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Drug development in oncology commonly exploits the tools of molecular biology to gain therapeutic benefit through 
reprograming of cellular responses. In immuno-oncology (IO) the aim is to direct the patient’s own immune system to 
fight cancer. After remarkable successes of antibodies targeting PD1/PD-L1 and CTLA4 receptors in targeted patient 
populations, the focus of further development has shifted toward combination therapies. However, the current 
drug-development approach of exploiting a vast number of possible combination targets and dosing regimens has 
proven to be challenging and is arguably inefficient. In particular, the unprecedented number of clinical trials testing 
different combinations may no longer be sustainable by the population of available patients. Further development in 
IO requires a step change in selection and validation of candidate therapies to decrease development attrition rate 
and limit the number of clinical trials. Quantitative systems pharmacology (QSP) proposes to tackle this challenge 
through mechanistic modeling and simulation. Compounds’ pharmacokinetics, target binding, and mechanisms 
of action as well as existing knowledge on the underlying tumor and immune system biology are described by 
quantitative, dynamic models aiming to predict clinical results for novel combinations. Here, we review the current 
QSP approaches, the legacy of mathematical models available to quantitative clinical pharmacologists describing 
interaction between tumor and immune system, and the recent development of IO QSP platform models. We argue 
that QSP and virtual patients can be integrated as a new tool in existing IO drug development approaches to increase 
the efficiency and effectiveness of the search for novel combination therapies.

Cancer originates from changes in the DNA of a single cell in an 
individual patient. Development of molecular biology knowledge 
and tools over the last 6  decades have enabled tackling this dis-
ease at the molecular level. Next Generation Sequencing offers 
unprecedented insight into genomes and transcriptomes of indi-
vidual patients, tumors, and cells informing our understanding 
of the origins of cancer variability and increasingly providing di-
agnostic tools allowing selection of personalized therapies. The 
wealth of knowledge on molecular and cellular mechanisms and 
an arsenal of molecular tools allowing their modulation opens 
an avenue toward development of drugs reprogramming cellular 
behavior to treat and cure the disease. Immuno-oncology (IO),1 
in particular, is a relatively old concept only recently enabled by 
molecular characterization of tumor-immune interactions, which 
has revolutionized treatment options. Rudolph Virchow first 

proposed to mobilize the patient’s own immune system to fight 
cancer in late 19th century.2 Later, William Coley tested this idea 
with the crude approach available at the time of bacterial broth 
injection.3 More than a century later, understanding of immune 
system checkpoints at the molecular level and an advent of mono-
clonal antibody drugs enabled development of the first therapies 
truly reprogramming immune response for the benefit of patients 
with cancer. Compounds specifically targeting PD1/PD-L1 and 
CTLA4 receptors induced immune response to achieve long-term 
benefit, where standards of care failed and their success precipi-
tated the rise of IO to the fastest growing area of pharmaceutical 
research and development.4 Despite initial success, PD1/PD-L1 
and CTLA4 checkpoint inhibitors are not effective in all patient 
populations. This prompted the need for mechanistic under-
standing of the reasons for patient variability and development of 
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diagnostic methods for patient selection. On the basis of these in-
sights, the focus of IO drug development has now shifted toward 
combination therapy, where features of an individual disease or 
even an individual tumor are exploited by administration of mul-
tiple compounds with specific doses and timings, due to the ratio-
nale of additive efficacy.

There are currently more than 2,000 active clinical trials in IO.4 
This vast number is a testimony to the combinatorial explosion of 
possible target and dosing regimen combinations emerging from 
contemporary knowledge on tumor immunobiology and capa-
bilities to design compounds specifically to modulate players in 
complex molecular networks that determine cellular behavior. 
Unfortunately, to date, most of the combination trials have failed 
to demonstrate improvement with respect of standard of care. The 
unprecedented number of clinical trials poses unique challenges 
and may become an impediment for progress in the field. In addi-
tion to rising drug development costs, further growth in the num-
ber of combination therapy trials may be limited by the shortage 
of patients. The 2,000 clinical trials, which started in 2017,4 re-
quired ~ 600,000 patients, whereas there were only about 50,000 
patients participating in research across all areas of oncology. It is 
clear that efficient and effective experimental exploitation of the 
combination therapy space in IO is severely limited and that new 
approaches are required to prioritize and optimize trials and direct 
limited resources toward drug development areas with highest 
probability of success.

One of the reasons for failure of IO combination therapy trials 
is a lack of quantitative understanding of complex dynamic factors 
determining efficacy leading to the selection of suboptimal com-
binations and dosing regimens. Translation of the vast literature 
on basic cancer immunobiology to actual choice of multiple com-
pounds, dose amounts, and timings is challenging. Complex, dy-
namic feedbacks underlying immune response and tumor growth 
in the patient are very difficult to understand intuitively, without 
the use of quantitative mathematical models. Conventional phar-
macokinetic and pharmacodynamic (PK/PD) models, which 
typically connect modulation of target pharmacology to clinical 
outcomes through empirical models, do not fully capitalize on 
existing mechanistic knowledge. In contrast, quantitative systems 
pharmacology (QSP)5 integrates knowledge of molecular and 
cellular interactions involved in the tumor growth and immune 
response linking PK/PD with clinical outcomes. QSP models sup-
port target/combination selection and validation in early discov-
ery as well as optimal trial design through identification of patient 
subgroups, dosing regimens, and biomarkers using so-called virtual 
patients (VPs; see later). Moreover, quantitative representation of 
existing knowledge allows formal testing of different mechanistic 
assumptions and parameters, thus supporting decisions by quanti-
tative account of uncertainty. As such, QSP models are a valuable 
new tool for clinical pharmacologists to make better use of existing 
mechanistic biological knowledge in combination therapy selec-
tion and personalized therapy.

In this review, we will first describe a general framework for QSP 
in IO combination therapy development. We will then provide a 
comprehensive review of mathematical models describing interac-
tion between tumor and the immune system at different levels of 

granularity. Subsequently, we will then describe how these models 
have provided the basis for current efforts on the development of 
large-scale IO QSP platforms applicable for selection and valida-
tion of combination therapies in drug development projects. We 
hope that the review will contribute to the uptake of QSP ap-
proaches by clinical pharmacologists and others in IO drug devel-
opment, improve the efficiency of the current paradigm, and speed 
up the approval of novel therapies for patients.

QSP APPROACH TO COMBINATION THERAPY SELECTION
QSP supports drug development by providing mechanistic in sil-
ico models of the biology underlying disease, drug PKs as well as 
target binding and drug effect. The field originated from the com-
bination of well-established PK/PD approaches describing drug 
absorption, distribution, metabolism, elimination, and drug ac-
tion with systems biology, focusing on understanding of complex 
biological processes in health and disease.5 QSP models represent 
in a quantitative framework existing literature knowledge on the 
molecular, cellular, and physiological mechanisms, which pertur-
bation in healthy individuals leads to disease. The models are ini-
tially typically inferred only to a minor extent from retrospective 
fitting of clinical data, but rather formulated and parameterized 
based on the mechanistic knowledge available before the trial is 
conducted. A major application of QSP is a more personalized pre-
diction of clinical outcome for a specific compound or combina-
tion of compounds, dose and dosing regimen. Other applications 
involve examination of what-if scenarios and alternative mecha-
nistic hypotheses to aid experimental design through understand-
ing of underlying biological complexity. The vast majority of QSP 
models are developed in an ordinary differential equation (ODE) 
framework and simulated with off-the-shelf numerical solvers, but 
other approaches, such as agent based models,6 are also proposed. 
Figure 1 shows a typical example QSP model, developed for illus-
tration purposes and described in detail in our recent Tutorial in 
this journal.7

The mechanistic, bottom-up, literature-based approach to mod-
el-informed drug discovery and development has already been suc-
cessfully applied in physiologically-based pharmacokinetics (PBPK).8 
The knowledge on anatomy, physiology, and physical chemistry of 
the processes involved in drug absorption, distribution, metabolism, 
and elimination is represented in an ODE framework and used for 
the simulation of the time profile of drug concentration (e.g., at the 
site of action). PBPK illustrates how a mechanistic approach increases 
the scope of extrapolation beyond the data used to build the model, 
in some cases enabling replacement of the clinical trial with its virtual 
equivalent. For example, PBPK is an industry standard, with regula-
tory acceptance, in an evaluation of the effect of drug-drug interactions 
(DDIs) after being extensively evaluated with a diverse set of drugs.9 
When concentration of the drug at the site of action is affected by 
co-administration of another drug, metabolized by the same enzyme, 
the PBPK models validated for both drugs, can be combined and 
used to predict the extent of the interaction and formulate label rec-
ommendation for dosing. In this context of use, the PBPK simulation 
can be accepted in lieu of clinical trial for DDIs, thus decreasing num-
ber of clinical trials, patient risk, and drug development costs.9 The 
key feature of PBPK models that enable this important application is 
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the incorporation of the detailed mechanistic knowledge and in vitro 
assays available before a trial is conducted (i.e., binding and processing 
of compounds by drug metabolizing enzyme). If drug metabolism was 

empirically accounted for, by inferring clearance from clinical data, ex-
trapolation would not have been possible and a full DDI trial would 
have to be conducted. There are numerous other applications, such as 

Figure 1 Example quantitative systems pharmacology immuno-oncology model published by Lazarou et al.7 (a) Biological process map 
representing molecular and cellular processes underlying disease, drug action, and pharmacokinetics. (b) Documentation containing variable 
and parameter definitions, rate laws, and literature references. (c) The model represented as a set of ordinary differential equations and 
compiled to executable code. (d) Simulation tumor growth in an individual virtual patient. (e) Virtual trial simulation of a sample of virtual 
patients. (f) Predicted clinical outcomes. Waterfall plot of a percentage change from baseline in virtual patients. LN, lymph node; TME, tumor 
microenvironment.

Name Rate Equa�on Comment
abs Fabs * kabs * an�PD1_IS an�PD1_IS = an�PD1_Central
distr k12 * an�PD1_Central - k21 * an�PD an�PD1_Central = an�PD1_Periphan�PD1 distribu�on
elIS (1 - Fabs) * kabs * an�PD1_IS an�PD1_IS = 0
el kel * an�PD1_Central an�PD1_Central = 0 an�PD1 elimina�on
growth mu * Tumor * (1 - Tumor / capacity) 0 = Tumor Tumor growth: represents division of tu
kill kkill * Tumor * (Percent_CC / (PercenTumor = an�gens Tumor killing; limited by the amount of c
R2 beta_tumor * Tumor Tumor = 0
v1 kv1 * Tumor * (tumor_max / Percent_0 = capacity Recruitment of TME capacity (e.g., recru
v4 ksyn_APC_tme * 5000 * (1 - Percent_0 = APC_tme APC development (blood volume = 5 L)
v5 beta_APC_tme * APC_tme APC_tme = 0 Death of APCs in TME
v6 delta_APC_ln * APC_tme * an�gens / an�gens + APC_tme = APC_ln An�gen uptake and migra�on of APCs to
v7 Pro_Tc_ln * APC_ln 0 = Tc_ln Tc cell prolifera�on in LN*(1-
v8 beta_APC_ln * APC_ln APC_ln = 0 Death of APCs in LN
v9 Tc_ln * beta_Tc_ln Tc_ln = 0 Death of Tc cells in LN
v12 delta_Tc_tme * Tc_ln * (1 - Percent_CTc_ln = Tc_tme Rate of cytotoxic T-cell migra�on from 
v13 beta_Tc_tme * Tc_tme Tc_tme = 0 Death of Tc cells in TME
v14 kPD1 * (1 - an�PD1 / (an�PD1 + an�P Tc_tme = 0 PD1 ac�on: transi�on of cytotoxic T cel

(a) Biological Process Map (b) Documenta�on

(c) Model code (d) Virtual pa�ent

(e) Virtual trial (f) Predicted clinical outcomes
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extrapolation between different drug formulations, where mechanis-
tic PBPK models are used with high confidence. The QSP approach 
is based on the same general methodology of representing knowl-
edge on underlying biology as a mechanistic model and then using 
the model for extrapolation. Although it is still much less established 
than PBPK, the number of regulatory submissions supported by QSP 
models is growing and some experts, perhaps generously, believe that 
the QSP will reach the level of maturity and acceptance of PBPK in 
the very near future.10 In summary, we propose that PBPK provides a 
clear and compelling precedence for what can be achieved by mecha-
nistic modeling in drug development and regulatory decision making 
and believe that the field of QSP can leverage this experience to speed 
up application and impact.

Consideration of patient variability is crucial for successful 
drug development in any therapeutic area, but oncology poses 
exceptional challenges, due to the molecular diversity of indi-
vidual tumors. Incorporation of mechanistic variables into the 
model enables simulation of VPs, where each individual has its 
own unique combination of parameter values, in principle cov-
ering the entire biological scope of the model. A VP is a variant 
of a mechanistic model, where selected parameters and variable 
values at initial state are randomly generated following exper-
imentally known population distribution of these quantities11 
(Figure 1d). In a virtual trial simulation, a sample of VPs is gen-
erated and subjected to the same dosing regimen as in an actual 
trial (Figure 1e). Simulation of VPs outputs a sample of indi-
vidual time profiles, which reflects subject variability of clinical 
outcomes (Figure 1f). Results from individual patients from 
actual clinical trials can subsequently be mapped onto VPs, for 
example, to identify mechanistic hypothesis for heterogeneous 
biomarker responses. Moreover, repeated simulations of trials 
of set number of subjects can be used to predict between-trial 
variability and inform power calculations. Again, this method-
ology is very well established in PBPK, where known distri-
butions of physiological parameters (e.g., body weight, cardiac 
output, and blood and organ volumes) are used to generate 
VPs. Moreover, parameter correlations are taken into account 
to create physiologically plausible individuals (e.g., it is unlikely 
to observe a tall man with a liver volume of a child). PBPK also 
demonstrates the use of genetic variability—allele frequencies 
of drug transporters and drug metabolizing enzymes in specific 
populations are used to obtain VPs with different enzyme ac-
tivities. A common application of virtual trials is extrapolation 
to a specific population of interest (ethnicity, gender, disease, 
and pediatric). In the context of IO, mechanistic models en-
able use of recent high-throughput molecular biology data for 
a virtual trial simulation to account for molecular variability of 
tumors. The Cancer Genome Atlas (TCGA)12 alone contains 
genome and transcriptome sequences of over 20,000 primary 
cancer and matched normal samples spanning 33 cancer types, 
amounting to about 1 petabyte of data. We recently demon-
strated6 how to use a QSP virtual trial approach to translate the 
wealth of molecular data to variability of clinical outcomes in 
IO trials.

Figure 2 summarizes main applications of QSP in IO. We 
believe that the features of the QSP approach described above 

make it a valuable tool for target prioritization and hypothesis 
generation in the discovery stage and an attractive alternative 
for commonly used animal models with poor translational track 
records.13 Mechanistic detail and understanding are needed to 
include multiple potential molecular targets and account for the 
complex network of molecular and cellular interactions link-
ing these targets to clinical biomarkers and determining their 
interactions. The model needs to be quantitative and time de-
pendent to predict longitudinal response of quantitative clinical 
biomarkers to variable dosing regimens of multiple compounds. 
The model needs to be created based on existing literature 
knowledge, ex vivo and in vitro assays on human cells to enable 
prediction of clinical outcomes before clinical trial is conducted. 
In the following sections, we will review the legacy of mecha-
nistic models describing interactions among immune system and 
tumor and recently developed QSP models in IO. We will then 
discuss challenges and critique of the approach.

LEGACY MODELS OF CANCER IMMUNOBIOLOGY
The complexity of the immune system dynamics, emerging from 
the network of positive and negative feedbacks, has been recog-
nized very early and attracted interest of the mathematical model-
ing community long before application in clinical pharmacology. 
Models of the interaction between immune system and tumor 
have been created since early 1990s and their development par-
alleled growing understanding of the mechanistic detail of mo-
lecular and cellular interactions. Because therapeutic modalities 
were not available yet, this research was conducted mostly by the 
academic community hypothesizing about potential future ther-
apeutic relevance, but not yet being able to perform virtual trials 
and relate models to drug development pipelines. Nevertheless, 
the legacy of mathematical models in immunology provides an in-
valuable knowledge base for current development of QSP models 
for drug development. First, mathematical models developed over 
3 decades constitute a comprehensive library of rate-law equations 
describing complex, nonlinear interactions at different levels of 
mechanistic granularity. Second, authors of modeling papers an-
alyzed the large corpus of basic immunobiology data to justify 
parameters of their models. Although new technologies and data 
became recently available and the models should refer to original 
experimental sources rather than modeling papers, the collection 
of basic experimental literature and model parameterization strat-
egies constitutes a valuable resource for QSP modelers. However, 
the large number of papers is not easy to identify and review by an 
individual modeler at the start of each drug development project 
in a timely manner. Here, we provide such a comprehensive and 
systematic review, which was generated through a precompetitive 
collaboration among seven pharmaceutical research organiza-
tions (the “IO QSP Consortium”). Because we identified nearly 
150 models, we do not describe all of them in detail. Instead, we 
focus on analyzing the coverage of the fundamental processes of 
the Cancer Immunity Cycle (CIC)1—a commonly used concep-
tual framework in cancer immunobiology. Moreover, to further 
inform the choice of references to examine in detail, we provide 
a classification of models based on the similarity of formalism, 
mechanistic granularity, and biological coverage.

REVIEW



CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 109 NUMBER 3 | March 2021 609

We systematically searched literature for mathematical mod-
els describing the dynamic interactions between the cancer and 
immune cells using combinations of terms such as “cancer im-
munity cycle,” “cancer immunotherapy,” “immuno-oncology,” 
“checkpoint inhibitors,” “cytokine-based immunotherapy,” 
“tumor microenvironment,” “anti-PD-1,” “anti-PD-L1,” “an-
ti-CTLA4,” “mathematical models,” “predictive models,” “quan-
titative systems pharmacology,” “QSP,” and a few other specific 
searches using names of the cell-types, cytokines, and other 
molecular entities involved in CIC. Information regarding the 
following topics were captured from the 141 papers identi-
fied: (i) the purpose for which the model was developed, (ii) 
model variables (cell-types, cytokines, growth-factors, cell-sur-
face receptors, and other molecular signatures) and their inter-
actions, (iii) treatment types (mono or in combination), (iv) 
study type (animal/clinical data), and (v) the biomarkers used 
for model validation. Figure 3 shows an overview of the rela-
tionships among the 141 articles in terms of biological coverage, 

formalism, and authorship. The full list of references is provided 
in the Supplementary Material. For the sake of completeness, 
Figure 3 also includes full-scale QSP models, which will be re-
viewed in more detail in a later section.

The concept of immunological surveillance against cancer was 
substantially developed by Burnett14 following the original pro-
posal by Ehrlich in 1909,15 and later rephrased by Thomas.16 The 
concept states that a normal function of the immune system, or 
more precisely the cell-mediated immunity carried out by thy-
mus-derived lymphocytes, is to recognize and destroy newly ap-
pearing tumor cells in situ. Mathematical models to describe the 
concept of immune surveillance started to emerge as simple “two-
ODE” systems in the early 1990s, which then developed into the 
current state-of-the-art multiscale QSP models describing the 
dynamics of several components in the cancer-immunity cycle. 
In this section, we will focus on the evolution of these models de-
scribing the cancer and immune system interplay, and the effect of 
immunotherapies.

Figure 2 Knowledge integration with quantitative systems pharmacology (QSP) model to support efficacious combination therapy selection in 
immuno-oncology. Mechanistic model is created based on cancer immunology literature. High throughput molecular data on tumor biopsies 
can be used to calibrate model for specific disease.7 The model can be further calibrated using past clinical data on therapies similar to 
those which are under investigation. The model is subjected to the iterative process of simulation and comparison with experimental data 
to evaluate biological plausibility of model behaviors and predictive power. Parameter space is extensively exploited to quantify uncertainty. 
Expert opinion from an interdisciplinary drug development team is key at every stage of this process. Experts formulate the list of candidate 
therapies, which are evaluated in virtual trials. Iteration of this process leads to recommendation of efficacious combination therapy, based 
on integrated mechanistic knowledge, data, and expert opinion.
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Models, which include only immune stimulation
In the first generation of “two-ODE” models, the dynamics of 
the tumor and cytotoxic cells follows a classical “predator-prey” 
behavior introduced by Alfred Lotka and Vito Volterra. The early 
models described by Kuznetsov introduced a number of phenom-
ena, including immune stimulation of tumor growth, “sneak-
ing through” of the tumor, and formation of a tumor “dormant 
state” as seen in vivo.17–19 With the growth of experimental data 
surrounding the complexity of tumor and immune cells interac-
tions mediated by cytokines, Kirschner and Panetta developed a 
“three-ODE” system model that describes the dynamics of effec-
tor and tumor cells, and the cytokine IL-2. The effect of adop-
tive cellular immunotherapy on the model was explored using a 
treatment term that represents an external source of effector cells, 
such as LAK or TIL cells.20 Given the simplicity and applicabil-
ity of the above models to examine several hypothesis underlying 
the fundamental principles of cancer progression, they gained im-
mense popularity and formed a hub for the evolution for several 
other models. By following the aspects of the above models, de 
Pillis and Radunskaya21 developed a model to explore the effect 
of chemotherapy by including normal, tumor, and immune cells. 

Although the healthy tissue and tumor cells compete for available 
resources, the immune and tumor cells compete in a predator-prey 
fashion. This model then became a base for a big cluster of models 
(Figure 3) where it was expanded to include CD8+ T-cells, NK 
cells, circulating T-lymphocytes, and dendritic cells to investigate 
mono and combinations of several immune modulating agents, 
such as chemotherapy, IL-2, IL-12, INF-α, IL-21, DC vaccine, 
and TIL.22–32

Models taking into account immune suppression by 
regulatory T cells
Tumors evade the immune-mediated elimination by producing 
substances, such as TGF-β and IL-10, that stimulate the expan-
sion of immunosuppressive cells, in particular, T-regulatory 
cells, MDSCs, and M2 macrophages. One of the major lim-
itations in the above cited models are the lack of immune sup-
pressive components, which plays a critical role in shaping the 
tumor microenvironment to restrain antitumor immunity by 
restricting effector cells infiltration. In order to account for 
this, de Pillis et al.33 introduced regulatory T cells (Tregs) into 
their previous models and examined the effect of sunitinib in 

Figure 3 Mechanistic models of cancer-immunity cycle and immunotherapies. An overview of the literature-based models of cancer and 
immune system dynamics that is reviewed in this study. Although most of the models belong to the tumor and immune system dynamics, few 
models that describe the dynamics of specific processes in tumor microenvironment are also included. For example, a model that describes 
macrophage dynamics, tumor-stromal cross-talk, T-helper cell differentiation in the context cancer are included (see Supplementary Material 
S1 for details of these models). The four models on the bottom right corner where the nodes are highlighted in red are immuno-oncology 
quantitative systems pharmacology platform models that were published recently. The models highlighted in blue shade are a chunk of 
models that are derived and expanded from the first generation of models (see the main text for details). Modeling approaches and the study 
type used for model validation are reflected as shapes and colors as defined in the key table. The node size represents the model size (i.e., 
the number of cell-types, cytokines, and other molecular entities included in the models). Model size is not always the number of variables in 
the models. For example, the intermediate variables and protein complexes are not taken into account. The size of the models ranges from 2 
to 21. The “Fully-integrated Immune Response Model – FIRM” model is the biggest model in our list with 21 different cell types and cytokines. 
ODE, ordinary differential equation.
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reducing the immunosuppressive effect in tumor microenvi-
ronment (TME). In addition to its anti-angiogenic effects, 
sunitinib is found to directly inhibit the immunosuppressive 
environment by reducing the number of Tregs. It has also been 
reported that sunitinib modulates Treg activity by decreasing 
T-helper cell differentiation into Tregs rather than killing Tregs 
directly. TGF-β released mainly from Tregs and other immu-
nosuppressive cells has a dual effect in cancer biology. In early 
stages, it acts directly on cancer cells to suppress their growth. 
As the tumor progresses, it stimulates tumor progression by 
suppressing and blocking effector cells from infiltrating into 
the TME. Along this line, Arciero et al.34 added TGF-β medi-
ated immunosuppressive and tumor growth stimulatory effect 
to the model by Kirschner and Panatte,20 and investigated the 
effect of siRNA treatment that suppresses TGF-β production 
by inhibiting the TGF-β mRNA. This model was expanded by 
Wilson35 to quantify the effects that anti-TGF-β and peptide 
vaccine treatments might have on the stability of tumor-im-
mune dynamics and how the combined treatment might con-
tribute to tumor clearance as opposed to tumor escape. Their 
investigation suggested that monotherapy with anti-TGF-β did 
not have a significant impact on tumor growth. However, it sig-
nificantly enhanced the efficacy of the peptide vaccine by in-
ducing an increased number of tumor antigen-specific cytotoxic 
T cells, which is critical for the effective elimination of tumor 
cells. Interestingly, it has been shown that TGF-β attenuates 
tumor response to PD-L1 blockade by contributing to exclusion 
of T cells.36 Hence, for immune excluded phenotypes, the inhi-
bition of TGF-β enhances the efficacy of immune-checkpoint 
blockade therapies, which is observed in preclinical studies of 
murine breast and colon carcinoma models.37

Models including immune suppression by myeloid cells
Cancer cells are highly effective at evading immune responses 
by inducing polarization of pro-inflammatory M1 macrophages 
into anti-inflammatory M2 macrophages, and promoting ex-
pansion of myeloid derived suppressor cells (MDSCs) through 
the secretion of several immunosuppressive molecules, such as 
TGF-β and IL-10. In order to evaluate macrophage interac-
tions within the TME and assess how their interactions affect 
tumor progression, Mahlbacher et al.38 integrated M1, M2, 
and Tie2 expressing macrophages (TEMs) and their properties 
into a model of tumor growth. The main properties of these 
macrophage variants included in this model are M1, which re-
lease nitric oxide, M2, which release growth promoting factors, 
such as VEGF-A, TGF-β, and IL-10, and TEM, which facili-
tates angiogenesis via angiopoietin-2 and promote M2 differ-
entiation from monocytes. The model result showed that the 
presence of M2 lead to larger tumor growth regardless of TEM 
effects, suggesting that immunotherapeutic strategies that 
lead to TEM ablation may not work to restrain tumor growth 
when a sizeable population of M2 is present. Macrophage po-
larization within the changing TME mediated by cytokines, 
recruitment/function of MDSCs, and polarization toward 
M2 macrophages mediated by factors, such as MCSF and 
GMCSF, how these mechanisms affect effectors cells in killing 

tumor cells are studied by several other models.39–41 Colony 
stimulating factor-1 receptor (CSF1R) is a critical receptor on 
macrophages and offers a promising therapeutic strategy for 
high-grade gliomas. Inhibiting CSF1R promotes macrophages 
to switch from protumorigenic M2 phenotype to antitumori-
genic M1 phenotype that promote tumor cell death. However, 
acquisition of drug resistance during CSF1R inhibition was 
observed in preclinical mouse models. To understand how re-
sistance emerges during this therapy, Zheng et al.42 developed 
a spatio-temporal model of macrophage-mediated drug resis-
tance to understand the interplay between glioma cells and 
macrophages targeted by CSF1R inhibitors through CSF1 and 
IGF1 pathways. Macrophages and glioma cells interact through 
the CSF1/CSF1R and IGF1/IGF1R pathways, and inhibiting 
CSF1R would limit the secretion of IGF1, which is a resource to 
sustain the survival and growth of glioma cells. However, they 
found that during prolonged treatment with CSF1R inhibi-
tors, IGF1 was elevated through alternate pathway that in turn 
sustains the survival of glioma cells. The model then quantita-
tively evaluated the effects of combined CSF1R inhibition and 
IGF1R receptor inhibition. Shariatpanahi et al.43 developed a 
model to study the expansion and immunosuppressive effect of 
MDSCs, and evaluated the effect of anti-MDSC drugs, such as 
L-arginine and 5-f luorouracil (5-FU) on restoring antitumor 
immunity. Tumor cells stimulate the production and expansion 
of MDSCs, and these cells suppress antitumor immunity by 
producing arginase 1, an enzyme that inhibits effector T cells 
and NK cells antitumor activity. The model simulation showed 
that the addition of L-arginine supplementation to the inter-
mittent 5-FU therapy reduced the time of the tumor eradica-
tion and the number of iterations for 5-FU treatment.

Models accounting for tumor vascularization
Tumor vascularization is an inevitable process in tumor growth 
and progression. This is often accomplished by the release of sev-
eral immunosuppressive cytokines and pro-angiogenic growth 
factors. Wang et al.44 established through a J558 mouse model that 
an immunosuppressive cytokine IL-35 (a member of IL-12 family 
of cytokines) promotes tumor growth by enhancing MDSC accu-
mulation, inhibiting the infiltration of cytotoxic T cells and stim-
ulating angiogenesis. To explore the mechanism of IL-35 in tumor 
growth and immune evasion, Liao et al.45 developed a model con-
sisting of a system of partial differential equations that involve the 
interaction among different cell-types (tumor cells, MDSCs, T 
cells, Tregs, and endothelial cells) and cytokines (M-CSF, TGF-β, 
VEGF, and IL-35). The key interactions include the secretion of 
IL-35 by tumor, Tregs, and MDSCs that promote the secretion of 
VEGF by tumor cells, which in turn attracts endothelial cells to 
trigger angiogenesis. The model was also evaluated numerically to 
establish the level IL-35 inhibition that is needed to reduce tumor 
growth. On a similar note, Jain and Jackson46–48 expanded their 
previous models to investigate the bidirectional communication 
between tumor cells and endothelial cells on treatments targeting 
VEGF and its receptors that inhibit cell proliferation via down-
regulating Bcl-2. The expression of VEGF by tumor cells under 
hypoxia initiates an autocrine-signaling and paracrine-signaling 
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cascade that results in enhanced expression of Bcl-2 and promotes 
proliferation. The increase in vascular endothelial cells in TME 
results in the decrease in hypoxia. There are several other mod-
els that address tumor vascularization by studying the interaction 
among tumor cells, stromal cells, immune cells, and some of the 
key molecular players (Figure 3 and Supplementary Material).

Models of Bacillus Calmette-Guerin and oncolytic viral 
immunotherapy
Immunotherapy using Bacillus Calmette-Guerin (BCG) is an es-
tablished clinical treatment for superficial bladder cancer. BCG 
is believed to cause tumor elimination by stimulating immune 
response via initiating inflammatory reaction. The inflamma-
tion attracts innate immune cells that subsequently triggers the 
adaptive immune response to work against cancer cells. However, 
some patients do not respond to this protocol, hence Bunimovich-
Mendrazitsky et al.49 adopted the early models by Kirschner 
and Panatte20 and Kuznetsov et al.17 to investigate BCG-tumor-
immune interplay. Based on this foundational work, several mod-
els were developed to understand the mechanism of BCG action 
in bladder cancer, where a suggestion for combination of BCG 
with IL-2 to improve the success rate was made by Bunimovich-
Mendrazitsky et al.50 On a similar ground, oncolytic viral (OV) 
therapy is an effective strategy to destroy cancer cells, as shown 
in clinical trials. In OV therapy, oncolytic viruses infect tumor 
cells and replicate in tumor cells; upon lysis of infected tumor cells 
the new viral particles burst out and proceed to infect additional 
tumor cells. On the other hand, the viral peptides are immuno-
genic and, hence, stimulate anticancer immune response, which 
presents a major challenge in maximizing efficacy. Therefore, 
the effectiveness of these therapies depends on the interactions 
between the oncolytic viruses and the host immune response. In 
order to understand the basic dynamics of OV therapy, Tian51 pro-
posed a simple model to represent the interactions among tumor 
cells, infected tumo cells, and oncolytic viruses, and concluded 
that the viral therapeutic dynamics is largely determined by the 
viral burst size. This model was further expanded with immune 
cells to understand the effects of the innate and adaptive immune 
response on OV therapy.52 As macrophages are the first line of 
defense against infections, Eftimie and Eftimie39 developed a 
mathematical model to investigate the possible outcome of the 
interactions between two extreme macrophage phenotypes (M1 
and M2) and oncolytic virus in the context of B16F10 melanoma. 
They concluded that macrophage polarization toward M1 or 
M2 phenotypes could enhance the efficacy of OV therapy either 
through the activation of antitumor immune response or through 
enhancing oncolysis.

Models including NK cells and antibody-dependent cell-
mediated cytotoxicity
Targeting surface antigens expressed on tumor cells, and check-
point receptors expressed on cancer and immune cells by mono-
clonal antibodies has revolutionized cancer therapeutics. One 
mechanism of action of antibody-based immunotherapy is the ac-
tivation of immune effector cells, particularly NK cells, to medi-
ate antibody-dependent cell-mediated cytotoxicity (ADCC). To 

address this mechanism, Hoffman et al.53 developed a very simple 
model in which NK cells kill cancer cells at a rate, which depends 
on the amount of antibody bound to each cancer cell. The model 
was calibrated using an in vitro study on SKBr3 breast cancer cells, 
and the results show how the processes involved in ADCC change 
as the initial concentration of antibody and NK-cancer cell ratio 
are varied. Similarly, Tzeng et al.54 developed a model based on 
the previous knowledge that ADCC plays an important role in 
immunocytokine efficacy. The model hypothesized that IL-2 
efficacy could be enhanced without introducing toxicity by the 
administration of additional tumor-specific antibody. The hy-
pothesis was also shown in a syngeneic mouse melanoma model 
that IL-2 indeed synergized with antitumor antibodies to signifi-
cantly prolong survival. There are increasing evidences that the 
efficacy of monoclonal antibodies designed to target checkpoint 
receptors on tumor cells and immune cells are enhanced through 
NK-mediated ADCC mechanism. For example, there are several 
studies that suggest regulatory T cells depletion by NK-mediated 
ADCC may play a significant role in increasing the efficacy of ip-
ilimumab treatment.55

Other models
Other modeling formalisms that describe and investigate differ-
ent mechanisms of cancer and immune cell dynamics include: (i) 
a spatial model that accounts for the difference in trajectories be-
tween pre-activated and activated immune cells,56 (ii) a model that 
accounts for the interaction between multiple tumors competing 
for resources and immune response,57 and (iii) models that inves-
tigate the roles of oncogenes and anti-oncogenes in controlling 
cell proliferation, and that explores how immune cells respond to 
inactivation of the driving oncogene.58–60 Not all models listed in 
the lineage map Figure 1 are reviewed in this section; however, 
the entire list of these models is available in the Supplementary 
Material.

Summary
Most of the models summarized above are developed to under-
stand specific aspects of cancer and immune system interplay, and, 
hence, are structurally small with only essential cellular/molecu-
lar component. This limits applicability for investigation of other 
IO mechanisms and treatment scenarios, for example, a combi-
nation involving immune modulators in different stages of CIC. 
In recent years, knowledge base integration of CIC mechanisms 
involving different cell-types (tumor cells, innate and adaptive 
immune cells, and stromal cells) and molecular components (cyto-
kines, cell-surface receptors, etc.) are put together in a large-scale 
QSP platform model for predicting combinations of different can-
cer therapies.61–65 These models are reviewed in the next section.

Our survey includes 141 mechanistic models, which describe 
different aspects of CIC. The models have grown significantly in 
size and complexity in the past 2 decades by incorporating the ad-
vances in cancer-immune biology. Even though there were several 
overlapping models that describe the same aspect of the cancer-im-
munity cycle, the level of granularity in describing the underlying 
mechanisms differed, and together they cover a vast majority of 
cell-types and molecular signatures involved in the cancer-immune 
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system biology. The models together describe the mechanisms in-
volving 15 different cells types (includes cancer cells, immune cells, 
and stromal cells) and 36 molecular signatures (includes cytokines, 
chemokines, cell-surface receptors, growth factors, and intracel-
lular molecules), applied to predict different treatment scenar-
ios (with both immunotherapy and nonimmunotherapy agents; 
Figure 4a,b). Cell-cell interactions and molecular players mediat-
ing them, which are covered by the corpus of mechanistic models 
reviewed here are visualized in Figure 5.

QSP PLATFORM MODELS IN IO
As presented above, modeling the dynamics of the interaction be-
tween the immune system and cancer at cellular and molecular 
levels has been a long-standing topic in mathematical and systems 
biology. However, simulation of a virtual trial in IO, with a model 
of sufficient mechanistic detail to inform selection of combina-
tion therapies, has become available to clinical pharmacologists 
only recently.

In our view, the model developed by Popel’s group constitutes 
one of the first full-scale QSP platforms in IO, validated by the 
simulation of anti-PD1, anti-PD-L1, anti-CTLA4, and epigenetic 
inhibitor drug combinations in melanoma, breast cancer, and non-
small cell lung carcinoma.61,63–65 The model describes biology of 
the disease by a detailed description of the interactions among the 
following cellular species: tumor, effector T cells, primed T cells, 
antigen presenting cells (APCs), mature APCs, resident APCs, 
naïve T cells, Tregs, and MDSCs. The following surface receptors 
mediating cellular interactions are explicitly considered: TCR, 

MHCI, CD28, CD80, CD86, PD1, PD-L1, PD-L2, and CTLA4. 
To incorporate receptors, the authors created large number of 
quantities representing different cellular and molecular complexes 
formed in immune synapses. The compartment structure of the 
model is complex and varies, depending on application. There are 
four major compartments: tumor, tumor draining lymph node, pe-
ripheral, and central. Leukocyte circulation model is more detailed 
and uses lymph node, lungs, gastrointestinal, spleen, remaining pe-
ripheral tissues, venous blood, and arterial blood compartments. 
The authors describe PKs of therapeutic antibodies with a PBPK 
model including plasma, lymph, tumor, tight tissues, and leaky tis-
sues. Depending on model variant, the platform contains ~  280 
differential equations.

Publications of Milberg et al.,63 Wang et al.,64,65 and Jafarnejad 
et al.61 exemplify application of QSP platform models for multiple 
mechanisms and different diseases: breast cancer treatment with 
anti-CTLA4, anti-PD1/L1 checkpoint inhibitors64 and epigene-
tic modulators,65 checkpoint inhibitor therapy of melanoma,63 and 
lung cancer.61 Instead of building a new model for each trial, it was 
demonstrated that the same core mechanistic model of the disease 
describing tumor growth and interaction with immune system can 
be applied to different scenarios. The platform model is expanded, 
rather than created from scratch, to include mechanisms specific 
to a particular target. For example, Wang et al.65 incorporated a 
PK/PD model of entinostat, a histone deacetylase inhibitor, and 
studied combinations of this breast cancer therapeutic with im-
mune checkpoint inhibitors. Moreover, additional modules were 
incorporated to account for genotypes or biomarkers of interest, 

Figure 4 Cell-types and molecular entities usage in the models. (a) Cell-types vs. number of models: there are about 18 different cell types 
that include tumor cells, 12 types of immune cells, and 5 types of stromal cells. The number in the bracket adjacent to the cell-type name 
denote the number of models in which these cell-types are used. For models that do not differentiate between different immune cells, a 
common name is used. For example, the predator-prey type models use effector cells (which is a combination of NK cells and CTLs, here 
referred to as immune cells) and tumors. (b) Molecular entities vs. number of models: there are about 43 molecular entities that include tumor 
antigens, cytokines and chemokines, cell-surface receptors, and, in addition, molecules that are involved in tumor angiogenesis (VEGF and 
Ang2), intracellular signaling, and other molecular functions are listed as “Other Molecular Entities.”
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including PD-L1 expression and TMB. Jafarnejad et al.61 incor-
porated a detailed model of APC antigen presentation, including 
binding of antigenic peptides to MHCII receptors, thus providing 
mechanistic link to patients’ HLA genotype in virtual trial simu-
lations, the output of which can be analyzed in exactly the same 
manner as an actual clinical trial. Thus, the VPs were classified 
according to Response Evaluation Criteria in Solid Tumors and 
percent changes from baseline are summarized in waterfall plots. 
This allows direct comparison of simulation results with previous 
clinical trials to build confidence in the model as well as prospec-
tive predictions for candidate combination therapies.

The QSP platform model described above was applied in a 
number of case studies demonstrating feasibility and benefit 
of including VPs into drug development pipeline. Milberg et 
al.63 demonstrated that they can accurately predict median lon-
gitudinal time profile and number of patients showing partial 
or complete response for anti-PD1 and anti-CTLA4 combi-
nations in melanoma. Although most of the model parameters 
were literature-based, a selected set of parameters were adjusted 
using data from anti-PD1 and anti-CTLA4 monotherapies. The 
model was then applied to make predictions for combination 
therapy, including different doses and administration sequences 
and validated by comparison with combination trial data. In 
a case study on breast cancer, Wang et al.64 demonstrated how 

their QSP model can be used to make personalized predictions 
for individual patients for whom clinical measurements were 
available. The authors used available clinical measurements of 
initial tumor size and PD-L1 expression for individual clinical 
subjects to instantiate VPs specific to these subjects. The model 
was then used to predict a longitudinal time profile for each of 
the subjects and results were compared with available data. They 
concluded that although the clinical data fall within confidence 
intervals of the predictions and trends are instructive, the model 
overpredicted efficacy. Nevertheless, this case study constitutes 
an important demonstration of a “virtual twin”66 methodology, 
where each VP represents an actual clinical subjects for whom 
sufficient data are available to instantiate the model and predict 
an individual tumor trajectory. In another case study on breast 
cancer, Wang et al.65 presented application of their QSP model 
to combination of immunotherapy with another class of drugs—
epigenetic inhibitors. Model predictions suggest synergistic ef-
fect of anti-PD1 and entinostat therapies. Jafarnejad et al. also 
applied the QSP model to non-small-cell lung carcinoma, to 
predict individual patient biomarkers response. They identified 
tumor mutational burden as a biomarker of patient response, in 
agreement with clinical knowledge and predicted that the num-
ber of helper and regulatory T cells in blood and tumor biopsy 
can be used to further improve selection of individual patients 

Figure 5 Cell-cell communication mediated by molecular players. Cytokines, chemokines, growth factors, cell-surface receptors, and other 
molecular players (middle) that mediate cell-cell communication as described in the models reviewed in this paper.
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for whom immunotherapy is likely to be beneficial. In sum-
mary, the seminal work of Popel’s group and extensions thereof 
demonstrates methodology, feasibility, and benefit of using QSP 
platform models in IO drug development pipelines.

Following the original developments in academia, the QSP 
approach to IO has now started to attract significant interest 
and investments from industry for application in drug discov-
ery and development. However, it is recognized that significant 
investment is required to develop a large-scale QSP platform 
and that the time and resources this may take poses a practical 
barrier for individual research and development organisations.67 
The organizations co-authoring this publication have, therefore, 
decided to tackle this problem through a consortium model, 
where currently seven companies share resources, expertise, in-
formation, and data in a precompetitive manner to create and 
validate an industry standard, clinical IO QSP platform model. 
Members of our consortium have full access to the model code 
and details, ensuring transparency and scientific and technical 
rigor. Following completion of this most challenging and ef-
fort-intensive initial stage in the QSP workflow, the completed 
core model, which has been qualified for specific use cases can be 
adapted and used by individual members outside the consortium 
in internal projects, where novel mechanisms and compounds 
can be integrated in a relative short period of time with limited 
resources. The entinostat case study described by Wang et al.65 
demonstrates this method of working. One of the priorities is 
to use mechanistic-modeling approaches to fully capitalize on 
the unprecedented wealth of tumor biopsy–omics data avail-
able from TCGA.12 In particular, the Immune Landscape of 
Cancer68 resource provides data on the infiltration of TME by 
22 immune cell types in 11,080 TCGA samples from 33 cancer 
types. These unique data are sufficient to not only derive param-
eters specific to cancer types, but also infer distributions describ-
ing biological variability of tumors and use them in generation 
of the VPs.7 Through this approach, the required complexity of 
the biological scope of the model can continuously be aligned 
with the step change in data availability, which allows us, for ex-
ample, to incorporate more cell types than previously described 
models and describe dynamics of every individual cytokine and 
chemokine involved in cellular interactions.

In summary, recent work demonstrates the feasibility and potential 
of applying QSP approaches for selection of combination therapy in 
IO drug development. Moreover, most recent advances have shown 
that the next generation of IO QSP platforms can, for the first time, 
integrate in a quantitative manner large volumes of data generated 
through technological advances in molecular biology, sequencing of 
genomes, and transcriptomes of individual tumors. This provides the 
basis for a virtual twin approach in IO where VPs can be created to 
guide choice of treatment and dosing regimen in individual patients.

CHALLENGES AND CRITIQUE OF QSP APPROACH
A major challenge in the application of QSP models in drug devel-
opment is building confidence in the values of a very large num-
ber of parameters. The platform models described above usually 
involve several hundreds of parameters, which values are set based 
on experimental data, mainly from diverse literature for different 

cellular and molecular interactions. In our view, well-established 
criteria to assess pharmacometric models are often not relevant for 
QSP models. An example is parameter correlation or more general 
identifiability analysis (i.e., a proof that there is no other parameter 
set that fits data equally well), given a stated likelihood function.69 
We believe that because parameters of QSP models are based on ex-
perimental data on individual interactions, rather than statistically 
inferred from comparison of model outputs with data, this require-
ment is often not relevant. The purpose of developing mechanistic 
QSP models is to extrapolate, rather than to interpolate. In the area 
of systems biology, it has been suggested that “sloppy” parameters 
are universal and indeed a fundamental characteristic of complex 
pathways. This is almost certainly also the case in QSP and we agree 
with Gutenkunst et al.70 that “The prevalence of sloppiness high-
lights the power of collective fits and suggests that modelers should 
focus on predictions rather than on parameters.” The context of use 
is to prospectively predict the data, which are outside of the range 
of the data used for model calibration. For example, in a well-estab-
lished application, a PBPK model parameterized by in vitro assays 
of drug metabolizing enzyme and transporter activities is used to 
predict clinical PKs, before any clinical data are available. This is a 
very different context of use from statistical inference of parameters 
obtained from a compartmental PK model fitted to existing clinical 
data and their empirical correlation with patient and study covari-
ates. In the context of IO, the aim is often to predict clinical data 
for a candidate combination therapy, before a clinical trial is con-
ducted. There may be preclinical data available as well as past clini-
cal data on the tumor growth or monotherapies, and comparison of 
model prediction with these data can be used to increase confidence 
and calibrate a few selected parameters. However, the final aim is a 
prospective prediction of the clinical outcomes for a novel scenario.

The definition of what constitutes a “calibrated” QSP model 
is still subject to debate in the field and outside the scope of the 
present paper and we refer to a recent review of common current 
practices by Bai and coworkers.69

We appreciate that quantitative data on individual molecular 
and cellular interactions are sparse and that parameterization of 
large-scale mechanistic models in IO is challenging. Often, quan-
titative experimental data on parameters is lacking and where it is 
available it is available from different experimental settings (e.g., 
in vitro experiments using different cell lines). Moreover, a trans-
lational challenge exists when using information from animal 
experiments for parameterization of human in silico models. In 
current practice, unknown parameters still have to be identified 
by fitting to experimental data and with this identifiability prob-
lems can arise. However, we believe that given the large-scale ex-
perimental investments in oncology and immunology motivated 
not just by cancer but also infectious and auto-immune diseases, 
this situation is quickly changing. In our recent article,7 we have 
demonstrated that the high-throughput, quantitative, –omics data 
cover all stages of the CIC, which form the basis of our IO QSP 
platform. Moreover, one of the benefits of mechanistic modeling 
is generation of hypotheses about mechanisms underlying disease 
and therapy. These hypotheses will motivate further application of 
existing quantitative measurement methods and perhaps develop-
ment of new approaches. We expect that quantitative mechanistic 
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modeling and experimentation will develop in parallel71 and that 
the QSP approach in IO will be gaining prominence.

Another frequent criticism of QSP platform models is the seem-
ingly redundant level of detail and biological scope.72 Usually, when 
QSP model prediction is compared with clinical data and pub-
lished, one can easily demonstrate that much simpler models could 
describe the relationship between variables considered in a particu-
lar prediction. However, as argued before, the application of a QSP 
model in IO is very different from this retrospective, descriptive 
analysis. The QSP platform is used to examine a large number of 
candidate therapies to predict clinical outcomes, before clinical 
data are available, select the combination, dose, dosing regime, and 
sequence, which maximizes chances of efficacious treatment and 
inform decision about which therapy should be taken forward to 
the clinical trial (Figure 2). This context of use necessitates a wide 
biological scope and detailed description. The model needs to 
contain large number of variables describing potential targets and 
biomarkers to allow testing of a large number of combinations. It 
needs to include a comprehensive model of interactions between 
these targets to allow predictions for any possible combination and 
differential efficacy in different patient groups (i.e., responders vs. 
nonresponders). Apart of achieving certain predictive power in 
validation case studies, the model must also provide description of 
the biology, which is recognized as a plausible, and comprehensive 
representation of knowledge by molecular and cell biology experts. 
The biology and clinical expert input and assessment constitutes 
a critically important stage in QSP platform development and 
qualification and is arguably the most important contributor to 
increasing confidence in the model. Furthermore, the model must 
be quantitative to allow consideration of dose amount, timing, lon-
gitudinal tumor size profile, percent of responders, and quantita-
tive variables describing other biomarkers. However, to define and 
limit the biological scope and level of detail to be represented in an 
IO QSP model is challenging, and it is not easy to decide which 
processes shall be considered for a certain application.73

Another advantage of a large-scale mechanistic model is that al-
though its creation may be slow, the application is very fast. With 
a mature model, hundreds of virtual trials exploring a wide range 
of study designs, patient characteristics, dosing regimens etc., can 
be explored in a matter of days. Ideally, the QSP platform should 
be made available through a user-friendly and validated user inter-
face, which can be used by a wider group of quantitative clinical 
pharmacologists. When such a platform model is submitted to the 
regulator, the sponsor may refer to previous submission and doc-
umentation that the regulator is already familiar with and qualifi-
cation may only have to be provide for the model extension. This 
brings us back to the point about how QSP can leverage from the 
PBPK discipline, where familiarity of the regulator with a limited 
number of mechanistic platform models has arguably one of the 
main reasons for its impact in drug development decision making.

Of course, QSP is still a novel approach and its methodology is 
intensively debated. Over the last 5 years, a number of papers have 
been dedicated to qualification, a formalized process of building 
confidence in QSP platform.69,73–75 Although precise guidelines 
have not yet been agreed by the community and regulators, authors 
appreciate that qualification should be done with consideration of 

the risk of following model predictions in a particular context of use. 
The uses cases for model qualification have to be carefully selected 
to allow a valid application of the model. This follows a framework 
already recommended by the US Food and Drug Administration 
(FDA) for the modeling of medical devices.76 Justification of pa-
rameter values shifts focus from identifiability analysis to stating 
parameter ranges, where the model exhibits behaviors recognized 
as plausible by biology experts. Following the practice of computer 
simulation established in engineering and climate sciences, a lot of 
attention is devoted to global sensitivity analysis and uncertainty 
quantification.

Last, but not least, any new approach should be evaluated by 
comparison with existing state-of-the-art. Currently, it is our experi-
ence that most decisions about which combination therapies should 
be tested experimentally and clinically are typically made by a rela-
tively small group of immunobiology and oncology domain experts 
based on qualitative and at times selective interpretation of litera-
ture, preclinical results, and, when available, previous clinical data 
on monotherapies. In contrast to this somewhat intuitive and sub-
jective approach, a QSP model represents the literature and expert 
knowledge in an explicit, transparent, and quantitative framework, 
and through virtual trial simulation enables extrapolation from this 
knowledge to quantitative clinical outcomes and the exploration of 
numerous “what if ” scenarios. In our view, this already provides sub-
stantial advantage over the current ways of working and increases 
the chances of selecting efficacious patient-oriented combinations.

CONCLUSIONS
In light of the unprecedented number of ongoing and planned 
clinical trials and preclinical programs for IO combination ther-
apies and the emergence of examples of late-stage attrition, there 
is an urgent need to improve the process of selecting candidate 
therapies and improve the design of trials to increase the chances 
of success and terminate low-value programs prior to clinical 
testing. QSP models integrate existing mechanistic knowledge 
on disease and drug PK/PD in a quantitative framework allow-
ing simulation of virtual trials, where candidate drug combi-
nations are evaluated in silico before being tested in the clinic. 
Although development of full-scale platform models allowing 
virtual screening of large numbers of candidate therapies became 
possible only recently, the current QSP approaches capitalize on 
the legacy of 3 decades of progress in mathematical and systems 
biology. Recently developed QSP models have started to demon-
strate their potential in actual drug development case studies that 
indicate both feasibility and benefit of the approach. Based on 
these early results, we predict that QSP models will increasingly 
be used in IO drug development and that it will soon become 
standard practice to run virtual trials ahead of and in parallel 
with clinical trials to more quickly bring better therapeutics to 
patients with cancer.
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