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An important preprocess in computer-aided orthodontics is to segment teeth from the dental models accurately, which should
involve manual interactions as few as possible. But fully automatic partition of all teeth is not a trivial task, since teeth occur in
different shapes and their arrangements vary substantially from one individual to another.The difficulty is exacerbated when severe
teeth malocclusion and crowding problems occur, which is a common occurrence in clinical cases. Most published methods in
this area either are inaccurate or require lots of manual interactions. Motivated by the state-of-the-art general mesh segmentation
methods that adopted the theory of harmonic field to detect partition boundaries, this paper proposes a novel, dental-targeted
segmentation framework for dental meshes. With a specially designed weighting scheme and a strategy of a priori knowledge
to guide the assignment of harmonic constraints, this method can identify teeth partition boundaries effectively. Extensive
experiments and quantitative analysis demonstrate that the proposed method is able to partition high-quality teeth automatically
with robustness and efficiency.

1. Introduction

In recent years, much effort has been spent in developing
computerized systems for clinical and research applications
in dentistry. Most computerized algorithms for orthodontic
diagnostic and treatment require 3D dental mesh models,
which are often needed to extract, move, and rearrange
teeth for simulation of the treatment outcome. Thus, teeth
segmentation is an important step in many automated
and semiautomated, computer-based dental software pack-
ages.

However, tooth segmentation on dental meshes remains
a difficult task [1]. Dental meshes from patients often have
teeth crowding problems when adjacent teeth aremisaligned,
thus making the interstices between them irregular and
difficult to distinguish. Various tooth shapes make outlining
tooth contours difficult. Artifacts resulting from scanning or

model-making errors on commonly obtained clinical meshes
make teeth segmentation more challenging.

General mesh segmentation approaches are not directly
suited for segmenting dental meshes because they lack
adjustments to handle complex tooth shapes and teeth
arrangements. Other segmentation approaches proposed to
handle dentalmeshes have shortcomings, such as being either
labor-intensive or not sufficiently accurate [2]. Although
several commercial products in this field are available, such
as “3Shape,” their user interactions are intensive and signifi-
cantly influence the accuracy of results.

Many tooth segmentation methods prefer to use surface
curvature when identifying potential tooth boundaries, as
they follow the most widely cited mesh segmentation cri-
terion, the minima rule, which states that human percep-
tion usually divides a surface into parts along the concave
discontinuity of the tangent plane [3, 4]. However, surface
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curvature estimation is typically error-prone for real-world
noisy models; for example, curvature distribution on clinical
dental models is generally complicated and irregular (see
Section 2 for further description).

This paper aims to develop an automatic and robust
method for segmentation of digital dental models. Motivated
by state-of-the-art general interactive mesh segmentation
methods [5–8], we developed a convenient and efficient den-
tal segmentation framework, which identifies tooth bound-
aries by a dental-targeted, harmonic field. This approach has
three major benefits.

(1) The dental-targeted harmonic field is robust to vari-
ous tooth shapes, complex malocclusion, and crowd-
ing problems and is insensitive to noise with mini-
mum parameter considerations.

(2) The dental-targeted harmonic field can guarantee
closed tooth boundary extraction from dental mesh,
unlike curvature-based methods needing complex
connectivity and morphologic operations in most
cases.

(3) The whole dental segmentation procedure is auto-
matic, which requires no user interaction to generate
teeth with accurate and high-quality cutting bound-
aries.

2. Related Work

This paper focuses on dental mesh segmentation. We intro-
duce general mesh segmentation methods before dental
specific methods. The theory of harmonic field will be given
at the end of the section.

2.1. General SegmentationMethod. Numerousmesh segmen-
tation approaches have been proposed in computer graphics.
Some of these algorithms are automated, like clustering
[9], random walk [10], shape diameter function [11], fitting
primitives [12], and fast marching watershed [13]. Most of
these methods aim to partition different regions based on
similarity measures [14], but defining a semantic subarea of
tooth with various shapes remains a challenging task and
none of these methods is directly suitable for our specific
application.

Recently, sketch-based interactive mesh segmentation
methods have become very popular [5–8]. Most of these
methods employ harmonic field theory and similar user
interfaces, but they are different in computational weighting
scheme and constraint styles. Interested readers should refer
to literature such as surveys of comparisons between these
sketch-based methods [15]. These methods have good per-
formance in general mesh segmentation but require time-
consuming and error-prone user interaction when dealing
with special and complicated tooth shapes and arrange-
ments. Furthermore, they cannot produce high-quality cut-
ting boundaries in cases where no obvious concave regions
are near the location of interaction.

While our method also employs the harmonic field
for segmentation, it fully exploits the dental characteristics

(see Section 3.3), which makes the proposed method smart,
accurate, and more robust in tooth partition.

2.2. Dental-Targeted Segmentation Method. A large group
of dental segmentation approaches prefer to use surface
curvature to identify tooth boundaries. The typical routine
can be summarized as follows.

(1) Curvature estimation: principal curvatures, including
minimum principal curvature [16–19] and mean principal
curvature [1], are used to measure the surface property quan-
titatively. (2) Teeth-part rough locating: though not always
necessary, this is a plane-estimating technique, based on PCA
that produces a cutting plane to separate gingiva and teeth
part, introduced in previous works [1, 20]. We also involve
this step in our framework, but the method we used is more
convenient and effective (see Section 3.2). (3) Thresholding:
a curvature threshold value is inevitably needed to separate
potential tooth boundary regions from the rest when using
curvature fields for boundary identification.That value can be
obtained either interactively, such as when using an intuitive
slider [16], or by taking a result of an experiential equation
or even plugging in a constant preset number [19, 20]. In
fact, a global threshold value used in this mandatory step is
one of the major drawbacks; it can significantly influence this
entire solution, because the thresholding generally cannot
appropriately distinguish target objects from the rest of the
region, leading to either over- or undersegmentation. (4)
Potential boundary region refining: because the curvature
field introduces lots of useless features in tooth crown regions
and is sensitive to noise in identifying tooth boundary
methods [1, 17, 19], using a morphologic operation will
further refine the region obtained by thresholding. For some
complicated dentalmodels, however (e.g., in cases of adjacent
teeth crowding when the interstices in between are irregular
and difficult to distinguish), the potential tooth boundary
region may still be incomplete even after morphologic oper-
ation. (5) Boundary locating and refining: as proposed in
previous works [1, 16, 17, 19], a skeleton operation is used
to extract boundaries from potential regions. However, teeth
with such boundaries are unacceptable for precise clinical
treatment planning. Refinements should be carried out to
make sure the boundary of each tooth is both smooth and
precise [1]. More seriously, the extracted boundaries could
be incomplete (e.g., opened) so special refinement should
be taken to close the opened boundaries before attempting
smooth and precise operations. All such proceduresmake the
entire framework tedious and complicated.

Kondo et al. introduced a fully automatic algorithm to
segment tooth from dental models using two range images
[20]. However, they used a rectangular inspection spoke
to cut the model, which will introduce inaccurate cuts for
severe malocclusions. Kronfeld et al. proposed a snake-based
approach that starts with an initial contour on the gingiva and
evolves through a feature attraction field [21]. The cusps of
each tooth are then selected to start a local tooth contour and
evolve until each tooth bottom is reached. The approach is
automatic but may not produce good results when the model
has boundary noises that interrupt a feature field defined by
the curvature information.
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As another option, interactive dental partition meth-
ods [22, 23] allow users to select several boundary points
interactively for segmentation. Geodesics are then generally
used to connect two adjacent control points. The interactive
partition procedures are intuitive and capable of segmenting
complicated dental models, but the shortcomings are also
quite obvious; for example, users would have to rotate or
translate multiple times to carefully specify particular mark
points to generate one accurate tooth boundary. Such tedious
and time-consuming experiences certainly are undesirable
and impracticable for clinical application.

Recently, Zou et al. proposed an interactive tooth parti-
tion method based on harmonic field [24]. The method has
great flexibilities which benefit from their specially designed
user interfaces. But the employed harmonic field is only
“tooth-target”; in other words, only one tooth could be identi-
fied manually one time, and the whole dental mesh has to be
processed multiple times to finish the whole segmentation.
In contrast, our novel segmentation framework is able to
segment all teeth only once under a uniform harmonic field
automatically, which greatly improves the partition efficiency.

2.3. Harmonic Field. In mathematics, a harmonic field on 3D
mesh, 𝑀 = (𝑉, 𝐸, 𝐹), is a scalar field attached to each mesh
vertex and satisfies ΔΦ = 0, where𝑉, 𝐸, and 𝐹 denote vertex,
edge, and face set of 𝑀, respectively. The symbol, Δ, is the
Laplacian operator, subject to particular Dirichlet boundary
constraint conditions. For example, 0 and 1 are used as
minimum and maximum constraints in most harmonic field
computations. The standard definition of Laplacian operator
on a piecewise linear mesh,𝑀, is the operator:

ΔΦ
𝑖
= ∑

(𝑖,𝑗)∈𝐸

𝑤
𝑖𝑗
(Φ
𝑖
− Φ
𝑗
) , (1)

where 𝑤
𝑖𝑗
is a scalar weight assigned to the edge, 𝐸

𝑖𝑗
. This

Poisson equation, ΔΦ = 0, can be solved by the least-squares
sense, which leads to

𝐴Φ = 𝑏,

𝐴 = [
𝐿

𝐶
] ,

𝑏 = [
0

𝑏
] ,

(2)

where 𝐿 is the Laplacian matrix given by

𝐿
𝑖𝑗
=

{{{

{{{

{

∑

𝑘∈𝑁
1(𝑖)

𝑤
𝑖𝑘
, if 𝑖 = 𝑗,

−𝑤
𝑖𝑗
, if (𝑖, 𝑗) ∈ 𝐸,

0, otherwise,

(3)

where 𝑁
1
(𝑖) is the 1-ring neighbor set of vertex, 𝑖. 𝐶 and

𝑏
 are matrix and vector, respectively, standing for the
constraints in the harmonic field. Different weighting scheme
and constraints will lead to a different kind of harmonic field.
For example, let 𝛼

𝑖𝑗
and 𝛽

𝑖𝑗
denote angles opposite to 𝐸

𝑖𝑗
,

respectively; the standard cotangent-weighting scheme will
be given by

𝑤
𝑖𝑗
=

cot𝛼
𝑖𝑗
+ cot𝛽

𝑖𝑗

2
, (4)

leading to a smooth, transiting harmonic field, suited to
applications like mesh deformation [25] and direction field
design [26]. However, the standard weighting scheme cannot
identify the local shape variation; this drawback makes it no
longer suitable for segmentation purposes.

Our method utilizes a novel, dental-targeted weight-
ing scheme, which preserves the nice property of classic
cotangent-weighting scheme,while having the ability to sense
the concave feature for each tooth boundary. A special
constraint assigning strategy is also proposed accordingly.

3. Materials and Methods

Since human teeth occur in different shapes and their
arrangements vary substantially from one individual to
another, careful selection of test datasets is necessary in
tooth segmentation studies. We evaluate 60 sets of dental
models including both low and up jaw of varying complexity
and precision. For instance, teeth on some of the dental
meshes have severe malocclusion and crowding problem,
while others may be absent from the jaw. These datasets
were accumulated in the years between 2010 and 2014, at
Xiangya Hospital of Central South University and the First
Affiliated Hospital of Wenzhou Medical University, from
patients who need medical treatments such as orthodontics
or dental implantation. These models are acquired by a
3D dental scanner or intraoral scanner with accuracy of
0.01mm–0.1mm. Each of the dental meshes is guaranteed
to be manifold and nondegenerate as preprocessed by the
software supplied by the scanner manufacturers.

These dental mesh models are taken as input of the
proposed framework as demonstrated in Figure 1, and the
output results are segmented individual teeth.

As illustrated in the block diagram, teeth anatomical
feature points and the occlusal plane, employed as the prior
knowledge of following computation, are firstly identified
(Section 3.1). Secondly, a rough locating procedure for teeth
parts is performed and a cut plane is found to automatically
remove the gingival region of the dental model (Section 3.2).
Then, dental-targeted constraint points can be initialized to
prepare for the harmonic field calculation. Once a harmonic
field is generated, an optimal isoloop for each tooth can be
extracted as a tooth boundary (Section 3.3).

3.1. Dental Features Identification. We use a priori knowledge
of feature points on human teeth and occlusal plane in
our method. The feature points consist of cusps on the
canines, premolars, and molars and point to the end of the
incisal edge on incisors. Identification of these points and
the occlusal plane is a fundamental dental process. A robust,
computer-aided, automatic identificationmethod [27] is used
in our framework to identify them, as demonstrated by white
spheres and a blue plane in Figure 2.
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Figure 1: Block diagram of our proposed framework.

(a)

(b)

Figure 2: Automatically identified features of a dental model. Top row from left to right indicates anatomical feature points onmolar, incisor,
canine, and premolar; bottom row illustrates the occlusal plane.
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Figure 3: Steps of gingiva cutting. Images from left to right illustrate (a) the inappropriate cutting when multiple intersection loops are
acquired; (b) the acquisition of only one intersection loop; (c) the desirable cutting attained when the variance energy stops decreasing.

The inspection spoke-based strategy [20] is then em-
ployed to automatically separate these teeth feature points
into different groups. This approach first fits a curve of the
tooth-based dental arch and then detects inspection spokes
along the dental arch. Instead of using the inspection spokes
to do tooth segmentation, which may lead to unsatisfactory
cut results, we utilize them to separate those feature points
into different groups (each group corresponding to one
tooth).

In addition, these feature point groups are arranged in
order along the direction of the dental arch. And we further
classify them into two bigger point sets, that is, one feature
points set, Ω

1
, consisting of groups with odd indexes of

1, 3, 5, . . . and the other set, Ω
2
, consisting of alternating

groups with even indexes of 2, 4, 6, . . .. These two feature
point sets will be employed as part of constraints in the
computation of the dental-targeted harmonic field.

3.2. Automatic Cutting of Gingiva. We seek a cutting plane to
roughly separate the teeth parts from the gingiva region to
accelerate following harmonic field computation. The basic
idea is similar to earlier methods [1], but we have made it
more efficient. Initially, the plane is located at the position
of the occlusal plane and then moved iteratively towards the
bottom of the dental model along the normal direction. The
distance moved in each step is a small constant value, 𝑑 (we
noticed that 𝑑 = 1mm meets the requirement of almost all
dental models in our experiments). During the movement,
each plane 𝑃

𝑖
(1 ≤ 𝑖 ≤ 𝑁, 𝑁 is the count of move steps)

will intersect with dental mesh and generate one or more
intersecting loops.

At the beginning, a multiple-loop intersection will be
detected as shown in Figure 3(a), which implies that the plane
is intersecting with the teeth parts or outliers. The iteration is
continued until only one-loop intersection is acquired, as the
first meaningful loop shown in Figure 3(b). Afterwards, for

each𝑃
𝑖
, the variance energy ofminimumprincipal curvature,

𝜙
𝑖
, is used to evaluate the intersection:

𝜙
𝑖
=

1

𝑛 − 1

𝑛

∑

𝑘=1

(𝑐min,𝑘 − 𝑐min,avg)
2

, (5)

where 𝑛 is the number of mesh points on the intersection
loop, 𝑐min,𝑘 denotes the minimum principal curvature of
point 𝑘, and 𝑐min,avg indicates the average minimum principal
curvature of all points.

When all one-loop intersections are found, their corre-
sponding variance energies are linearly mapped to axes 0,
1. The results are shown as colors ranging from red to blue
in Figure 3(b). The normalized variance energy of each, 𝑃

𝑖
,

is utilized to select the best cutting plane because we notice
that the energy is high at the teeth parts (larger than 0.5
generally) and decreases towards the gingiva region. Based
on this observation, we select the cutting plane by checking
the normalized variance, which is less than 0.5 in each
step, until it stops decreasing. In the extreme situation, the
movement stops when there is no intersection of the plane
with the dental model; in this case, we use the last one-loop
intersection plane as the cutting plane.

Finally, useless dental parts (e.g., the transparent gingiva
region in Figure 3(c)) are clipped out using the cutting plane.
In addition, the mesh points on the loop are recorded as part
of constraints in the following harmonic field computation
(see Section 3.3).

Procedures described in this section are valuable for high-
precision dental meshes because large percentages of useless
mesh can be removed to relieve the burden of harmonic field
computation. Although general mesh decimation processes
can be also used to reduce complexity of mesh, along with
the global decimation quality of teeth surfaces will receive
damage as well.

3.3. Harmonic Field Calculation. We adopted the basic idea
of utilizing harmonic field for tooth boundary identification
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(a) (b)

Figure 4:Harmonic fields under different weighting schemes.The images demonstrate harmonic field under (a) the special weighting scheme
and (b) cotangent-weighting scheme, respectively.

[24], which makes use of a special weighting scheme, given
by

𝑤
∗

𝑖𝑗
=

𝛾
𝑖𝑗
(cot𝛼
𝑖𝑗
+ cot𝛽

𝑖𝑗
)

2
. (6)

The properties of this kind of harmonic field can be
summarized as follows, which is the reason we chose it for
the tooth partition.

(i) Smoothness. As a method derived from classic cotangent-
weighting scheme, the harmonic field successfully inherits
the smooth transition property.That is, the transitions of ver-
tex scalars from minimum to maximum Dirichlet boundary
values are stable and smooth in both concave and nonconcave
regions.

(ii) Shape-Awareness. The harmonic field has strong aware-
ness of concave creases and seams. Therefore, the uniformly
sampled isolines, which are dense at concave regions, can
naturally form the candidates of partition boundaries.

Figure 4 demonstrates differences between two harmonic
fields by mapping field scalars, whose values range from 0 to
1 and the colors range from red to blue. Figure 4(a) shows
the harmonic field using the special weighting scheme, while
Figure 4(b) shows the harmonic field with the same con-
straints but uses the standard cotangent-weighting scheme.
Uniformly sampled isolines on mesh are also extracted and
colored to indicate field variance.

Our new dental-targeted segmentation framework is
different from previous tooth-targeted study [24] in two
major aspects. The first one is that the constraints of den-
tal harmonic field are automatically identified as proposed
above. And the second one is our special designed assignment
of constraints for dental teeth segmentation, as introduced in
the following, which is the key to segment all teeth only once
under a uniform harmonic field computation automatically.

For Dirichlet constraints of the dental-targeted harmonic
field, there are two major considerations: (1) the method for
choosing constraint points on dentalmeshes and (2) the value
of constraint points assigned in harmonic field computation.

For the first issue, we choose constraint points by taking
a priori knowledge of human teeth into consideration. In
other words, the teeth feature points sets,Ω

1
andΩ

2
, and the

mesh points set, Ω
3
, on the gingiva cutting plane are used as

constraints.
For the second issue, the maximum and minimum

constraint values 1 and 0 are assigned to the teeth feature
points sets, Ω

1
and Ω

2
, separately. That is, feature points on

the same tooth will have the same constraint value, either 0 or
1, but feature points on the neighbor teeth will have different
constraint value, either 1 or 0, as demonstrated by red and blue
spheres in Figure 5(a), respectively.

In addition, a middle constraint value of 0.5 is assigned
to the mesh points set, Ω

3
, on the gingiva cutting plane (as

green contour and points depicted in Figure 5(a)).
As demonstrated by Figures 5(b) and 5(c), the resulting

harmonic field, using our assignment strategy of a priori
knowledge guided constraints, has much better distinguish-
ing tooth partition patterns for all teeth, compared to one
without suchmiddle constraint value, which is a conventional
case in many other harmonic field-based methods.

According to the constraints assignment, entities of
matrix 𝐶 and vector 𝑏 introduced above can be set solving
(2). Specifically, if we denote points assigned with constraint
values 0, 0.5, and 1 by 𝑝min, 𝑝mid, and 𝑝max on mesh 𝑀,
respectively, and put them into a list 𝑆, then 𝑐

𝑖𝑗
∈ 𝐶 (1 ≤ 𝑖 ≤

𝑛, 1 ≤ 𝑗 ≤ 𝑚) and 𝑏
𝑖
∈ 𝑏
 (1 ≤ 𝑖 ≤ 𝑛) can be given by the

following equations, respectively:

𝑐
𝑖𝑗
= {

𝑤, for {(𝑖, 𝑗) | 𝑀 (𝑝
𝑖
) = 𝑗} ,

0, otherwise,
(7)

𝑏
𝑖
=

{{

{{

{

𝑤, for {𝑖 | Type (𝑝
𝑖
) = 𝑝max} ,

0.5𝑤, for {𝑖 | Type (𝑝
𝑖
) = 𝑝mid} ,

0, for {𝑖 | Type (𝑝
𝑖
) = 𝑝min} ,

(8)

where 𝑤 is a large constant value (1000 in our experiments),
𝑛 and𝑚 denote number of vertexes in 𝑆 and𝑀, respectively,
and 𝑝

𝑖
(0 ≤ 𝑖 ≤ 𝑛 − 1) is an element of 𝑆, whose index is 𝑖.
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(a) (b)

(c)

Figure 5: Assignment of constraint points on dental mesh for harmonic field computation. (a) Constraints assigned in our proposedmethod.
(b) Resulting harmonic fieldwith intersecting contourmesh points as constraints. (c) Resulting fieldwithout intersecting contourmesh points
as constraints.

𝑀(𝑝
𝑖
) denotes the index of 𝑝

𝑖
in 𝑀, Type(𝑝

𝑖
), and returns

the type of 𝑝
𝑖
.

Modern sparse Cholesky factorization and modification
software package [28, 29] are used to solve the linear system
(i.e., (2)) efficiently, which results in the dental-targeted
harmonic field showed in Figure 5(b).

With our objective almost accomplished, all that is left to
sample and uniformly extract is a number of isolines from the
harmonic field, as shown by colored loops in Figure 6(a), and
select optimal isoloops as the tooth boundaries (e.g., white
loops in Figures 6(b) and 6(c)). Andweuse the voting strategy
proposed in previous work [5] to automatically select the best
isoloop.

4. Experiments and Results

We have tested our approach on 60 dental mesh models (low
and up jaw) of varying complexity.Thedatasets included laser
scans of plaster models obtained from different commercial

scanners. Our approach was performed with reasonable
accuracy on almost all of these models. Figure 7 illustrates
12 of these dental models, some of which show teeth with
severe crowding problems, while others may be absent from
the jaw. For each of the 12 models in Figure 7, three images
are used to illustrate states during the partition, namely, (1)
the input original mesh, (2) the clipped dental mesh attached
with dental-targeted harmonic field, and (3) the segmented
nonteeth part (colored with red) and individual teeth (with
other colors) as output.

To provide a “ground truth” dental segmentation bench-
mark for quantitative evaluation, we asked two dentists,
each with the necessary training and sufficient practice time,
to identify the boundary of each tooth manually on all
experimental models. For each tooth, all marked contours
from the two dentists were averaged to produce a ground
truth. The boundaries of our segmented teeth were then
compared with the ground truth results usingmean errors, as
shown in Figure 8. The average mean error of our approach
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(a) (b) (c)

Figure 6: Tooth boundaries identification: (a) isoloops evenly extracted from generated harmonic field; (b and c) two perspectives of the
extracted optimal isoloops as the tooth boundaries.

Figure 7: The segmentation results of our approach on various dental meshes with crowding problems.

within the 60 models is about 0.1mm, which was approved
by the dentists.

We also recorded the time consumed by our approach
on different scales of dental models (measured with a

number of mesh points and faces) during experiments, as
shown in Figure 9, including the time for (a) dental base
cutting, (b) harmonic field precomputing, (c) harmonic field
updating, (d) boundary extraction, and (e) total time for
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Figure 8: The mean errors of our tooth segmentation results
compared to manually labeled ground truth of all 60 models. The
horizontal axis denotes 60 cases in our experiments and the vertical
axis denotes the mean errors, correspondingly.
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Figure 9: Time statistics of our dental mesh segmentation. The
timing is recorded in seconds for (a) dental base cutting, (b)
harmonic field precomputing, (c) harmonic field updating, (d)
boundary extraction, and (e) total time of dental segmentation. The
horizontal axis illustrates different mesh model scales by number
of mesh points and faces. The vertical axis illustrates the time
consumption for procedures in the segmentation framework.

dental segmentation. All experiments were carried out on a
common PC with Intel Core Quad-Core Processor 2.67GHz
with 4GBmemory.The total segmentation time of one dental
model in our experiments is usually less than 7 seconds. By
contrast, the popular commercial software, “3Shape,” often
takes manyminutes of interaction to segment one model; the
accompanying method [1] often takes 1 or 2 minutes.

5. Conclusions

For this paper, we studied the fundamental problem of
automatically segmenting teeth in dental mesh models into
individual tooth objects. With a specially designed weighting
scheme and a strategy of a priori knowledge to guide the

assignment of constraints, we built a novel dental-targeted
harmonic field, which is able to segment all teeth only once
under a uniform harmonic field computation automatically.
This harmonic field is robust to various tooth shapes, complex
malocclusion, and crowding problems and can guarantee
closed tooth boundary extraction from dental mesh, unlike
curvature-based methods needing complex connectivity and
morphologic operations, in most cases.

Extensive experiments and quantitative analysis demon-
strated the effectiveness of the method in terms of accuracy,
robustness, and efficiency. We plan to integrate this conve-
nient, dental segmenting algorithm in a computer-aided, 3D-
orthodontic system that is suitable for deployment in clinical
settings.
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