families, glucanosyltransferase, lactate dehydrogenase, expan-
sin, and fucosidase); and (ii) amino acid metabolism (Gly,
Ser, and His metabolism). Less abundant enriched Hcore
functions included chaperones, CO, sensing, rhodopsin-
based light sensing, and 4 unknown function.

Ncores — highly enriched functions were found mainly
in the transporters, and contained 2 domains with un-
known functions. Less abundant annotations consisted of
different proteases subfamilies in different pathogenic life-
styles (e.g., ubiquitin related-degradation in the Ncores).

Identification of SSPs in core functions of pathogenic
lifestyles

Predicted SSPs were found in 14% of the significantly
enriched core functions (indicated in parentheses in Fig. 1,
and in SSP column of Additional file 2: Table S3). In line
with their role in pathogen—host interactions, most of the
SSP functions were related to cutin and pectin degrad-
ation, cutinase, secondary metabolism, proteinaceous
toxins, glycoside hydrolase, and signal transduction (tyro-
sine phosphatase activity) in the HN cores. In addition,
complete genomic analysis (regardless of the network)
showed that H contain significantly (40%) more predicted

SSPs per genome than N, and pathogens have 66% more
SSPs than saprophytes (P < 0.05, t-test).

Evolutionary trajectory of fungal pathogens

To study potential evolutionary trajectories of plant
pathogens, we used a genomic approach to assess the
number of gene families connecting a pair of lifestyles
(Methods). This section encompassed all gene families
(including core). Our results demonstrated (Fig. 3 and
Table 2) a central place for N and H. Each of them
shared the highest number of gene families with other
groups. Accordingly, the highest number of gene families
was shared between the N-H lifestyle pair, followed by
N-Sap, H-Sap, H-B, and Sap-B.

Discussion

In this work, we focused on the core gene families that are
predominant in the major lifestyles of filamentous fungal
(and oomycete) plant pathogens. The network analysis
used in our work illustrated that H has more significantly
enriched core functions than N and B (in that order,
Fig. 1). This is in line with the requirement of H to have
both necrotrophic and biotrophic capabilities, in addition
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B 1

Fig. 3 Presumed evolutionary trajectory of phytopathogenic and
saprobic fungi illustrated by network of lifestyles’ shared functions.
Edge thickness is in direct proportion to the count of shared gene
families between different lifestyles (Table 2, see section “Gene
families connecting a pair of lifestyles”, Methods), node size
represents the average number of sequences per genome in a
lifestyle. B — biotroph, H — hemibiotroph, N — necrotroph, Sap -
saprotroph. Network image generated with Cytoscape version 3.3.0
[49] utilizing prefuse force directed layout algorithm

Table 2 Counts of gene families (components) connecting a
pair of lifestyles (see Methods). Related to Fig. 3. Numbers in
parentheses are mean values obtained from 10,000 random
simulations for each lifestyle. All simulations were found
significant (P < 0.0001, non-parametric rank test, see Methods)

Lifestyle Biotrophs Hemibiotrophs Necrotrophs — Saprotrophs
Biotrophs 360 (256) 261 (376) 292 (229)
Hemibiotrophs 233 (164) 2027 (708) 570 (418)
Necrotrophs 144 (207) 2020 (598) 846 (542)
Saprotrophs 228 (119) 701 (327) 957 (4971)
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to functions associated with the transition between these
lifestyles. This result is also in agreement with the higher
number of SSPs per genome in H (regardless of core func-
tions). The lowest number of biotrophic core functions
can be explained by previous studies demonstrating that
many functions which are required for virulence in this
group have diversified, i.e., they are restricted to a specific
taxonomic level or niche, and they are therefore not found
in the core (see examples in [9, 22, 31, 33, 50]).

Differentiating between lifestyles is empowered by core
gene functions

One potential use of the core functions identified in this
work was demonstrated by hierarchical clustering (Fig. 2).
This analysis enabled differentiating B (together with
some Sap genomes) from other pathogenic groups,
obtaining most of the N and H genomes in HN clusters
(2 with and 2 without Sap genomes), and obtaining a
separate cluster of H. A comparative genomics study of
18 Dothideomycetes species (4 Sap, 5N, 7 H, and 2 B), il-
lustrated that clustering of these genomes using annota-
tions of all genomic: (i) carbohydrate activity enzymes
(CAZymes), showed 2 major clusters of HNSap and
BHSap lifestyles; (ii) proteases, yielded mainly a separate
H cluster, and a mixed HN cluster; (iii) lipases, showed
mainly 2 HNSap clusters (the latter 2 contained also 21
outgroup genomes within Ascomycota and Basidiomy-
cota). Thus, all genomic annotations of these 3 enzyme
classes (CAZyme, proteases, and lipases) enabled obtain-
ing similar (or less differentiating) separation between
lifestyles compared to the use of selected core functions
in the current work. All of the genomes with ambigu-
ously characterized lifestyle (i.e., referred to as both H
and N in the literature) were clustered with H (cluster 6,
Fig. 2). Unfortunately, most of the work in the related
literature does not include a detailed characterization or
description of these lifestyles in each pathogen. How-
ever, as both necrotrophic and hemibiotrophic lifestyles
are illustrated for a fungal pathogen in those studies, it
is more likely to be hemibiotrophic, as its biotrophic
stage could be more elusive (short or only appearing
under specific conditions) and not identified in all stud-
ies. The distribution of saprophytes in biotrophic and
necrotrophic lifestyles is in line with some studies sug-
gesting that early diverging fungi were saprotrophic (see
discussion below).

Mapping core functions in pathogenic lifestyles

Our analysis provided a map of the core functions in the H,
B, and N pathogenic lifestyles (Fig. 4, and Additional file 2:
Table S3) derived from significantly enriched annotations
in core gene families of these lifestyles.
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Fig. 4 Map of significantly enriched core functions in different pathogenic lifestyles and their approximate subcellular location. Transporters are
located on respective membranes, protease-and carbohydrate-associated functions are located on respective cell walls, and secondary
metabolites are at the plant-pathogen interface (if subcellular location is not indicated, function is associated with the cytoplasm). The functions
are colored based on their enrichment in a specific (e.g., purple for biotroph) or multiple (e.g., green for all three pathogenic lifestyles) lifestyle

cores (see key on figure). Functional categories (Table 1) and their subcategories (Additional file 2: Table S3) are indicated by the following
pattern: count functional category (subcategories), e.g., 3 proteases (type: serine, metallo) designating 3 enriched annotations in the Protease
functional category, with serine peptidase and metallopeptidase subcategories

Functions enriched in all pathogenic lifestyles

Our analysis identified enrichment of members of serine
protease family S8, and acyl-CoA oxidase in all three
pathogenic lifestyles (indicated in green, BHN, Fig. 4). A
previous computational study showed that the S8 serine
proteases (subtilisin, identified in the BHNcore) are abun-
dant across fungal lineages, and are highly correlated with
pathogenic lifestyle in both animals and plants [5, 6]. A
few studies illustrated the role of subtilisins (or subtilisin-
like) in virulence, mediated mainly by cuticle degradation
in fungal pathogens of insects (e.g., [51, 52]). Acyl-CoA
oxidase (identified in the BHNcore) mediates the first step
of beta oxidation which may be invoked by PKA, contrib-
uting to the pathogenicity process of phytopathogenic
fungi [16]. The acetyl-CoA product of beta oxidation

could enter the citric acid cycle to produce energy; alter-
natively, it is known to participate in the formation of me-
tabolites such as glycerol, melanin, and glucose (via
gluconeogenesis), known to contribute to virulence pro-
cesses such as appressorium-mediated plant infection, in
phytopathogenic fungi [53-56].

The necrotrophic lifestyle

This section refers to fungal pathogenic functions that
were enriched in the Ncore or in both N and Hcores,
the latter attributed to the necrotrophic stage of H (indi-
cated in blue, N; and in light blue, HN; Fig. 4). Our ana-
lysis revealed that the Ncore is enriched in functions
associated with cell wall-associated degrading enzymes
(e.g., pectinase, cutinase, and glycoside hydrolase family
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28), toxin metabolism, proteases, and transport. These
functions are probably needed to support necrotrophic
growth, involving maceration of the host cell barriers
(e.g., cell wall), and induction of host cell death followed
by sequestering of nutritional compounds (e.g., amino
acids and carbohydrates). For example, comparative ana-
lysis of mostly necrotrophic Botrytis species highlighted
multiple cell wall- (carbohydrate-) degrading enzymes
such as pectinases [57]. Toxin synthesis and degradation
were abundant in the HNcore functions; these are
known to mediate plant cell death and protection
against plant defense mechanisms in the necrotrophic
process [21, 24, 34, 35]. Accordingly, toxin transport was
found to be enriched in these cores, in agreement with
the previously identified arsenal of toxins in necrotrophs
that mediate killing of the host cell prior to feeding on it
[21, 34, 35]. Import of other compounds enriched in N
(e.g., phospholipid and choline) could further support nu-
trition of the pathogen during the course of infection.
Serine and metalloproteases: Roles in nutrient acquisition,
host cell degradation and host-fungus interactions (e.g.,
neutralization of defense mechanism) have been previ-
ously illustrated for proteases in general [58, 59], and for
serine proteases in particular [5, 60]. A computational
study of serine proteases (found in the MEROPS database)
illustrated that families S9 and S10 are abundant in fungal
genomes, partially supporting their identification in the
HNcore in our study; however, no correlation with patho-
genic lifestyles was found for these families [5]. Compara-
tive analysis of mostly necrotrophic Botrytis species
facilitated the identification of a clade of 8 species with
shared proteases (1 serine-type peptidase, 1 hydrolase acting
on glycosyl bonds, 1 asparaginase, and 1 G1 endopeptidase)
[57]. Pathogen proteases can participate in inhibiting plant
defense components such as pathogenesis-related proteins
(e.g., antimicrobial chitinases), and [-1,3-glucanases which
mediate fungal cell wall hydrolysis (e.g., [61-63]). Metallo-
protease activity (identified as enriched in Ncores) has been
previously correlated with fungal phytopathogenic activity,
directed mainly against plant chitinase used for defense [59].
One example is the FoMepl protease secreted by Fusarium
oxysporum f. sp. lycopersici which (together with a serine
protease) was responsible for the degradation of chitinases of
tomato [64]. To the best of our knowledge, the role of metal-
loprotease family M28, identified as enriched in HNcores in
the current study, in fungal virulence against plants has not
been previously demonstrated.

The biotrophic lifestyle

This section refers to fungal pathogenic functions enriched
in Bcores or in both B and Hcores, as the latter are attrib-
uted to the biotrophic stage of H (indicated in pink, B; and
in red, BH; Fig. 4). The abundance of enriched functions re-
lated to signal-transduction processes (e.g, GTPase,
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lysophospholipase, and tyrosine phosphatase), and nucleo-
tide metabolism (in specific DNA/RNA structures and rec-
ognition) could facilitate the tight regulation required for
biotrophs to control their avoidance of plant defense mech-
anisms while feeding on the host compounds. The effect of
Bcore functions of suppression of the plant defense system
was demonstrated by a secreted tyrosine phosphatase of
the bacteria Pseudomonas syringae that suppressed the im-
mune responses of Arabidopsis by dephosphorylating a
plant pattern recognition receptor [65]. Some of the small
G-protein family of GTPases, such as Rac, Rho, and Rab,
participate in regulating the mitogen-activated protein
(MAP) kinase cascade in eukaryotes [66], which plays an
important role in environmental sensing and consequent
morphogenesis in phytopathogenic fungi [67, 68]. An ex-
ample is the CDC42 Rho GTPase, which is involved in
vegetative differentiation and is required for pathogenicity
in the biotrophic wheat pathogen Claviceps purpurea [69].
A few functions associated with carbohydrate metabolism
and secondary metabolism functions were enriched in the
Bcore (Fig. 4, and Additional file 2: Table S3). This is in line
with the comparative analysis of 4 downy mildew species
and 3 Phytophthora species that also identified a few func-
tions related to carbohydrates (such as pectin lyase and
cutinase) and secondary metabolism (e.g., necrosis-
inducing proteins) [70]). Comparative genomic analysis of
various powdery mildew-causing pathogens also illustrated
a reduced set of carbohydrate active enzymes devoted to
plant cell wall depolymerization and secondary metabolites
[12, 71]. Nucleotide metabolism: The potential role of RNA
metabolism in the Bcore is supported by a recent study of
the biotrophic obligate fungal pathogen Plasmopara viti-
cola, which identified positive selective pressure (indicated
by pairwise dN/dS values) in genes coding for RNA modifi-
cation and processing [72]. One of these genes was the
DEAD box helicase [72] (involved in transcription, splicing,
and RNA transport), observed in the Bcore, which is known
to regulate multiple virulence genes in the fungal pathogen
of mammals, Cryptococcus neoformans [73]. Analysis of
genes under positive selection in the biotroph Plasmopara
viticola also highlighted genes associated with RNA metab-
olism, mRNA maturation and processing, or rRNA and
tRNA modification, and DEAD/DEAH RNA helicase [72].
Specific histone residues are known to undergo posttransla-
tional modification (mainly methylation and acetylation)
[74], and therefore Bcore histone variants could affect his-
tone modification, which might ultimately affect transcrip-
tion and epigenetic-based regulation. The role of histone
modification (i.e, methylation and acetylation) has been
demonstrated in the pathogenicity process of several phyto-
pathogenic fungi [75, 76]. For example, deletion of gcn5 his-
tone acetyltransferase in the biotrophic fungal pathogen
Ustilago maydis significantly reduced the infection process
on maize [77].
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Cryptochromes and photolyases in the Bcore
Cryptochromes are photoreceptors that are closely related
to photolyases, but they do not necessarily exhibit DNA-
repair functionality and may possess regulatory functions
[78]. In the biotrophic fungal pathogen Blumeria graminis
f. sp. hordei, UV-C irradiation inhibited conidial germin-
ation and appressorium formation (participating in host
penetration), while upregulation of 3 putative photolyases
was observed, suggesting their potential role in protection
from UV-C [79]. Disruption of PHL1 (a cryptochrome/
photolyase homolog) in the hemibiotrophic phytopatho-
genic fungus Cercospora zeae-maydis inhibited light-
dependent DNA repair (photoreactivation) activity, and
exhibited reduced expression of another cryptochrome,
and of genes involved in nucleotide excision and chroma-
tin remodeling during DNA-damage repair [80, 81]. Al-
though cryptochromes were not enriched in the Ncore,
they are found in several N genomes. An interesting ex-
ample is the necrotrophic fungal pathogen B. cinerea,
where the chryptochrome BcCRY1 acts as the major
photolyase in photoprotection, and the cryptochrome
BcCRY2 participates in regulating photomorphogenesis
(repression of conidiation) [82]. Although this function,
may appear in a different path in biotrophs, it could play
an important role in fungal plant pathogens. These find-
ings, together with their position in the Bcores, suggest
that cryptochromes mediated photoprotection, and photo-
morphogenesis could play a central role in the biotrophic
lifestyle.

The hemibiotrophic lifestyle

One intriguing role for functions enriched only in the
Hcores (indicated in brown, Fig. 4) might be participation
in the shift between lifestyles. Degradation of lignocellu-
lose compounds: While some GH families identified in
the Hcore are active on a narrow range of substrates (e.g.,
xylanase for GH12 and galactanase for GH53), others
(e.g, GH 1, 3, and 11) have diverse activities [83, 84].
Comparative analysis of plant cell wall-degrading enzymes
in fungal genomes also showed that the GH3 family is sig-
nificantly more abundant in hemibiotrophs (and in necro-
trophs) than in biotrophs [7]. Lactate dehydrogenase
(identified in the Hcore) may support pyruvate produc-
tion, during infection, from plant-based lactate, generated
as a byproduct of plant primary metabolism [85], and the
resulting pyruvate could support energy needs of the in-
fection. The observed differences between the lifestyles in
a profile of carbohydrate metabolism-related functions
could be the result of adaptation of fungal pathogens to
different plant biomass (e.g., composition of plant cell
walls affecting penetration). Alternatively, different profiles
of these functions could generate changes in environmental
conditions (e.g., changes in the composition of soluble com-
pounds or pH) that would serve as a cue for related functions,
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such as transition between lifestyles. It is known, for example,
from several phytopathogenic fungal systems that favorable
pH conditions promote the infection process in the
necrotrophic stage (e.g., in Sclerotinia sclerotiorum [86] or C.
gloeosporioides [38, 87]). Expansins are cell wall-loosening
proteins that are abundant in plant-associated microbes, in-
cluding plant pathogens (according to a genomic search in
NR, NCBI [88]). A few studies have explored the role of
expansins in phytopathogen virulence [89, 90]. In the hemi-
biotrophic cacao pathogen Moniliophthora perniciosa, aggre-
gated MpCP2 with cellulose-loosening activity was shown to
promote spore (basidiospore) germination and subsequent
tube growth, whereas the MpCP2-encoding gene was
expressed in necrotic seeds; thus, MpCP2 had a potential role
in both biotrophic (spore germination) and necrotrophic
(seed) stages [89]. Despite the observed abundance of expan-
sin in plant pathogens, there are very few genetic studies sug-
gesting a potential role for fungal expansins in the virulence
of phytopathogenic fungi. Thus, the current work, highlight-
ing its position in the Hcore, suggests that functional studies
of expansins’ involvement in virulence are likely to be fruitful.

Light and CO, perception in the Hcores

Carbonic anhydrase facilitates CO, sensing and subsequent
differentiation, and virulence in the two human pathogens
Candida albicans and C. neoformans [91-93]. These studies,
together with its enrichment in the Hcores, suggest a similar
role in sensing alterations in CO, level during plant infection,
followed by induction of processes such as the transition be-
tween lifestyles. Rhodopsins: Fungi contain bacteriorhodop-
sins/microbial opsins that are light-driven ion pumps
generating proton gradients across membranes [94]. Infec-
tion of rice plants with the rhodopsin-deficient mutant
homolog (CarO) of Fusarium fujikuroi (ambiguously referred
to as H or N, see Additional file 2: Table S1) showed more
severe symptoms than the control strain, indicating a poten-
tial role of rhodopsin in the regulation of plant infection [95].
Silencing of the opsin ortholog Sop1 in the necrotroph Scler-
otinia sclerotiorum resulted in reduced necrotic growth on
oilseed rape leaves, and higher sensitivity to osmotic stress
[96]. This illustrates the role of rhodopsins in light sensing
and photomorphogenesis of phytopathogenic fungi, and
along with its identification in the Hcores, suggests that alter-
ations in light regime could play a role in virulence functions
of hemibiotrophs, such as transitioning between lifestyles.

Evolutionary trajectory of fungal pathogens

Early diverging fungal lineages (e.g., Blastocladiomycota
and Chytridiomycota) identified in phylogenetic studies
[4, 97-100] contain mainly saprobes and obligate bio-
trophs (and some endosymbionts) [98, 101]. Our analysis
complements these observations by suggesting scenarios
that presumably followed the emergence of these two
lifestyles. Primordial fungal saprobes, able to both
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decompose organic compounds and degrade debris of
ancestral plants, presumably evolved a necrotrophic life-
style as suggested by the highest number of shared gene
families between Sap and N (Fig. 3). Although an alter-
native route could be suggested from the high number
of Sap families shared with H, the evolution into N sup-
plies a simpler explanation, which could have been
followed by the subsequent emergence of H. The necro-
trophic lifestyle could have initially evolved by acquisi-
tion of a relatively small number of toxins and lytic
enzymes able to cause cell death. In this regard, the
study of shared pectinase families in Dikarya and early
diverging Gonapodya prolifera, a saprobe (member of
the Chytridiomycota) able to grow on pectin as a carbon
source, provides evidence for a common fungal ancestor
able to feed on ancestral plant/algal pectin-containing
debris [97]. Alternatively, or simultaneously, a primordial
B could have acquired necrotrophic mechanisms, shift-
ing to a hemibiotrophic lifestyle as illustrated by the
highest number of gene families shared by B and H; sub-
sequent loss of functions could have generated the
necrotrophic-only lifestyle. The initial step of this sce-
nario, starting with an ancestral biotrophic lifestyle, is
more complicated than the aforementioned saprobic ori-
gin, as it requires acquisition of functions regulating the
hemibiotrophic shift in addition to necrotrophic functions.
However, it is supported by phylogenetic studies which
have identified an early diverging sister clade of fungi (the
Cryptomycota and Microsporidia taxa) that is made up of
obligate biotrophic endoparasites [98, 100]. In both sce-
narios, acquiring a new lifestyle would have been advanta-
geous in competition for niche/food resources.

Conclusions

Our network analysis provides a map of the core func-
tions in three major lifestyles of phytopathogenic fungi
and oomycetes. The core functions highlighted in this
work, which have not been previously associated with
studied pathogenic lifestyles, including several enriched
orthologs or domains with unknown function and some
core families that cannot be annotated (Additional file 2:
Table S2), open new avenues for future research that
will enable a better understanding of these pathogens,
and the discovery of novel functions associated with
pathogenicity. It would make sense to start with core
families with unknown function that contain SSPs, as
the latter are often associated with pathogenicity. Regu-
latory mechanisms found in the Hcore functions include
light- and CO,-sensing functions that could mediate im-
portant roles in this group, such as transition between
lifestyles. These roles could also be regulated by changes
in environmental composition resulting from the differ-
ent core of lignocellulose-degrading enzymes found in
this lifestyle. The presence of photoreceptors
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(cryptochrome and rhodopsin) in the cores of plant
pathogens raises the novel possibility of their central role
in virulence, which is in agreement with the understand-
ing that FEPs coevolved with photoautotrophic plant
hosts. Our finding of light-sensing functions in the
pathogen cores is partially supported by a survey of 22
Ascomycota which showed that they contain light-
sensing mechanisms. These should confer better adapta-
tion (protection, phototropism, morphogenesis, and cir-
cadian clock activity) under different light regimes [94].

The selected set of enriched core functions identified in
our work can be used in other studies and applications.
For example, these core functions can assist in identifying
the pathogenic potential of samples analyzed by metage-
nomics or single-cell genomics. An interesting application
in this direction would be to facilitate advanced agrotech-
nical practice, which is based on soil and leaf metage-
nomics (in addition to chemical monitoring) in future
“next generation agriculture” [102, 103]. Last, empowered
by the whole genomic network methodology, our analysis
offers potential evolutionary scenarios following the emer-
gence of an early branching saprobe and/or the obligate
biotroph described in previous works.

Methods

Selected organisms

The data sets analysed in this study (downloaded at Feb-
ruary 2016) can be found mainly in the National Center
for Biotechnology Information, and in the Ensembl ge-
nomes databases using the accession numbers (and
links) listed in Additional file 2: Table S1. The 82 se-
lected genomes fungi and oomycetes represent the fol-
lowing lifestyles: 18 B, 20 H, and 22N, 17 Sap (control
or non-pathogens), and 5 pathogens ambiguously anno-
tated as N or H (Additional file 2: Table S1). All bio-
trophs were treated uniformly in downstream analyses.
The lifestyle of an organism was determined from either
the respective database from which the sequences were
collected, or the literature.

Construction of the pan-proteome network

The pan-proteome sequence-similarity network was com-
puted using EGN [104] for the 82 genomes with their 1,
041,984 predicted protein sequences (hereafter, protein
sequences) aligned using all-vs.-all BLASTP. Each node in
the network represents a protein sequence from the 82
proteomes, and edges represent sequence similarity be-
tween pairs of protein sequences above a selected thresh-
old that is accepted in the field [48] with minor
modifications: minimal sequence length of 40 residues, E
value < 10~ %, sequence identity >35% and minimal match
coverage >70%. Only subgraphs with >5 nodes were in-
cluded in further analyses (covering 30% of the subgraphs,
and 85% of the sequences, Additional file 1: Figure S2).
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The resulting network contained a large number of separ-
ate (unconnected) subgraphs (referred to as components),
representing an operational gene family (referred as, gene
family) whose sequences do not share significant similarity
with other components [48]. When stringent criteria (lar-
ger thresholds) are enforced, most of these families puta-
tively have the same or a closely related major function.
Our pan-proteome network consisted of approximately
53K gene families comprising 704 K protein-encoding
genes (Additional file 1: Figure S2). Most (94%) of these
were relatively small families (5 to 82 proteins per family,
containing 1 protein per organism on average), that to-
gether comprised 61% of the sequences.

Python scripts were used to identify components of
interest (e.g., having selected lifestyles), and to calculate
relevant features (e.g.,, number of nodes per lifestyle,
edges per each pair of lifestyles, or edges connecting se-
lected lifestyles).

Core components (i.e., core gene families)

In this work, we defined a core component of a lifestyle
as a component containing proteins derived from >70%
of the organisms of that lifestyle. For example, a core
component of N will have proteins from at least 70% of
the 22 N used to construct the network (Additional file 2:
Table S1). A Venn diagram was used to demonstrate the
uniqueness of the core components (Additional file 1:
Figure S1) using the web tool InteractiVenn [105].

Annotation of protein-encoding genes

All the 1,041,984 protein sequences of all the 82 organ-
isms (genomes) were annotated based on several estab-
lished platforms (Additional file 2: Table S2). KEGG
orthologs and related pathways were identified using
web-based KEGG Automatic Annotation Server (KASS
[106]) based on BLAST single-directional best hit (SBH)
against a selected list of genomes (Additional file 2:
Table S4) using default thresholds and parameters. Pro-
tein domains were searched with standalone InterProS-
can [107] against 6 databases (Pfam, ProDom, Gene3D,
TIGRFAM, ProSitePatterns, and PRINTS; recommended
by InterPro, personal communication) using default
thresholds and parameters. Protease families were identi-
fied using BLASTP (E value <0.001) against the MER-
OPS database [108] downloaded in November 2017.
Carbohydrate-degrading enzymes were also identified
using a Hidden Markov Model (HMM) search against
the CAZymes HMM database (dbCAN-fam-HMM)
[109], downloaded in October 2017, using protein se-
quences (with default steps and parameters as suggested
for fungi by the developers). However, functions found
by this database (which were significantly enriched, see
below) were also found by other approaches (e.g., KEGG
orthologs, and InterPro domain search), and therefore
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they were not included in this final report. Possible se-
creted effectors were predicted by choosing proteins
with sequence length <300 residues [9, 110], at least 2%
Cysteines in the protein sequence (for short proteins, at
least 2 Cys) [111], signal peptide based on standalone
SignalP 4.1 [112], and no transmembrane region based
on standalone TMHMM [113].

Calculation of enrichment and significance of core
pathogenic functions

Enrichment of an annotation (i.e., KEGG, IPR, MEROPS,
CAZyme) in the core components was calculated using
the following equation (CPSA_SPC/CPAA_SPC)/
(CPSA_B/CPAA_B) [48, 114], where CPSA_SPC stands
for Count of Proteins with Specific Annotation ID in Se-
lected Pathogenic Core (SPC), CPAA_SPC stands for
Count of Proteins with Any Annotation ID in SPC,
CPSA_B stands for Count of Proteins with Specific An-
notation ID in Background, CPAA_B stands for Count
of Proteins with Any Annotation ID in Background. We
calculated enrichment for several combinations of Back-
ground and SPC: (i) general background comparing se-
lected core to the entire network. Background - entire
network excluding SPC; SPC - core components of se-
lected lifestyle. For example (Proteins with selected
KEGG ID in Ncore/Proteins with Any KEGG ID in
Ncore)/(Proteins with selected KEGG ID in the rest of
the network/Proteins with Any KEGG ID in the rest of
the network); (ii) to validate enrichment relative to non-
pathogens, we compared the core of a selected patho-
genic lifestyle to the non-pathogenic lifestyle of Sap.
Background — Sap in core components of selected
pathogenic lifestyle; SPC - selected pathogenic lifestyle
in core components of selected lifestyle. For example -
(Proteins with selected KEGG ID in N organisms of
Ncore/Proteins with Any KEGG ID in N organisms of
Ncore)/(Proteins with selected KEGG ID in Sap organ-
isms of Ncore/Proteins with Any KEGG ID in Sap or-
ganisms of Ncore). In addition we have validated that
none of the significantly enriched functions identified in
the pathogenic cores were significantly enriched in the
non-pathogenic Sap cores (e.g., none of the KEGG IDs
enriched in Ncore were enriched in the Sapcore); (iii) to
further confirm that the functions of a selected patho-
genic lifestyle are not highly abundant in the non-
pathogenic Sap lifestyle (i.e., missed in calculations
above because they were omitted from the network due
to the thresholds selected to generate edges), we also
tested the organisms’ background regardless of the net-
work. Background — proteins from Sap; SPC — all anno-
tated proteins from the selected lifestyle. For example
(Proteins with selected KEGG ID in N/Proteins with
Any KEGG ID in N)/(Proteins with selected KEGG ID
in Sap/Proteins with Any KEGG ID in Sap).
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Significance of each annotation (i.e., KEGG, IPR, MER-
OPS, CAZyme, Fig. 1, Table 1 and Additional file 2:
Table S3) was calculated using Fisher’s exact test in the
scipy module of python [114]; only annotations with P <
0.05 and enrichment > 1.1 in all combinations of Back-
ground and SPC (above) were considered significantly
enriched, and used in further analyses. The core func-
tions were hierarchically clustered (Fig. 2) based on their
abundance in each of the 82 organisms with the hclust
package in R based on Euclidian distance using Ward’s
hierarchical agglomerative clustering [115].

Gene families connecting a pair of lifestyles

Gene families connecting a pair of lifestyles were defined
as components (i.e., operational gene families, see above)
containing at least 1 direct connection (network edge) be-
tween proteins of 2 lifestyles (other lifestyles may exist in
that component), and that the lifestyle selected as the
focus of the analysis (see random simulated lifestyles
below) does not have a direct connection with any other
lifestyle. For example, for the B-N connection, such a
component would contain at least 1 network edge con-
necting proteins from these two lifestyles, and if the B life-
style is at the focus of the analysis, then it will not be
connected to any other lifestyle (i.e., only B-N, and B-B
edges are allowed for B). In contrast to the analysis de-
scribed in previous section which is aimed to identify core
functions of fungal and oomycete pathogens by utilizing
genome sequences of representatives from both of these
groups, the analysis described here is focused on potential
evolutionary connections between lifestyles (i.e, B, N, H,
and Sap). However, taxonomic classification and phylo-
genetic analyses have suggested that oomycetes form a
clade that is distinct from fungi [97, 98]. To prevent pos-
sible mix between clade (i.e., oomycetes and fungi) and
lifestyle connections in the evolutionary analysis we have
excluded the oomycetes from this analysis.

Significance of counts of gene families connecting a pair
of lifestyles

To assess the significance of counts of gene families con-
necting a pair of lifestyles, we used random simulated
lifestyles, in which labels (i.e., the lifestyle) for the organ-
isms were randomly shuffled while preserving the num-
bers of genomes belonging to each lifestyle. In Table 2,
the lifestyle in columns (the lifestyle being focused on)
was kept intact, whereas lifestyles in rows were randomly
shuffled. Once a new label was attributed to a genome,
all of its proteins (nodes) were labeled as this new life-
style. For each lifestyle, numbers of gene families con-
necting a pair of lifestyles were enumerated. The process
was repeated 4 x 10,000 times for each focused-on life-
style (Table 2). All simulated counts were averaged and
are reported in parentheses in Table 2. Significance of
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the values was computed using non-parametric, empir-
ical P-values, based on ranked real values of the simula-
tions. When the real value was higher than 1 out of 10,
000 simulated values, we attributed a P-value of <
0.0001. Normalized values were also significant for most
cases (Additional file 2: Table S5), although they con-
tained few non-significant differences between real data
and simulations (indicated by asterisks in Additional file 2:
Table S5), it did not affect the results. In the other cases,
there were significantly more or less exclusive gene fam-
ilies between two groups in the real data than in the simu-
lations. Normalization was generated by dividing the
count of the components of interest by the maximum
number of components that can exist in a studied net-
work; e.g., if there are 15K components of N, and 10K
components of B, the maximum possible number of com-
ponents with an N-B connection (network edge) is 10 K.
Based on the counts of gene families connecting a pair of
lifestyles, a network was generated (Fig. 3), using Cytos-
cape version 3.3.0 [49].

Interpretation of the simulations. For a pair of column
X and row Y that shows more gene families than in the
random simulation (e.g., column B and row H), genomes
or gene families from lifestyle X are more similar to ge-
nomes or gene families from lifestyle Y than to genomes
or gene families from any other lifestyle (in the dataset).
Accordingly, when there are significantly less gene fam-
ilies in the real data than in the simulations (e.g., column
B and row N), genomes or gene families in lifestyle X
are more dissimilar to genomes or gene families in life-
style Y than to genomes or gene families from any other
lifestyle (in the dataset).
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methods, and subsequent manual curation. Table S4. Selected organisms
used in KAAS analysis for identififcation of KEGG orthologs. Table S5.
Normalized counts of gene families (components) connecting a pair of
lifestyles. Numbers in parenthesis are the normalized mean values ob-
tained from random 10,000 simulations for each lifestyle. A single asterisk
indicates nonsignificant values (P> 0.01, non-parametric rank test, see
Methods) (XLS 3237 kb)
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